Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 6
150
Views
0
CrossRef citations to date
0
Altmetric
Articles

Heat transfer analysis during the solidification of RT82 paraffin in big-scale metal foam-based latent thermal storage unit

ORCID Icon, , , , , , & show all
Pages 794-815 | Received 03 Nov 2022, Accepted 04 Jun 2023, Published online: 21 Jun 2023

References

  • S. N. Nyamsi, I. Tolj, and M. Lototskyy, “Metal hydride beds-phase change materials: dual mode thermal energy storage for medium-high temperature industrial waste heat recovery,” Energies, vol. 12, no. 20, pp. 3949, 2019. DOI: 10.3390/en12203949.
  • R. Pakrouh, M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury, “A numerical method for PCM-based pin fin heat sinks optimization,” Energy Convers. Manage., vol. 103, pp. 542–552, 2015. DOI: 10.1016/j.enconman.2015.07.003.
  • C. Ji, Z. Qin, Z. Low, S. Dubey, F. H. Choo, and F. Duan, “Non-uniform heat transfer suppression to enhance PCM melting by angled fins,” Appl. Therm. Eng., vol. 129, pp. 269–279, 2018. DOI: 10.1016/j.applthermaleng.2017.10.030.
  • C. Pan, S. Hoenig, C. H. Chen, S. Neti, C. Romero, and N. Vermaak, “Efficient modeling of phase change material solidification with multidimensional fins,” Int. J. Heat Mass Transfer., vol. 115, pp. 897–909, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.120.
  • A. A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman, and A. T. Mohammad, “Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins,” Int. J. Heat Mass Transfer., vol. 61, no. 1, pp. 684–695, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.02.030.
  • S. Harikrishnan, K. Deepak, and S. Kalaiselvam, “Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems,” J. Therm. Anal. Calorim., vol. 115, no. 2, pp. 1563–1571, 2014. DOI: 10.1007/s10973-013-3472-x.
  • H. El Mghari, J. Huot, L. Tong, and J. Xiao, “Selection of phase change materials, metal foams and geometries for improving metal hydride performance,” Int. J. Hydrogen Energy, vol. 45, no. 29, pp. 14922–14939, 2020. DOI: 10.1016/j.ijhydene.2020.03.226.
  • A. Chibani and S. Merouani, “Acceleration of heat transfer and melting rate of a phase change material by nanoparticles addition at low,” Int. J. Thermophys., vol. 42, no. 5, pp. 1–16, 2021. DOI: 10.1007/s10765-021-02822-z.
  • M. M. Farid, A. M. Khudhair, S. Ali, and K. Razack, “A review on phase change energy storage: materials and applications,” Energy Convers. Manage., vol. 45, nos. 9–10, pp. 1597–1615, 2004. DOI: 10.1016/j.enconman.2003.09.015.
  • Z. Liu, Y. Yao, and H. Wu, “Numerical modeling for solid–liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage,” Appl. Energy, vol. 112, pp. 1222–1232, 2013. DOI: 10.1016/j.apenergy.2013.02.022.
  • A. J. Chamkha, A. Doostanidezfuli, E. Izadpanahi, and M. Ghalambaz, “Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity,” Adv. Powder Technol., vol. 28, no. 2, pp. 385–397, 2017. DOI: 10.1016/j.apt.2016.10.009.
  • Y. Xu, Q. Ren, Z. Zheng, and Y. He, “Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media,” Appl. Energy, vol. 193, pp. 84–95, 2017. DOI: 10.1016/j.apenergy.2017.02.019.
  • V. Joshi and M. K. Rathod, “Thermal transport augmentation in latent heat thermal energy storage system by partially filled metal foam : a novel con figuration,” J. Energy Storage, vol. 22, December 2018, pp. 270–282, 2019. DOI: 10.1016/j.est.2019.02.019.
  • M. Ghalambaz and J. Zhang, “Conjugate solid–liquid phase change heat transfer in heatsink filled with phase change material-metal foam,” Int. J. Heat Mass Transfer, vol. 146, pp. 118832, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118832.
  • M. Ghalambaz, S. M. Hashem Zadeh, S. A. M. Mehryan, I. Pop, and D. Wen, “Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique,” Appl. Math. Model., vol. 77, pp. 1936–1953, 2020. DOI: 10.1016/j.apm.2019.09.015.
  • A. Singh, M. P. Maiya, and S. S. Murthy, “Effects of heat exchanger design on the performance of a solid state hydrogen storage device,” Int. J. Hydrogen Energy, vol. 40, no. 31, pp. 9733–9746, 2015. DOI: 10.1016/j.ijhydene.2015.06.015.
  • S. N. Nyamsi, F. Yang, and Z. Zhang, “An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system: analytical method and numerical simulation,” Int. J. Hydrogen Energy, vol. 37, no. 21, pp. 16078–16092, 2012. DOI: 10.1016/j.ijhydene.2012.08.074.
  • M. Gorzin, M. J. Hosseini, M. Rahimi, and R. Bahrampoury, “Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger,” J. Energy Storage, vol. 22, no. June 2018, pp. 88–97, 2019. DOI: 10.1016/j.est.2018.12.023.
  • B. Kok, “Examining effects of special heat transfer fins designed for the melting process of PCM and nano-PCM,” Appl. Therm. Eng., vol. 170, pp. 114989, 2020. DOI: 10.1016/j.applthermaleng.2020.114989.
  • C. Y. Zhao, W. Lu, and Y. Tian, “Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs),” Solar Energy, vol. 84, no. 8, pp. 1402–1412, 2010. DOI: 10.1016/j.solener.2010.04.022.
  • W. Q. Li, Z. G. Qu, Y. L. He, and W. Q. Tao, “Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin,” Appl. Therm. Eng., ” vol. 37, pp. 1–9, 2012. DOI: 10.1016/j.applthermaleng.2011.11.001.
  • S. Ebadi, S. H. Tasnim, A. A. Aliabadi, and S. Mahmud, “An experimental investigation of the charging process of thermal energy storage system filled with PCM and metal wire mesh,” Appl. Therm. Eng., vol. 174, no. April, pp. 115266, 2020. DOI: 10.1016/j.applthermaleng.2020.115266.
  • P. Zhang, Z. N. Meng, H. Zhu, Y. L. Wang and S. P. Peng, “Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam q,” Appl. Energy, vol. 185, pp. 1971–1983, 2017. DOI: 10.1016/j.apenergy.2015.10.075.
  • E. J. B. V. A. A., “A comprehensive review latent heat thermal conductivity nanoparticle dispersed phase change material low-temperature applications,” Energy Storage Mater., vol. 24, no. May 2019, pp. 52–74, 2020. DOI: 10.1016/j.ensm.2019.07.031.
  • M. Bashar and K. Siddiqui, “Experimental investigation of transient melting and heat transfer behavior of nanoparticle-enriched PCM in a rectangular enclosure,” J. Energy Storage, vol. 18, no. March, pp. 485–497, 2018. DOI: 10.1016/j.est.2018.06.006.
  • P. M. Kumar, R. Anandkumar, K. Mylsamy and K. B. Prakash, “Materials today: Proceedings experimental investigation on thermal conductivity of nanoparticle dispersed paraffin (NDP),” Materials Today: Proceedings, 2020. DOI: 10.1016/j.matpr.2020.02.798.
  • Y. Ye, Y. Yue, J. Lu, J. Ding, W. Wang, and J. Yan, “Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials,” Renew. Energy, vol. 180, pp. 734–743, 2021. DOI: 10.1016/j.renene.2021.08.118.
  • T. Alqahtani, S. Mellouli, A. Bamasag, F. Askri, and P. E. Phelan, “Thermal performance analysis of a metal hydride reactor encircled by a phase change material sandwich bed,” Int. J. Hydrogen Energy, vol. 45, no. 43, pp. 23076–23092, 2020. DOI: 10.1016/j.ijhydene.2020.06.126.
  • T. Alqahtani, A. Bamasag, S. Mellouli, F. Askri, and P. E. Phelan, “Cyclic behaviors of a novel design of a metal hydride reactor encircled by cascaded phase change materials,” Int. J. Hydrogen Energy, vol. 45, no. 56, pp. 32285–32297, 2020. DOI: 10.1016/j.ijhydene.2020.08.280.
  • L. Tong, Y. Yuan, T. Yang, P. Bénard, C. Yuan, and J. Xiao, “Hydrogen release from a metal hydride tank with phase change material jacket and coiled-tube heat exchanger,” Int. J. Hydrogen Energy, vol. 46, no. 63, pp. 32135–32148, 2021. DOI: 10.1016/j.ijhydene.2021.06.230.
  • H. Q. Nguyen and B. Shabani, “Thermal management of metal hydride hydrogen storage using phase change materials for standalone solar hydrogen systems: an energy/exergy investigation,” Int. J. Hydrogen Energy, vol. 47, no. 3, pp. 1735–1751, 2022. DOI: 10.1016/j.ijhydene.2021.10.129.
  • J. Yao, et al., “A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system,” Int. J. Hydrogen Energy, vol. 45, no. 52, pp. 28087–28099, 2020. DOI: 10.1016/j.ijhydene.2020.05.089.
  • L. Tong, J. Xiao, P. Bénard and R. Chahine, “Thermal management of metal hydride hydrogen storage reservoir using phase change materials,” Int. J. Hydrogen Energy, vol. 44, no. 38, pp. 21055–21066, 2019. DOI: 10.1016/j.ijhydene.2019.03.127.
  • H. El Mghari, J. Huot, J. Xiao, H. El, J. Huot and J. Xiao, “Analysis of hydrogen storage performance of metal hydride reactor with phase change materials,” Int. J. Hydrogen Energy, vol. 44, no. 54, pp. 28893–28908, 2019. DOI: 10.1016/j.ijhydene.2019.09.090.
  • O. Mesalhy, K. Lafdi, A. Elgafy and K. Bowman, “Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix,” Energy Convers. Manage., vol. 46, no. 6, pp. 847–867, 2005. DOI: 10.1016/j.enconman.2004.06.010.
  • B. Buonomo, H. Celik, D. Ercole, O. Manca and M. Mobedi, “Numerical study on latent thermal energy storage systems with aluminum foam in local thermal equilibrium,” Appl. Therm. Eng., vol. 159, no. June, pp. 113980, 2019. DOI: 10.1016/j.applthermaleng.2019.113980.
  • B. Buonomo, O. Manca, S. Nardini and R. E. Plomitallo, “Numerical study on latent heat thermal energy storage system with PCM partially filled with aluminum foam in local thermal equilibrium,” Renew. Energy, vol. 195, pp. 1368–1380, 2022. DOI: 10.1016/j.renene.2022.06.122.
  • B. Buonomo, O. Manca, S. Nardini and R. E. Plomitallo, “Numerical investigation on shell and tube latent thermal energy storage partially filled with metal foam and corrugated internal tube,” IJHT, vol. 40, no. 4, pp. 895–900, 2022. DOI: 10.1115/HT2022-81806.
  • L. Colla, L. Fedele, S. Mancin, L. Danza, and O. Manca, “Nano-PCMs for enhanced energy storage and passive cooling applications,” Appl. Therm. Eng., vol. 110, pp. 584–589, 2017. DOI: 10.1016/j.applthermaleng.2016.03.161.
  • S. S. Sundarram and W. Li, “The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams,” Appl. Therm. Eng., vol. 64, nos. 1–2, pp. 147–154, 2014. DOI: 10.1016/j.applthermaleng.2013.11.072.
  • A. O. Elsayed, “Numerical study on performance enhancement of solid–solid phase change materials by using multi-nanoparticles mixtures,” J. Energy Storage, vol. 4, pp. 106–112, 2015. DOI: 10.1016/j.est.2015.09.008.
  • X. Sun, J. M. Mahdi, H. I. Mohammed, H. S. Majdi, W. Zixiong, and P. Talebizadehsardari, “Solidification enhancement in a triple-tube latent heat energy storage system using twisted fins,” Energies, vol. 14, no. 21, pp. 7179, 2021. DOI: 10.3390/en14217179.
  • M. E. Tiji, et al., “Natural convection effect on solidification enhancement in a multi-tube latent heat storage system: effect of tubes’ arrangement,” Energies, vol. 14, no. 22, pp. 7489, 2021. DOI: 10.3390/en14227489.
  • J. M. Mahdi, H. I. Mohammed, E. T. Hashim, P. Talebizadehsardari and E. C. Nsofor, “Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system,” Appl. Energy, vol. 257, no. June 2019, pp. 113993, 2020. DOI: 10.1016/j.apenergy.2019.113993.
  • X. Sun, et al., “Investigation of heat transfer enhancement in a triple tube latent heat storage system using circular fins with inline and staggered arrangements,” Nanomaterials, vol. 11, no. 10, pp. 2647, 2021. DOI: 10.3390/nano11102647.
  • M. Li, et al., “Solidification enhancement in a multi-tube latent heat storage system for efficient and economical production: effect of number, position and temperature of the tubes,” Nanomaterials, vol. 11, no. 12, pp. 3211, 2021. DOI: 10.3390/nano11123211.
  • A. Chibani, S. Merouani and C. Bougriou, “The performance of hydrogen desorption from a metal hydride with heat supply by a phase change material incorporated in porous media (metal foam): Heat and mass transfer assessment,” J. Energy Storage, vol. 51, no. September 2021, pp. 104449, 2022. DOI: 10.1016/j.est.2022.104449.
  • A. Chibani, S. Merouani, and F. Benmoussa, “Computational analysis of the melting process of Phase change material-metal foam-based latent thermal energy storage unit: the heat exchanger configuration,” J. Energy Storage, vol. 42, no. April, pp. 103071, 2021. DOI: 10.1016/j.est.2021.103071.
  • A. Chibani, et al., “A strategy for enhancing heat transfer in phase change material-based latent thermal energy storage unit via nano-oxides addition: A study applied to a shell-and-tube heat exchanger,” J. Environ. Chem. Eng., vol. 9, no. 6, pp. 106744, 2021. DOI: 10.1016/j.jece.2021.106744.
  • Z. Khan, Z. A. Khan, and P. Sewell, “Heat transfer evaluation of metal oxides based nano-PCMs for latent heat storage system application,” Int. J. Heat Mass Transfer, vol. 144, pp. 118619, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118619.
  • S. Ebadi, S. H. Tasnim, A. A. Aliabadi, and S. Mahmud, “Melting of nano-PCM inside a cylindrical thermal energy storage system: numerical study with experimental verification,” Energy Convers. Manage., vol. 166, no. March, pp. 241–259, 2018. DOI: 10.1016/j.enconman.2018.04.016.
  • A. Chibani, S. Merouani, C. Bougriou, and A. Dehane, “Heat and mass transfer characteristics of charging in a metal hydride-phase change material reactor with nano oxide additives: the large,” Appl. Therm. Eng., vol. 213, no. February, pp. 118622, 2022. DOI: 10.1016/j.applthermaleng.2022.118622.
  • J. M. Mahdi and E. C. Nsofor, “Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system,” Appl. Therm. Eng., vol. 108, pp. 596–604, 2016. DOI: 10.1016/j.applthermaleng.2016.07.130.
  • R. S. Vajjha and D. K. Das, “Experimental determination of thermal conductivity of three nanofluids and development of new correlations,” Int. J. Heat Mass Transfer, vol. 52, nos. 21–22, pp. 4675–4682, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.06.027.
  • I. Sarani, S. Payan, S. A. Nada and A. Payan, “Numerical investigation of an innovative discontinuous distribution of fins for solidification rate enhancement in PCM with and without nanoparticles,” Appl. Therm. Eng., vol. 176, no. December 2019, pp. 115017, 2020. DOI: 10.1016/j.applthermaleng.2020.115017.
  • A. A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman, and A. T. Mohammad, “Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins,” Energy Build., vol. 68, pp. 33–41, 2014. DOI: 10.1016/j.enbuild.2013.09.007.
  • P. T. Sardari, H. I. Mohammed, D. Giddings, G. S. Walker, M. Gillott, and D. Grant, “Numerical study of a multiple-segment metal foam–PCM latent heat storage unit: effect of porosity, pore density and location of heat source,” Energy, vol. 189, pp. 116108, 2019. DOI: 10.1016/j.energy.2019.116108.
  • D. Zhou and C. Y. Zhao, “Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials,” Appl. Therm. Eng., vol. 31, no. 5, pp. 970–977, 2011. DOI: 10.1016/j.applthermaleng.2010.11.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.