Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 4
120
Views
0
CrossRef citations to date
0
Altmetric
Articles

Computational analysis for temperature separation and correlations prediction for dual-inlet-sections vortex tube

, &
Pages 465-485 | Received 22 Aug 2022, Accepted 01 May 2023, Published online: 09 May 2023

References

  • R. G. Joseph, “GIRATION DES FLUIDES SARL, “Method and Apparatus for Obtaining from Alpha Fluid under Pressure Two Currents of Fluids at Different Temperatures,” U.S. Patent 1,952,281, 1934. Available: https://patentimages.storage.googleapis.com/15/a8/18/e5bcdeb774d226/US1952281.pdf.
  • H. M. Skye, G. F. Nellis and S. A. Klein, “Comparison of CFD analysis to empirical data in a commercial vortex tube,” Int. J. Refrig., vol. 29, no. 1, pp. 71–80, 2006. DOI: 10.1016/j.ijrefrig.2005.05.004.
  • N. F. Aljuwayhel, G. F. Nellis and S. A. Klein, “Parametric and internal study of the vortex tube using a CFD model,” Int. J. Refrig., vol. 28, no. 3, pp. 442–450, 2005. DOI: 10.1016/j.ijrefrig.2004.04.004.
  • B. Ahlborn, J. Camire and J. U. Keller, “Low-pressure vortex tubes,” J. Phys. D: Appl. Phys., vol. 29, no. 6, pp. 1469–1472, 1996. DOI: 10.1088/0022-3727/29/6/009.
  • H. Khazaei, A. R. Teymourtash and M. Malek-Jafarian, “Effects of gas properties and geometrical parameters on performance of a vortex tube,” Sci. Iran., vol. 19, no. 3, pp. 454–462, 2012. DOI: 10.1016/j.scient.2012.03.003.
  • T. Farouk and B. Farouk, “Large eddy simulations of the flow field and temperature separation in the Ranque–Hilsch vortex tube,” Int. J. Heat Mass Transfer, vol. 50, no. 23-24, pp. 4724–4735, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.03.048.
  • N. Pourmahmoud, A. H. Zadeh, O. Moutaby and A. Bramo, “Computational fluid dynamics analysis of helical nozzles effects on the energy separation in a vortex tube,” Therm. Sci, vol. 16, no. 1, pp. 151–166, 2012. DOI: 10.2298/TSCI110531085P.
  • S. E. Rafiee and M. Rahimi, “Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance–Validation and CFD optimization,” Energy, vol. 63, pp. 195–204, 2013. DOI: 10.1016/j.energy.2013.09.060.
  • U. Behera, et al., “CFD analysis and experimental investigations towards optimizing the parameters of Ranque–Hilsch vortex tube,” Int. J. Heat Mass Transfer, vol. 48, no. 10, pp. 1961–1973, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.12.046.
  • K. Dincer, S. Baskaya, B. Z. Uysal and I. Ucgul, “Experimental investigation of the performance of a Ranque–Hilsch vortex tube with regard to a plug located at the hot outlet,” Int. J. Refrig., vol. 32, no. 1, pp. 87–94, 2009. DOI: 10.1016/j.ijrefrig.2008.06.002.
  • M. A. Qyyum, A. A. Noon, F. Wei and M. Lee, “Vortex tube shape optimization for hot control valves through computational fluid dynamics,” Int. J. Refrig., vol. 102, pp. 151–158, 2019. DOI: 10.1016/j.ijrefrig.2019.02.014.
  • J. Lewins and A. Bejan, “Vortex tube optimization theory,” Energy, vol. 24, no. 11, pp. 931–943, 1999. DOI: 10.1016/S0360-5442(99)00039-0.
  • C. S. Kim and C. H. Sohn, “Dynamic characteristics of an unsteady flow through a vortex tube,” J. Mech. Sci. Technol., vol. 20, no. 12, pp. 2209–2217, 2006. DOI: 10.1007/BF02916338.
  • W. Wang, C. Wang, Y. Wei and W. Song, “A study on the wake structure of the double vortex tubes in a ventilated supercavity,” J. Mech. Sci. Technol., vol. 32, no. 4, pp. 1601–1611, 2018. DOI: 10.1007/s12206-018-0315-5.
  • S. Anish, T. Setoguchi and H. D. Kim, “Computational investigation of the temperature separation in vortex section,” J. Mech. Sci. Technol., vol. 28, no. 6, pp. 2369–2376, 2014. DOI: 10.1007/s12206-014-0529-0.
  • F. Seibold and B. Weigand, “Numerical analysis of the flow pattern in convergent vortex tubes for cyclone cooling applications,” Int. J. Heat Fluid Flow., vol. 90, pp. 108806, 2021. DOI: 10.1016/j.ijheatfluidflow.2021.108806.
  • A. Celik, M. Yilmaz and O. F. Yildiz, “Effects of vortex tube on exhaust emissions during cold start of diesel engines,” Applicat. Energy Combust. Sci., vol. 6, pp. 100027, 2021. DOI: 10.1016/j.jaecs.2021.100027.
  • A. V. Karthick and V. Nayak, “Analytical investigation on energy separation in Ranque–Hilsch vortex tube,” Numer. Heat Transf. B: Fundam., vol. 80, no. 5-6, pp. 136–154, 2021. DOI: 10.1080/10407790.2021.1969816.
  • H. A. Kandil and S. T. Abdelghany, “Computational investigation of different effects on the performance of the Ranque–Hilsch vortex tube,” Energy, vol. 84, pp. 207–218, 2015. DOI: 10.1016/j.energy.2015.02.089.
  • S. Eiamsa-Ard, “Experimental investigation of energy separation in a counter-flow Ranque–Hilsch vortex tube with multiple inlet snail entries,” Int. Commun. Heat Mass Transf., vol. 37, no. 6, pp. 637–643, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.02.007.
  • M. Baghdad, A. Ouadha, O. Imine and Y. Addad, “Numerical study of energy separation in a vortex tube with different RANS models,” Int. J. Thermal Sci., vol. 50, no. 12, pp. 2377–2385, 2011. DOI: 10.1016/j.ijthermalsci.2011.07.011.
  • M. Avcı, “The effects of nozzle aspect ratio and nozzle number on the performance of the Ranque–Hilsch vortex tube,” Appl. Thermal Eng., vol. 50, no. 1, pp. 302–308, 2013. DOI: 10.1016/j.applthermaleng.2012.06.048.
  • A. Kumar, Vivekanand, and S. Subudhi, “Cooling and dehumidification using vortex tube,” Appl. Therm. Eng., vol. 122, pp. 181–193, 2017. DOI: 10.1016/j.applthermaleng.2017.05.015.
  • R. Godbole and P. A. Ramakrishna, “Design guidelines for the vortex tube,” Exp. Therm. Fluid Sci., vol. 118, pp. 110169, 2020. DOI: 10.1016/j.expthermflusci.2020.110169.
  • K. Dincer, S. Tasdemir, S. Baskaya, I. Ucgul and B. Z. Uysal, “Fuzzy modeling of performance of counterflow Ranque-Hilsch vortex tubes with different geometric constructions,” Numer. Heat Transf B: Fundam., vol. 54, no. 6, pp. 499–517, 2008. DOI: 10.1080/10407790802483432.
  • P. A. Ramakrishna, M. Ramakrishna and R. Manimaran, “Experimental investigation of temperature separation in a counter-flow vortex tube,” J. Heat Transf, vol. 136, no. 8, pp. 082801, 2014. DOI: 10.1115/1.4027248.
  • H. Peng and G. Xiangji, “Numerical study on the cooling performance and inlet mass flow rate per unit area of Ranque–Hilsch vortex tubes with different area ratios,” Numer. Heat Transf. A: Appl., vol. 83, no. 8, pp. 860–875, 2023. DOI: 10.1080/10407782.2022.2156946.
  • O. V. Vitovsky, “Experimental study of energy separation in a Ranque-Hilsch tube with a screw vortex generator,” Int. J. Refrig., vol. 126, pp. 272–279, 2021. DOI: 10.1016/j.ijrefrig.2021.02.014.
  • X. Guo and B. Zhang, “Computational investigation of precessing vortex breakdown and energy separation in a Ranque–Hilsch vortex tube,” Int. J. Refrig., vol. 85, pp. 42–57, 2018. DOI: 10.1016/j.ijrefrig.2017.09.010.
  • H. Kaya, O. Uluer, E. Kocaoğlu and V. Kirmaci, “Experimental analysis of cooling and heating performance of serial and parallel connected counter-flow Ranquee–Hilsch vortex tube systems using carbon dioxide as a working fluid,” Int. J. Refrig., vol. 106, pp. 297–307, 2019. DOI: 10.1016/j.ijrefrig.2019.07.004.
  • S. Subudhi and M. Sen, “Review of Ranque–Hilsch vortex tube experiments using air,” Renewable Sustainable Energy Rev., vol. 52, pp. 172–178, 2015. DOI: 10.1016/j.rser.2015.07.103.
  • D. Majidi, H. Alighardashi and F. Farhadi, “Best vortex tube cascade for highest thermal separation,” Int. J. Refrig., vol. 85, pp. 282–291, 2018. DOI: 10.1016/j.ijrefrig.2017.10.006.
  • A. D. Gutak, “Experimental investigation and industrial application of Ranque-Hilsch vortex tube,” Int. J. Refrig., vol. 49, pp. 93–98, 2015. DOI: 10.1016/j.ijrefrig.2014.09.021.
  • P. Zhao, X. Wenpan, G. Feifei, F. Gang and W. Jiangfeng, “Performance analysis of a self-condensation compressed carbon dioxide energy storage system with vortex tube,” J. Energy Storage, vol. 41, pp. 102995, 2021. DOI: 10.1016/j.est.2021.102995.
  • A. Khait, B. Vincenzo, L. Alexander, N. Alexander and A. Vladimir, “Novel transonic nozzle for Ranque-Hilsch vortex tube,” Int. J. Heat Mass Transf., vol. 180, pp. 121801, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121801.
  • N. Li, G. Jiang, N. Gao and G. Chen, “Simple model for flow field division and flow structure calculation in a vortex tube,” Int. J. Refrig., vol. 139, pp. 48–59, 2022. DOI: 10.1016/j.ijrefrig.2022.04.002.
  • A. Bazgir, A. Heydari and N. Nabhani, “Investigation of the thermal separation in a counter-flow Ranque-Hilsch vortex tube with regard to different fin geometries located inside the cold-tube length,” Int. Commun. Heat Mass Transf., vol. 108, pp. 104273, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104273.
  • M. Mirjalili and K. Ghorbanian, “Numerical investigation of transient thermo-fluid processes in a Ranque-Hilsch vortex tube,” Int. J. Refrig., vol. 131, pp. 746–755, 2021. DOI: 10.1016/j.ijrefrig.2021.07.025.
  • F. Liang, C. Xu, G. Tang, J. Wang, Z. Wang and N. Li, “Experimental investigation on the acoustic characteristics and cooling performance of the vortex tube,” Int. J. Refrig., vol. 131, pp. 535–546, 2021. DOI: 10.1016/j.ijrefrig.2021.08.001.
  • R. Manimaran, “Numerical investigations of hydrogen and air mixture with vortex tube and duct combinations,” Int. J. Hydrogen Energy, vol. 46, no. 36, pp. 19140–19157, 2021. DOI: 10.1016/j.ijhydene.2021.03.021.
  • F. Liang, Q. Zeng, G. Tang, L. Xin, Q. Li and N. Li, “Numerical investigation on the effect of convergent-divergent tube on energy separation characteristic of vortex tube,” Int. Commun. Heat Mass Transf., vol. 133, pp. 105927, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105927.
  • A. Bazgir, “Analyzing separation capacity efficiency of a binary hydrocarbon system (Cyclohexane-N-Pentane) with the help of two distinct methods: utilizing A Vortex Tube Separator and An Equilibrium Flash Stage (EFS),” Exp. Therm. Fluid Sci., vol. 109, pp. 109853, 2019. DOI: 10.1016/j.expthermflusci.2019.109853.
  • X. Guo, B. Liu, B. Zhang and Y. Shan, “Analysis on the patterns of precessing frequency characteristics and energy separation processes in a Ranque–Hilsch vortex tube,” Int. J. Therm. Sci., vol. 168, pp. 107067, 2021. DOI: 10.1016/j.ijthermalsci.2021.107067.
  • A. Bazgir, N. Nabhani and S. Eiamsa-Ard, “Numerical analysis of flow and thermal patterns in a double-pipe Ranque-Hilsch vortex tube: influence of cooling a hot-tube,” Appl. Therm. Eng., vol. 144, pp. 181–208, 2018. DOI: 10.1016/j.applthermaleng.2018.08.043.
  • F. Liang, et al., “Experimental investigation on improving the energy separation efficiency of vortex tube by optimizing the structure of vortex generator,” Appl. Therm. Eng., vol. 195, pp. 117222, 2021. DOI: 10.1016/j.applthermaleng.2021.117222.
  • A. Bazgir and N. Nabhani, “Investigation of temperature separation inside various models of Ranque–Hilsch vortex tube: convergent, straight, and divergent with the help of computational fluid dynamic approach,” J. Therm. Sci. Eng. Appl., vol. 10, no. 5, pp. 051013, 2018. DOI: 10.1115/1.4039966.
  • A. Bazgir, N. Nabhani, B. Bazooyar and A. Heydari, “Computational fluid dynamic prediction and physical mechanisms consideration of thermal separation and heat transfer processes inside divergent, straight, and convergent Ranque–Hilsch vortex tubes,” J. Heat Transf., vol. 141, no. 10, pp. 101701, 2019. DOI: 10.1115/1.4043728.
  • A. Bazgir, A. Heydari, B. Bazooyar, M. Mohammadniakan and N. Nabhani, “Numerical investigation of the energy separation effect and flow mechanism inside convergent, straight, and divergent double‐sleeve RHVT,” Heat Trans. Asian Res., vol. 49, no. 1, pp. 533–564, 2020. DOI: 10.1002/htj.21626.
  • D. Kumar and A. Layek, “Experimental assessment of thermohydraulic performance of a rectangular solar air heater duct using twisted V-shaped staggered ribs,” J. Therm. Sci. Eng. Appl., vol. 15, no. 4, pp. 041009, 2023. DOI: 10.1115/1.4056878.
  • D. Kumar and A. Layek, “Heat transfer augmentation of a solar air heater using a twisted V-shaped staggered rib over the absorber plate,” J. Solar Energy Eng., vol. 145, no. 2, pp. 021013, 2023. DOI: 10.1115/1.4055404.
  • A. Bazgir and A. Heydari, “CFD optimization of injection nozzles geometric dimensions of RHVT-machines in order to enhance the cooling capability,” IJHT, vol. 36, no. 3, pp. 1081–1093, 2018. DOI: 10.18280/ijht.360340.
  • A. Bazgir, M. Khosravi-Nikou and A. Heydari, “Numerical CFD analysis and experimental investigation of the geometric performance parameter influences on the counter-flow Ranque-Hilsch vortex tube (C-RHVT) by using optimized turbulence model,” Heat Mass Transf., vol. 55, no. 9, pp. 2559–2591, 2019. DOI: 10.1007/s00231-019-02578-1.
  • A. Bazgir, “Thermal optimization analysis and performance enhancement of sequential bundle of vortex tubes for drilling engineering cooling process,” J. Thermal Sci. Eng. Appl., vol. 11, no. 2, pp. 021004, 2019. DOI: 10.1115/1.4041348.
  • R. K. Singh, A. K. Pramanick and S. C. Rana, “Computational study of temperature separation for a three-dimensional vortex tube with cold exit diameter and nozzle number variation,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 7046–7060, 2022. DOI: 10.1080/01430750.2022.2059001.
  • Z. Hu, R. Li, X. Yang, M. Yang and Y. Zhang, “Numerical simulation for three-dimensional flow in a vortex tube with different turbulence models,” Numer. Heat Transf. A: Appl., vol. 77, no. 2, pp. 121–133, 2020. DOI: 10.1080/10407782.2019.1688024.
  • R. C. Talawo, B. E. Mtopi Fotso and M. Fogue, “Numerical study of a solar thermoelectric generator with vortex tube for hybrid vehicle,” Numer. Heat Transf. A: Appl., vol. 80, no. 1-2, pp. 43–61, 2021. DOI: 10.1080/10407782.2021.1929255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.