Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 6
152
Views
0
CrossRef citations to date
0
Altmetric
Articles

Thermal characteristics of metal foams proportion on heat transfer enhancement in the melting and solidification process of phase change materials

ORCID Icon, , , &
Pages 689-705 | Received 01 Sep 2022, Accepted 23 May 2023, Published online: 12 Jun 2023

References

  • U. Pelay, L. Luo, Y. Fan, D. Stitou, and M. Rood, “Thermal energy storage systems for concentrated solar power plants,” Renew. Sustain. Energy Rev., vol. 79, pp. 82–100, Jan. 2017. DOI: 10.1016/j.rser.2017.03.139.
  • L. F. Cabeza et al., “Use of microencapsulated PCM in concrete walls for energy savings,” Energy Build., vol. 39, no. 2, pp. 113–119, 2007. DOI: 10.1016/j.enbuild.2006.03.030.
  • M. Akrami et al., “Towards a sustainable greenhouse: Review of trends and emerging practices in analysing greenhouse ventilation requirements to sustain maximum agricultural yield,” Sustainability (Switzerland), vol. 12, no. 7, pp. 2794, 2020. DOI: 10.3390/su12072794.
  • J. Luo, D. Zou, Y. Wang, S. Wang, and L. Huang, “Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review,” Chem. Eng. J., vol. 430, no. P1, pp. 132741, 2022. DOI: 10.1016/j.cej.2021.132741.
  • C. A. Ikutegbe and M. M. Farid, “Application of phase change material foam composites in the built environment: A critical review,” Renew. Sustain. Energy Rev., vol. 131, pp. 110008, Jan. 2020. DOI: 10.1016/j.rser.2020.110008.
  • G. Murali, G. S. N. Sravya, J. Jaya, and V. Naga Vamsi, “A review on hybrid thermal management of battery packs and it’s cooling performance by enhanced PCM,” Renew. Sustain. Energy Rev., vol. 150, pp. 111513, 2021. DOI: 10.1016/j.rser.2021.111513.
  • W. Hua, L. Zhang, and X. Zhang, “Research on passive cooling of electronic chips based on PCM: A review,” J. Mol. Liq., vol. 340, pp. 117183, 2021. DOI: 10.1016/j.molliq.2021.117183.
  • C. Guo and W. Zhang, “Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system,” Energy Convers. Manage., vol. 49, no. 5, pp. 919–927, 2008. DOI: 10.1016/j.enconman.2007.10.025.
  • J. M. Mahdi, S. Lohrasbi, D. D. Ganji, and E. C. Nsofor, “Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger,” Int. J. Heat Mass Transf., vol. 124, pp. 663–676, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.095.
  • H. Wei and X. Li, “Preparation and characterization of a lauric-myristic-stearic acid / Al2O3 - loaded expanded vermiculite composite phase change material with enhanced thermal conductivity,” Sol. Energy Mater. Sol. Cells, vol. 166, pp. 1–8, Jan. 2017. DOI: 10.1016/j.solmat.2017.03.003.
  • Y. Fu, Z. He, D. Mo, and S. Lu, “Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives,” Int. J. Therm. Sci., vol. 86, pp. 276–283, 2014. DOI: 10.1016/j.ijthermalsci.2014.07.011.
  • S. Seddegh, X. Wang, A. D. Henderson, and Z. Xing, “Solar domestic hot water systems using latent heat energy storage medium: A review,” Renew. Sustain. Energy Rev., vol. 49, pp. 517–533, 2015. DOI: 10.1016/j.rser.2015.04.147.
  • Y. M. F. EL Hasadi and J. M. Khodadadi, “Numerical simulation of solidification of colloids inside a differentially heated cavity,” J. Heat Transf., vol. 137, no. 7, pp. 1–10, 2015. DOI: 10.1115/1.4029035.
  • H. Senobar, M. Aramesh, and B. Shabani, “Nanoparticles and metal foams for heat transfer enhancement of phase change materials : A comparative experimental study,” J. Energy Storage, vol. 32, pp. 101911, May 2020. DOI: 10.1016/j.est.2020.101911.
  • C. J. Ho and J. Y. Gao, “Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material,” Int. Commun. Heat Mass Transf., vol. 36, no. 5, pp. 467–470, 2009. DOI: 10.1016/j.icheatmasstransfer.2009.01.015.
  • S. A. Nada, D. H. El-Nagar, and H. M. S. Hussein, “Improving the thermal regulation and efficiency enhancement of PCM- integrated PV modules using nano particles,” Energy Convers. Manage., vol. 166, no. May, pp. 735–743, 2018. DOI: 10.1016/j.enconman.2018.04.035.
  • I. Zarma, M. Ahmed, and S. Ookawara, “Enhancing the performance of concentrator photovoltaic systems using nanoparticle-phase change material heat sinks,” Energy Convers. Manage., vol. 179, pp. 229–242, Jun. 2019. DOI: 10.1016/j.enconman.2018.10.055.
  • H. Jin, L. Fan, M. Liu, Z. Zhu, and Z. Yu, “A pore-scale visualized study of melting heat transfer of a paraffin wax saturated in a copper foam : Effects of the pore size,” Int. J. Heat Mass Transf., vol. 112, pp. 39–44, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.114.
  • Z. A. Qureshi, E. Elnajjar, O. Al-Ketan, R. A. Al-Rub, and S. B. Al-Omari, “Heat transfer performance of a finned metal foam-phase change material (FMF-PCM) system incorporating triply periodic minimal surfaces (TPMS),” Int. J. Heat Mass Transf., vol. 170, pp. 121001, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121001.
  • Q. Ren, Y. He, K. Su, and C. L. Chan, “Investigation of the effect of metal foam characteristics on the PCM melting performance in a latent heat thermal energy storage unit by pore-scale lattice Boltzmann modeling,” Numer. Heat Transf. A: Appl., vol. 72, no. 10, pp. 745–764, 2017. DOI: 10.1080/10407782.2017.1412224.
  • Y. Shiina and T. Inagaki, “Study on the efficiency of effective thermal conductivities on melting characteristics of latent heat storage capsules,” Int. J. Heat Mass Transf., vol. 48, no. 2, pp. 373–383, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.07.043.
  • X. Yang, Z. Niu, Q. Bai, H. Li, X. Cui, and Y. He, “Experimental study on the solidification process of fluid saturated,” Appl. Therm. Eng., vol. 161, pp. 114163, 2019. DOI: 10.1016/j.applthermaleng.2019.114163.
  • T. Rehman, H. Muhammad, M. Mansoor, U. Sajjad, and W. Yan, “A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams,” Int. J. Heat Mass Transf., vol. 135, pp. 649–673, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.001.
  • V. Joshi and M. K. Rathod, “Thermal performance augmentation of metal foam infused phase change material using a partial fi lling strategy : An evaluation for fill height ratio and porosity,” Appl. Energy, vol. 253, pp. 113621, Jul. 2019. DOI: 10.1016/j.apenergy.2019.113621.
  • F. Agyenim, P. Eames, and M. Smyth, “A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins,” Sol. Energy, vol. 83, no. 9, pp. 1509–1520, 2009. DOI: 10.1016/j.solener.2009.04.007.
  • U. S. Stritih, “An experimental study of enhanced heat transfer in rectangular PCM thermal storage,” Int. J. Heat Mass Transf., vol. 47, no. 12-13, pp. 2841–2847, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.02.001.
  • R. Velraj, R. V. Seeniraj, B. Hafner, C. Faber, and K. Schwarzer, “Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit,” Sol. Energy, vol. 60, no. 5, pp. 281–290, 1997. DOI: 10.1016/S0038-092X(96)00167-3.
  • T. Bauer, “ Approximate analytical solutions for the solidification of PCMs in fin geometries using effective thermophysical properties,” Int. J. Heat Mass Transf., vol. 54, no. 2324, pp. 4923–4930, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.07.004.
  • B. Lu, Y. Zhang, D. Sun, Z. Yuan, and S. Yang, “Experimental investigation on thermal behavior of paraffin in a vertical shell and spiral fin tube latent heat thermal energy storage unit,” Appl. Therm. Eng., vol. 187, pp. 116575, Sept. 2020. DOI: 10.1016/j.applthermaleng.2021.116575.
  • V. Shatikian, G. Ziskind, and R. Letan, “Numerical investigation of a PCM-based heat sink with internal fins: Constant heat flux,” Int. J. Heat Mass Transf., vol. 51, no. 56, pp. 1488–1493, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.11.036.
  • V. Shatikian, G. Ziskind, and R. Letan, “Numerical investigation of a PCM-based heat sink with internal fins,” Int. J. Heat Mass Transf., vol. 48, no. 17, pp. 3689–3706, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.10.042.
  • J. Giro-Paloma, M. Martínez, L. F. Cabeza, and A. I. Fernández, “Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review,” Renew. Sustain. Energy Rev., vol. 53, pp. 1059–1075, 2016. DOI: 10.1016/j.rser.2015.09.040.
  • A. Yataganbaba, B. Ozkahraman, and I. Kurtbas, “Worldwide trends on encapsulation of phase change materials,” Appl. Energy, vol. 185, no. part 1, pp. 720–731, 2017. DOI: 10.1016/j.apenergy.2016.10.107.
  • Y. E. Milián, A. Gutiérrez, M. Grágeda, and S. Ushak, “A review on encapsulation techniques for inorganic phase change materials and the in fl uence on their thermophysical properties,” Renew. Sustain. Energy Rev., vol. 73, pp. 983–999, Jun. 2017. DOI: 10.1016/j.rser.2017.01.159.
  • C. Y. Zhao, W. Lu, and Y. Tian, “Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs),” Sol. Energy, vol. 84, no. 8, pp. 1402–1412, 2010. DOI: 10.1016/j.solener.2010.04.022.
  • A. N. Keshteli and M. Sheikholeslami, “Influence of Al2O3 nanoparticle and Y-shaped fins on melting and solidification of paraffin,” J. Mol. Liq., vol. 314, pp. 113798, 2020. DOI: 10.1016/j.molliq.2020.113798.
  • Y. Ye et al., “Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials,” Renew. Energy, vol. 180, pp. 734–743, 2021. DOI: 10.1016/j.renene.2021.08.118.
  • T. Alqahtani, S. Mellouli, A. Bamasag, F. Askri, and P. E. Phelan, “Thermal performance analysis of a metal hydride reactor encircled by a phase change material sandwich bed,” Int. J. Hydrogen Energy, vol. 45, no. 43, pp. 23076–23092, 2020. DOI: 10.1016/j.ijhydene.2020.06.126.
  • T. Alqahtani, A. Bamasag, S. Mellouli, F. Askri, and P. E. Phelan, “Cyclic behaviors of a novel design of a metal hydride reactor encircled by cascaded phase change materials,” Int. J. Hydrogen Energy, vol. 45, no. 56, pp. 32285–32297, 2020. DOI: 10.1016/j.ijhydene.2020.08.280.
  • L. Tong et al., “Hydrogen release from a metal hydride tank with phase change material jacket and coiled-tube heat exchanger,” Int. J. Hydrogen Energy, vol. 46, no. 63, pp. 32135–32148, 2021. DOI: 10.1016/j.ijhydene.2021.06.230.
  • H. Q. Nguyen and B. Shabani, “Thermal management of metal hydride hydrogen storage using phase change materials for standalone solar hydrogen systems: An energy/exergy investigation,” Int. J. Hydrogen Energy, vol. 47, no. 3, pp. 1735–1751, 2022. DOI: 10.1016/j.ijhydene.2021.10.129.
  • J. Yao et al., “A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system,” Int. J. Hydrogen Energy, vol. 45, no. 52, pp. 28087–28099, 2020. DOI: 10.1016/j.ijhydene.2020.05.089.
  • L. Tong, J. Xiao, P. Bénard, and R. Chahine, “Thermal management of metal hydride hydrogen storage reservoir using phase change materials,” Int. J. Hydrogen Energy, vol. 44, no. 38, pp. 21055–21066, 2019. DOI: 10.1016/j.ijhydene.2019.03.127.
  • H. El Mghari et al., “Analysis of hydrogen storage performance of metal hydride reactor with phase change materials,” Int. J. Hydrogen Energy, vol. 44, no. 54, pp. 28893–28908, 2019. DOI: 10.1016/j.ijhydene.2019.09.090.
  • H. El Mghari, J. Huot, L. Tong, and J. Xiao, “Selection of phase change materials, metal foams and geometries for improving metal hydride performance,” Int. J. Hydrogen Energy, vol. 45, no. 29, pp. 14922–14939, 2020. DOI: 10.1016/j.ijhydene.2020.03.226.
  • M. Bashar and K. Siddiqui, “Experimental investigation of transient melting and heat transfer behavior of nanoparticle-enriched PCM in a rectangular enclosure,” J. Energy Storage, vol. 18, pp. 485–497, Mar. 2018. DOI: 10.1016/j.est.2018.06.006.
  • O. Mesalhy, K. Lafdi, A. Elgafy, and K. Bowman, “Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix,” Energy Convers. Manage., vol. 46, no. 6, pp. 847–867, 2005. DOI: 10.1016/j.enconman.2004.06.010.
  • M. Khatibi et al., “Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units,” J. Energy Storage, vol. 33, pp. 102055, Sept. 2021. DOI: 10.1016/j.est.2020.102055.
  • W. Ye, D. Zhu, and N. Wang, “Numerical simulation on phase-change thermal storage / release in a plate- fin unit,” Appl. Therm. Eng., vol. 31, no. 1718, pp. 3871–3884, 2011. DOI: 10.1016/j.applthermaleng.2011.07.035.
  • X. Yang, J. Yu, Z. Guo, L. Jin, and Y. L. He, “Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube,” Appl. Energy, vol. 239, pp. 142–156, Oct. 2019. DOI: 10.1016/j.apenergy.2019.01.075.
  • T. Ur Rehman and H. M. Ali, “Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling,” Energy, vol. 98, pp. 155–162, Sept. 2018. DOI: 10.1016/j.icheatmasstransfer.2018.08.003.
  • M. Hassani Soukht Abandani and D. Domiri Ganji, “Melting effect in triplex-tube thermal energy storage system using multiple PCMs-porous metal foam combination,” J. Energy Storage, vol. 43, pp. 103154, Apr. 2021. DOI: 10.1016/j.est.2021.103154.
  • J. M. Mahdi and E. C. Nsofor, “Multiple-segment metal foam application in the shell-and-tube PCM thermal energy storage system,” J. Energy Storage, vol. 20, pp. 529–541, Jun. 2018. DOI: 10.1016/j.est.2018.09.021.
  • A. Chibani, S. Merouani, and F. Benmoussa, “Computational analysis of the melting process of Phase change material-metal foam-based latent thermal energy storage unit : The heat exchanger configuration,” J. Energy Storage, vol. 42, pp. 103071, Aug. 2021. DOI: 10.1016/j.est.2021.103071.
  • K. R. Sultana, S. R. Dehghani, K. Pope, and Y. S. Muzychka, “ Numerical techniques for solving solidification and melting phase change problems,” Numer. Heat Transf. B: Fund., vol. 73, no. 3, pp. 129–145, 2018. DOI: 10.1080/10407790.2017.1422629.
  • P. Talebizadeh et al., “Numerical study of a multiple-segment metal foam-PCM latent heat storage unit : Effect of porosity, pore density and location of heat source,” Energy, vol. 189, pp. 116108, 2019. DOI: 10.1016/j.energy.2019.116108.
  • J. M. Mahdi et al., “Simultaneous and consecutive charging and discharging of a PCM-based domestic air heater with metal foam,” Appl. Therm. Eng., vol. 197, pp. 117408, Nov. 2021. DOI: 10.1016/j.applthermaleng.2021.117408.
  • J. S. Baruah, V. Athawale, P. Rath, and A. Bhattacharya, “Melting and energy storage characteristics of macro-encapsulated PCM-metal foam system,” Int. J. Heat Mass Transf., vol. 182, pp. 121993, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.121993.
  • M. Esapour, A. Hamzehnezhad, A. A. Rabienataj Darzi, and M. Jourabian, “Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system,” Energy Convers. Manage., vol. 171, pp. 398–410, May 2018. DOI: 10.1016/j.enconman.2018.05.086.
  • B. V. S. Dinesh and A. Bhattacharya, “Effect of foam geometry on heat absorption characteristics of PCM-metal foam composite thermal energy storage systems,” Int. J. Heat Mass Transf., vol. 134, pp. 866–883, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.095.
  • A. Chibani and S. Merouani, “Acceleration of heat transfer and melting rate of a phase change material by nanoparticles addition at low,” Int. J. Thermophys., vol. 42, no. 5, pp. 1–16, 2021. DOI: 10.1007/s10765-021-02822-z.
  • Z. Deng, X. Liu, C. Zhang, Y. Huang, and Y. Chen, “Melting behaviors of PCM in porous metal foam characterized by fractal geometry,” Int. J. Heat Mass Transf., vol. 113, pp. 1031–1042, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.126.
  • B. Kamkari, H. Shokouhmand, and F. Bruno, “Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure,” Int. J. Heat Mass Transf., vol. 72, pp. 186–200, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.01.014.
  • L.-L. Tian, X. Liu, S. Chen, and Z.-G. Shen, “Effect of fin material on PCM melting in a rectangular enclosure,” Appl. Therm. Eng., vol. 167, pp. 114764, Nov. 2020. DOI: 10.1016/j.applthermaleng.2019.114764.
  • S. Mousavi, M. Siavashi, and M. M. Heyhat, “Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins,” Numer. Heat Transf. A: Appl., vol. 75, no. 8, pp. 560–577, 2019. DOI: 10.1080/10407782.2019.1606634.
  • J. Chen, D. Yang, J. Jiang, A. Ma, and D. Song, “Research progress of phase change materials (PCMs) embedded with metal foam (a review),” Proc. Mater. Sci., vol. 4, pp. 389–394, 2014. DOI: 10.1016/j.mspro.2014.07.579.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.