Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 2
148
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design by stochastic simulations of the thermal ablation treatment of tumors with high intensity focused ultrasound

, &
Pages 105-130 | Received 26 Jan 2023, Accepted 12 Jun 2023, Published online: 25 Jun 2023

References

  • J. E. Kennedy, G. R. Ter Haar and D. Cranston, “High intensity focused ultrasound: surgery of the future?,” Br. J. Radiol., vol. 76, no. 909, pp. 590–599, Sep. 2003. DOI: 10.1259/bjr/17150274.
  • F. A. Jolesz, “MRI-guided focused ultrasound surgery,” Annu. Rev. Med., vol. 60, pp. 417–430, Feb. 2009. DOI: 10.1146/annurev.med.60.041707.170303.
  • C. R. Hill and G. R. Ter Haar, “High intensity focused ultrasound—potential for cancer treatment,” Br. J. Radiol., vol. 68, no. 816, pp. 1296–1303, Dec. 1995. DOI: 10.1259/0007-1285-68-816-1296.
  • P. Wust, et al., “Hyperthermia in combined treatment of cancer,” Lancet Oncol., vol. 3, no. 8, pp. 487–497, 2002. Aug DOI: 10.1016/S1470-2045(02)00818-5.
  • R. W. Habash, R. Bansal, D. Krewski and H. T. Alhafid, “Thermal therapy, part 1: an introduction to thermal therapy,” Crit. Rev. Biomed. Eng., vol. 34, no. 6, pp. 459–489, 2006. DOI: 10.1615/CritRevBiomedEng.v34.i6.20.
  • R. W. Habash, R. Bansal, D. Krewski and H. T. Alhafid, “Thermal therapy, part 2: hyperthermia techniques,” Crit. Rev. Biomed. Eng., vol. 34, no. 6, pp. 491–542, 2006. DOI: 10.1615/CritRevBiomedEng.v34.i6.30.
  • R. W. Habash, R. Bansal, D. Krewski and H. T. Alhafid, “Thermal therapy, Part III: ablation techniques,” Crit. Rev. Biomed. Eng., vol. 35, no. 1–2, pp. 37–121, 2007. DOI: 10.1615/CritRevBiomedEng.v35.i1-2.20.
  • M. Dewhirst, J. Abraham and B. Viglianti, “Evolution of thermal dosimetry for application of hyperthermia to treat cancer,” in Advances in Heat Transfer, vol. 47. Cambridge, Massachusetts: Elsevier, 2015, pp. 397–421.
  • X. Liu, J. Li, X. Gong and D. Zhang, “Nonlinear absorption in biological tissue for high intensity focused ultrasound,” Ultrasonics, vol. 44, pp. e27–e30, Dec. 2006. DOI: 10.1016/j.ultras.2006.06.035.
  • V. Suomi, J. Jaros, B. Treeby and R. O. Cleveland, “Full modeling of high-intensity focused ultrasound and thermal heating in the kidney using realistic patient models,” IEEE Trans. Biomed. Eng., vol. 65, no. 5, pp. 969–979, Jul. 2018. DOI: 10.1109/TBME.2017.2732684.
  • H. E. Cline, et al., “MR-guided focused ultrasound surgery,” J. Comput. Assist. Tomogr., vol. 16, no. 6, pp. 956–965, Nov. 1992. DOI: 10.1097/00004728-199211000-00024.
  • V. A. Khokhlova, et al., “Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom,” J. Acoust. Soc. Am., vol. 119, no. 3, pp. 1834–1848, Feb. 2006. DOI: 10.1121/1.2161440.
  • Z. Izadifar, Z. Izadifar, D. Chapman and P. Babyn, “An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications,” J. Clin. Med., vol. 9, no. 2, p. 460, Feb. 2020. DOI: 10.3390/jcm9020460.
  • J. R. McLaughlan, “An investigation into the use of cavitation for the optimisation of high intensity focused ultrasound (HIFU) treatments,” Ph.D. dissertation, Institute of Cancer Research, University of London, London, UK, 2008.
  • J. K. Enholm, et al., “Improved volumetric MR-HIFU ablation by robust binary feedback control,” IEEE Trans. Biomed. Eng., vol. 57, no. 1, pp. 103–113, Jan. 2010. DOI: 10.1109/TBME.2009.2034636.
  • F. C. Vimeux, et al., “Real-time control of focused ultrasound heating based on rapid MR thermometry,” Invest. Radiol., vol. 34, no. 3, pp. 190–193, Mar. 1999. DOI: 10.1097/00004424-199903000-00006.
  • R. Salomir, et al., “Hyperthermia by MR‐guided focused ultrasound: accurate temperature control based on fast MRI and a physical model of local energy deposition and heat conduction,” Magn. Reson. Med., vol. 43, no. 3, pp. 342–347, Mar. 2000. DOI: 10.1002/(SICI)1522-2594(200003)43:3 < 342::AID-MRM4 > 3.0.CO;2-6.
  • D. De Senneville, C. Mougenot and C. T. Moonen, “Real‐time adaptive methods for treatment of mobile organs by MRI‐controlled high‐intensity focused ultrasound,” Magn. Reson. Med., vol. 57, no. 2, pp. 319–330, 2007. DOI: 10.1002/mrm.21124.
  • C. Mougenot, et al., “Three‐dimensional spatial and temporal temperature control with MR thermometry‐guided focused ultrasound (MRgHIFU),” Magn. Reson. Med., vol. 61, no. 3, pp. 603–614, 2009. DOI: 10.1002/mrm.21887.
  • M. Köhler, et al., “Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry,” Med. Phys., vol. 36, no. 8, pp. 3521–3535, 2009. DOI: 10.1118/1.3152112.
  • I. Dragonu, et al., “Non‐invasive determination of tissue thermal parameters from high intensity focused ultrasound treatment monitored by volumetric MRI thermometry,” NMR Biomed., vol. 22, no. 8, pp. 843–851, 2009. DOI: 10.1002/nbm.1397.
  • B. Quesson, et al., “Real‐time volumetric MRI thermometry of focused ultrasound ablation in vivo: a feasibility study in pig liver and kidney,” NMR Biomed., vol. 24, no. 2, pp. 145–153, 2011. DOI: 10.1002/nbm.1563.
  • C. Mougenot, et al., “MR‐HIFU enhanced volumetric ablations,” in AIP Conference Proceedings, vol. 1359. American Institute of Physics, 2011.
  • J. Zhang, et al., “Volumetric MRI‐guided high‐intensity focused ultrasound for noninvasive, in vivo determination of tissue thermal conductivity: initial experience in a pig model,” J. Magn. Reson. Imaging, vol. 37, no. 4, pp. 950–957, 2013. DOI: 10.1002/jmri.23878.
  • B. Zaporzan, et al., “MatMRI and MatHIFU: software toolboxes for real-time monitoring and control of MR-guided HIFU,” J. Ther. Ultrasound, vol. 1, no. 1, p. 12, 2013. DOI: 10.1186/2050-5736-1-7.
  • Mougenot, C., “L'asservissement par IRM d‘un réseau matriciel ultrasonore et ses applications thérapeutiques,” Doctoral dissertation, Bordeaux 1, 2005.
  • D. Elbes, et al., “Pre-clinical study of in vivo magnetic resonance-guided bubble-enhanced heating in pig liver,” Ultrasound. Med. Biol., vol. 39, no. 8, pp. 1388–1397, 2013. DOI: 10.1016/j.ultrasmedbio.2013.01.014.
  • D. Elbes, et al., “Magnetic resonance imaging for the exploitation of bubble-enhanced heating by high-intensity focused ultrasound: a feasibility study in ex vivo liver,” Ultrasound. Med. Biol., vol. 40, no. 5, pp. 956–964, 2014. DOI: 10.1016/j.ultrasmedbio.2013.11.019.
  • D. Elbes, “Thermothérapies par ultrasons focalisés et radiofréquences guidées par imagerie de résonance magnétique,” Doctoral dissertation, Bordeaux 1, 2012.
  • H. Wan, J. Aarsvold, M. O'Donnell and C. Cain, “Thermal dose optimization for ultrasound tissue ablation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 4, pp. 913–928, Jul. 1999. DOI: 10.1109/58.775658.
  • X. Liu and M. Almekkawy, “An optimized control approach for HIFU tissue ablation using pde constrained optimization method,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 68, no. 5, pp. 1555–1568, Nov. 2021. DOI: 10.1109/TUFFC.2020.3040362.
  • T. Loulou and E. Scott, “Thermal dose optimization in hyperthermia treatments by using the conjugate gradient method,” Numer. Heat Transfer: Part A: Appl., vol. 42, no. 7, pp. 661–683, 2002. DOI: 10.1080/10407780290059756.
  • J. Zhang, et al., “Fast computation of desired thermal dose: application to focused ultrasound-induced lesion planning,” Numer. Heat Transfer Part A: Appl., vol. 77, no. 6, pp. 666–682, 2020. DOI: 10.1080/10407782.2020.1714325.
  • J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, vol. 160. New York, USA: Springer Science & Business Media, 2006.
  • J. P. Kaipio and C. Fox, “The Bayesian framework for inverse problems in heat transfer,” Heat Transfer Eng., vol. 32, no. 9, pp. 718–753, Apr. 2011. DOI: 10.1080/01457632.2011.525137.
  • M. N. Özişik and H. R. B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, 2nd ed., Boca Raton, FL: CRC Press, 2021.
  • F. C. Henriques, Jrand A. R. Moritz, “Studies of thermal injury: i. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation,” Am. J. Pathol., vol. 23, no. 4, pp. 530, Jul. 1947.
  • A. R. Moritz and F. Henriques, Jr. “Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns,” Am. J. Pathol., vol. 23, no. 5, p. 695, 1947.
  • J. A. Pearce, “Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose,” in Energy-Based Treatment of Tissue and Assessment, vol. 7181, Feb. 2009, pp. 35–49, DOI: 10.1117/12.807999.
  • J. A. Pearce, “Thermal Dose Models: Irreversible Alterations in Tissues,” in Physics of Thermal Therapy, M. H. Levitt and C. L. Charles, Eds. Boca Raton, FL, USA: CRC Press, 2016, pp. 40–57.
  • S. Beacher, et al., “Theory and numerical simulation of thermochemical ablation,” Numer. Heat Transfer Part A: Appl., vol. 66, no. 2,pp. 131–143, 2014. DOI: 10.1080/10407782.2013.869092.
  • D. Gamerman and H. F. Lopes, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Boca Raton, FL, USA: CRC Press, 2006.
  • T. Cui, “Bayesian calibration of geothermal reservoir models via Markov Chain Monte Carlo,” Ph.D. thesis, The University of Auckland, Auckland, New Zealand, 2010.
  • L. F. S. Ferreira, L. A. Bermeo Varon, H. R. B. Orlande and B. Lamien, “Design Under Uncertainties of the Thermal Ablation Treatment of Skin Cancer,” ASME J. Heat Mass Transfer, vol. 145, no. 3, p. 031202, Dec. 2023. DOI: 10.1115/1.4055821.
  • L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, Fundamentals of Acoustics. New York, USA: John Wiley & Sons, 2000.
  • A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications. Berlin, Germany: Springer, 2019.
  • B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt., vol. 15, no. 2, p. 021314, Mar. 2010. DOI: 10.1117/1.3360308.
  • K. Wang, E. Teoh, J. Jaros and B. E. Treeby, “Modelling nonlinear ultrasound propagation in absorbing media using the k-Wave toolbox: experimental validation,” in 2012 IEEE International Ultrasonics Symposium, Oct. 2012, pp. 523–526. DOI: 10.1109/ULTSYM.2012.0130.
  • B. E. Treeby, J. Jaros, D. Rohrbach and B. Cox, “Modelling elastic wave propagation using the k-wave MATLAB toolbox,” in 2014 IEEE International Ultrasonics Symposium, Sep. 2014, pp. 146–149. DOI: 10.1109/ULTSYM.2014.0037.
  • E. Martin, J. Jaros and B. E. Treeby, “Experimental validation of k-wave: nonlinear wave propagation in layered, absorbing fluid media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 67, no. 1, pp. 81–91, Sep. 2020. DOI: 10.1109/TUFFC.2019.2941795.
  • E. Martin, Y. T. Ling and B. E. Treeby, “Simulating focused ultrasound transducers using discrete sources on regular Cartesian grids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 63, no. 10, pp. 1535–1542, Aug. 2016. DOI: 10.1109/TUFFC.2016.2600862.
  • B. E. Treeby, J. Jaros, A. P. Rendell and B. Cox, “Modelling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudo spectral method,” J. Acoust. Soc. Am., vol. 131, no. 6, pp. 4324–4336, Apr. 2012. DOI: 10.1121/1.4712021.
  • H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, Aug. 1948. DOI: 10.1152/jappl.1948.1.2.93.
  • Y. F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol., vol. 2, no. 1, pp. 8–27, Jan. 2011. DOI: 10.5306/wjco.v2.i1.8.
  • C. Rossmann and D. Haemmerich, “Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures,” Crit. Rev. ™ Biomed. Eng., vol. 42, no. 6, pp. 787-800, 2014. DOI: 10.1615/CritRevBiomedEng.2015012486.
  • S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 10, no. 6, pp. 787–800, Apr. 1984. DOI: 10.1016/0360-3016(84)90379-1.
  • G. C. Van Rhoon, T. Samaras, P. S. Yarmolenko, M. W. Dewhirst, E. Neufeld and N. Kuster, “CEM43° C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?,” Eur. Radiol., vol. 23, no. 8, pp. 2215–2227, Apr. 2013. DOI: 10.1007/s00330-013-2825-y.
  • B. R. Loiola, H. R. Orlande and G. S. Dulikravich, “Thermal damage during ablation of biological tissues,” Numer. Heat Transfer, Part A: Appl., vol. 73, no. 10, pp. 685–701, Jun. 2018. DOI: 10.1080/10407782.2018.1464794.
  • G. R. Harris, B. A. Herman and M. R. Myers, “A comparison of the thermal-dose equation and the intensity-time product for predicting tissue damage thresholds,” Ultrasound Med. Biol., vol. 37, no. 4, pp. 580–586, Apr. 2011. DOI: 10.1016/j.ultrasmedbio.2011.01.005.
  • G. C. van Rhoon, “Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring?,” Int. J. Hyperthermia, vol. 32, no. 1, pp. 50–62, Jan. 2016. DOI: 10.3109/02656736.2015.1114153.
  • R. L. Silva, M. Alaeian and H. R. Orlande, “Design under uncertainties of the thermal ablation of tumors with high intensity focused ultrasound,” in ICHMT Digital Library Online, 2021. pp. 167–181, DOI: 10.1615/ICHMT.2021.CHT-21.130.
  • F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book. New York, USA: Academic Press, 2013.
  • M. N. Özişik, H. R. Orlande, M. J. Colaco and R. M. Cotta, Finite Difference Methods in Heat Transfer. Boca Raton, FL, USA: CRC Press, 2017.
  • J. A. Weaver and A. M. Stoll, “Mathematical Model of Skin Exposed to Thermal Radiation,” Naval Air Development Center, Aerospace Medical Research Department, Warminster, PA, 1967.
  • C. J. Geyer, “Introduction to Markov Chain Monte Carlo,” in Handbook Markov Chain Monte Carlo, vol. 20116022, p. 45, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.