Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 5
128
Views
0
CrossRef citations to date
0
Altmetric
Articles

Hamilton–Crosser model impact for particle shape in a nanofluid flow influenced by variable thermal conductivity

, , , &
Pages 601-619 | Received 31 Mar 2023, Accepted 15 May 2023, Published online: 30 May 2023

References

  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Dev. Appl., vol. 66, pp. 99–105, 1995.
  • Y. Rao, “Nanofluids: Stability, phase diagram, rheology and applications,” Particuology, vol. 8, no. 6, pp. 549–555, 2010. DOI: 10.1016/j.partic.2010.08.004.
  • Z. Said et al., “Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids,” Phys. Rep., vol. 946, pp. 1–94, 2022. DOI: 10.1016/j.physrep.2021.07.002.
  • W. Cui et al., “Experimental investigation and artificial intelligent estimation of thermal conductivity of nanofluids with different nanoparticles shapes,” Powder Technol., vol. 398, pp. 117078, 2022. DOI: 10.1016/j.powtec.2021.117078.
  • N. Joudeh and D. Linke, “Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists,” J. Nanobiotechnol., vol. 20, no. 1, pp. 1–29, 2022. DOI: 10.1186/s12951-022-01477-8.
  • H. Younes et al., “Nanofluids: Key parameters to enhance thermal conductivity and its applications,” Appl. Therm. Eng., vol. 207, pp. 118202, 2022. DOI: 10.1016/j.applthermaleng.2022.118202.
  • R. R. Souza et al., “Recent advances on the thermal properties and applications of nanofluids: From nanomedicine to renewable energies,” Appl. Therm. Eng., vol. 201, pp. 117725, 2022. DOI: 10.1016/j.applthermaleng.2021.117725.
  • J. Maxwell, A Treatise Electricity Magnetisms, vol. 1. Oxford: Clarendon Press, 1891, pp. 310–314.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fund., vol. 1, no. 3, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • M. Arif, P. Kumam, W. Kumam, and Z. Mostafa, “Heat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: A fractional model,” Case Stud. Therm. Eng., vol. 31, pp. 101837, 2022. DOI: 10.1016/j.csite.2022.101837.
  • S. Alqaed, J. Mustafa, H. S. Aybar, B. Jamil, and M. A. Alharthi, “Investigation of thermal entropy generation and nanofluid flow in a new heatsink with effect of nanoparticles shape,” Case Stud. Therm. Eng., vol. 36, pp. 102198, 2022. DOI: 10.1016/j.csite.2022.102198.
  • Z. Shah, Ikramullah, P. Kumam, M. M. Selim, and A. Alshehri, “Impact of nanoparticles shape and radiation on the behavior of nanofluid under the Lorentz forces,” Case Stud. Therm. Eng., vol. 26, pp. 101161, 2021. DOI: 10.1016/j.csite.2021.101161.
  • M. K. Nayak et al., “Interfacial layer and shape effects of modified Hamilton’s Crosser model in entropy optimized Darcy-Forchheimer flow,” Alex. Eng. J., vol. 60, no. 4, pp. 4067–4083, 2021. DOI: 10.1016/j.aej.2021.02.010.
  • H. Berrehal, G. Sowmya, and O. D. Makinde, “Shape effect of nanoparticles on MHD nanofluid flow over a stretching sheet in the presence of heat source/sink with entropy generation,” HFF., vol. 32, no. 5, pp. 1643–1663, 2022. DOI: 10.1108/HFF-03-2021-0225.
  • S. Sindhu, G. Bj, G. Sowmya and O. D. Makinde, “Hybrid nanoliquid flow through a microchannel with particle shape factor, slip and convective regime,” HFF., vol. 32, no. 10, pp. 3388–3410, 2022. DOI: 10.1108/HFF-11-2021-0733.
  • M. Benkhedda, T. Boufendi, T. Tayebi, and A. J. Chamkha, “Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect,” J. Therm. Anal. Calorim., vol. 140, no. 1, pp. 411–425, 2020. DOI: 10.1007/s10973-019-08836-y.
  • Y. Jiang, X. Zhou, and Y. Wang, “Effects of nanoparticle shapes on heat and mass transfer of nanofluid thermocapillary convection around a gas bubble,” Microgravity Sci. Technol., vol. 32, no. 2, pp. 167–177, 2020. DOI: 10.1007/s12217-019-09757-z.
  • I. Q. Memon, K. A. Abro, M. A. Solangi, and A. A. Shaikh, “Functional shape effects of nanoparticles on nanofluid suspended in ethylene glycol through Mittage-Leffler approach,” Phys. Scr., vol. 96, no. 2, pp. 025005, 2020. DOI: 10.1088/1402-4896/abd1b3.
  • Y. M. Chu, S. Bashir, M. Ramzan, and M. Y. Malik, “Model‐based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects,” Math. Methods Appl. Sci., 2022. DOI: 10.1002/mma.8234.
  • S. Bilal and M. Qureshi, “Mathematical analysis of hybridized ferromagnetic nanofluid with induction of copper oxide nanoparticles in permeable channel by incorporating Darcy–Forchheimer relation,” Math. Sci., pp. 1–17, 2021. DOI: 10.1007/s40096-021-00421-5.
  • M. Z. A. Qureshi, S. Bilal, Y. M. Chu, and A. B. Farooq, “Physical impact of nano-layer on nano-fluid flow due to dispersion of magnetized carbon nano-materials through an absorbent channel with thermal analysis,” J. Mol. Liq., vol. 325, pp. 115211, 2021. DOI: 10.1016/j.molliq.2020.115211.
  • M. Bilal, H. Arshad, M. Ramzan, Z. Shah, and P. Kumam, “Unsteady hybrid-nanofluid flow comprising ferrousoxide and CNTs through porous horizontal channel with dilating/squeezing walls,” Sci. Rep., vol. 11, no. 1, pp. 1–16, 2021. DOI: 10.1038/s41598-021-91188-1.
  • I. A. Shah et al., “On analysis of magnetized viscous fluid flow in permeable channel with single wall carbon nano tubes dispersion by executing nano-layer approach,” Alex. Eng. J., vol. 61, no. 12, pp. 11737–11751, 2022. DOI: 10.1016/j.aej.2022.05.037.
  • M. Ramzan et al., “Impact of homogeneous–heterogeneous reactions on nanofluid flow through a porous channel–A Tiwari and Das model application,” Numer. Heat Transf. A: Appl., pp. 1–14, 2023. DOI: 10.1080/10407782.2023.2201484.
  • Adnan, K. Abdulkhaliq M Alharbi, M. Z. Bani-Fwaz, S. M. Eldin, and M. F. Yassen, “Numerical heat performance of TiO2/Glycerin under nanoparticles aggregation and nonlinear radiative heat flux in dilating/squeezing channel,” Case Stud. Therm. Eng., vol. 41, pp. 102568, 2023. DOI: 10.1016/j.csite.2022.102568.
  • S. Das, A. S. Banu, R. N. Jana, and O. D. Makinde, “Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating,” Alex. Eng. J., vol. 54, no. 3, pp. 325–337, 2015. DOI: 10.1016/j.aej.2015.05.003.
  • N. A. Ahammad and M. V. Krishna, “Numerical investigation of chemical reaction, Soret and Dufour impacts on MHD free convective gyrating flow through a vertical porous channel,” Case Stud. Therm. Eng., vol. 28, pp. 101571, 2021. DOI: 10.1016/j.csite.2021.101571.
  • U. Shankar, N. B. Naduvinamani, and H. Basha, “Effect of magnetized variable thermal conductivity on flow and heat transfer characteristics of unsteady Williamson fluid,” Nonlinear Eng., vol. 9, no. 1, pp. 338–351, 2020. DOI: 10.1515/nleng-2020-0020.
  • S. Lahmar, M. Kezzar, M. R. Eid, and M. R. Sari, “Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity,” Phys. A: Stat. Mech. Appl., vol. 540, pp. 123138, 2020. DOI: 10.1016/j.physa.2019.123138.
  • H. Vaidya et al., “Heat and mass transfer analysis of MHD peristaltic flow through a complaint porous channel with variable thermal conductivity,” Phys. Scr., vol. 95, no. 4, pp. 045219, 2020. DOI: 10.1088/1402-4896/ab681a.
  • U. Biswal, S. Chakraverty, B. K. Ojha, and A. K. Hussein, “Numerical simulation of magnetohydrodynamics nanofluid flow in a semi-porous channel with a new approach in the least square method,” Int. Commun. Heat Mass Transf., vol. 121, pp. 105085, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105085.
  • A. Zeeshan, N. Shehzad, and R. Ellahi, “Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions,” Res. Phys., vol. 8, pp. 502–512, 2018. DOI: 10.1016/j.rinp.2017.12.024.
  • J. Majdalani, C. Zhou, and C. A. Dawson, “Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability,” J. Biomech., vol. 35, no. 10, pp. 1399–1403, 2002. DOI: 10.1016/s0021-9290(02)00186-0.
  • S. Xinhui, Z. Liancun, Z. Xinxin, and Y. Jianhong, “Homotopy analysis method for the heat transfer in a asymmetric porous channel with an expanding or contracting wall,” Appl. Math. Model., vol. 35, no. 9, pp. 4321–4329, 2011. DOI: 10.1016/j.apm.2011.03.009.
  • F. Saba, N. Ahmed, U. Khan, and S. T. Mohyud-Din, “Impact of an effective Prandtl number model and across mass transport phenomenon on the γAI2O3 nanofluid flow inside a channel,” Phys. A: Stat. Mech. Appl., vol. 526, pp. 121083, 2019. DOI: 10.1016/j.physa.2019.121083.
  • M. J. Babu et al., “Squeezed flow of polyethylene glycol and water based hybrid nanofluid over a magnetized sensor surface: A statistical approach,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106136, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106136.
  • D. Bhowmick, P. R. Randive, and S. Pati, “Implication of corrugation profile on thermo-hydraulic characteristics of Cu-water nanofluid flow through partially filled porous channel,” Int. Commun. Heat Mass Transf., vol. 125, pp. 105329, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105329.
  • L. T. Benos, E. G. Karvelas, and I. E. Sarris, “A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-Crosser model,” Int. J. Heat Mass Transf., vol. 135, pp. 548–560, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.148.
  • W. Duangthongsuk and S. Wongwises, “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,” Exp. Therm. Fluid Sci., vol. 33, no. 4, pp. 706–714, 2009. DOI: 10.1016/j.expthermflusci.2009.01.005.
  • T. Elnaqeeb, I. L. Animasaun, and N. A. Shah, “Ternary-hybrid nanofluids: Significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities,” Zeitschrift Für Naturforschung A, vol. 76, no. 3, pp. 231–243, 2021. DOI: 10.1515/zna-2020-0317.
  • L. Ali, Y. J. Wu, B. Ali, S. Abdal, and S. Hussain, “The crucial features of aggregation in TiO2-water nanofluid aligned of chemically comprising microorganisms: A FEM approach,” Comput. Math. Appl., vol. 123, pp. 241–251, 2022. DOI: 10.1016/j.camwa.2022.08.028.
  • L. Ali, A. Manan, and B. Ali, “Maxwell nanofluids: FEM simulation of the effects of suction/injection on the dynamics of rotatory fluid subjected to bioconvection, Lorentz, and Coriolis forces,” Nanomaterials, vol. 12, no. 19, pp. 3453, 2022. DOI: 10.3390/nano12193453.
  • L. Ali, B. Ali, and T. Iqbal, “Finite element analysis of the impact of particles aggregation on the thermal conductivity of nanofluid under chemical reaction,” Waves Random Complex Media, pp. 1–21, 2023. DOI: 10.1080/17455030.2023.2172962.
  • L. Ali, X. Liu, B. Ali, S. Mujeed, and S. Abdal, “Finite element simulation of multi-slip effects on unsteady MHD bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions,” Coatings, vol. 9, no. 12, pp. 842, 2019. DOI: 10.3390/coatings9120842.
  • L. Ali et al., “Insight into significance of thermal stratification and radiation on dynamics of micropolar water based TiO2 nanoparticle via finite element simulation,” J. Mater. Res. Technol., vol. 19, pp. 4209–4219, 2022. DOI: 10.1016/j.jmrt.2022.06.043.
  • L. Ali et al., “The optimization of heat transfer in thermally convective micropolar-based nanofluid flow by the influence of nanoparticle’s diameter and nanolayer via stretching sheet: Sensitivity analysis approach,” J. Non-Equilib. Thermodyn., 2023. DOI: 10.1515/jnet-2022-0064.
  • K. Gowthami, P. H. Prasad, B. Mallikarjuna, and O. D. Makinde, “Flow between stretchable rotating disks in an anisotropic porous medium with Cattaneo Christov heat flux,” DDF., vol. 393, pp. 138–148, 2019. DOI: 10.4028/www.scientific.net/DDF.393.138.
  • J. Kierzenka and L. F. Shampine, “A BVP solver based on residual control and the Matlab PSE,” ACM Trans. Math. Softw., vol. 27, no. 3, pp. 299–316, 2001. DOI: 10.1145/502800.502801.
  • Y. Z. Boutros, M. B. Abd-el-Malek, N. A. Badran, and H. S. Hassan, “Lie-group method solution for two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability,” Appl. Math. Model., vol. 31, no. 6, pp. 1092–1108, 2007. DOI: 10.1016/j.apm.2006.03.026.
  • S. Asghar, M. Mushtaq, and A. H. Kara, “Exact solutions using symmetry methods and conservation laws for the viscous flow through expanding–contracting channels,” Appl. Math. Model., vol. 32, no. 12, pp. 2936–2940, 2008. DOI: 10.1016/j.apm.2007.10.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.