Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 2
196
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Non-similar solution of mixed convection flow of viscous fluid over curved stretching surface with viscous dissipation and entropy generation

ORCID Icon &
Pages 177-198 | Received 10 Feb 2023, Accepted 23 Jun 2023, Published online: 04 Jul 2023

References

  • M. Sajid, N. Ali, T. Javed, and Z. Abbas, “Stretching a curved surface in a viscous fluid,” Chin. Phys. Lett., vol. 27, no. 2, pp. 024703, 2010. DOI: 10.1088/0256-307X/27/2/024703.
  • Z. Abbas, M. Naveed, and M. Sajid, “Heat transfer analysis for stretching flow over a curved surface with magnetic field,” J. Eng. Thermophy., vol. 22, no. 4, pp. 337–345, 2013. DOI: 10.1134/S1810232813040061.
  • K. A. Kumar, S. Vangala, and N. Sandeep, “Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet,” J. Therm. Anal. Calorim., vol. 140, no. 5, pp. 2377–2385, 2020. DOI: 10.1007/s10973-019-08977-0.
  • T. Hayat, R. Sajjad, R. Ellahi, A. Alsaedi, and T. Muhammad, “Homogeneous-heterogeneous reactions in MHD flow of micro polar fluid by a curved stretching surface,” J. Molecular Liquids, vol. 240, pp. 209–220, 2017. DOI: 10.1016/j.molliq.2017.05.054.
  • M. Imtiaz, T. Hayat, and A. Alsaedi, “MHD convective flow of Jeffrey fluid due to a curved stretching surface with homogeneous-heterogeneous reactions,” PLoS One, vol. 11, no. 9, pp. e0161641, 2016. DOI: 10.1371/journal.pone.0161641.
  • A. A. Khan, R. Batool, and N. Kousar, “Examining the behavior of MHD micropolar fluid over curved stretching surface based on the modified Fourier law,” Trans. Mech. Eng., vol. 28, no. 1, pp. 223–230, 2021.
  • K. A. Kumar, J. V. R. Reddy, V. Sugunamma, and N. Sandeep, “MHD flow of chemically reacting Williamson fluid over a curved/flat surface with variable heat source/sink,” Inter. J. Fluid Mech. Res., vol. 46, no. 5, pp. 407–425, 2019. DOI: 10.1615/InterJFluidMechRes.2018025940.
  • T. Salahuddin, I. Imtiaz, and M. Khan, “Analysis of entropy generation in AA7072-methanol and AA7072 + AA7075-methanol flow near a parabolic surface,” Appl. Math. Comput., vol. 413, pp. 126616, 2022. DOI: 10.1016/j.amc.2021.126616.
  • F. Wang, et al., “Entropy optimized flow of Darcy-Forchheimer viscous fluid with cubic autocatalysis chemical reactions,” Int. J. Hydrogen Energy., vol. 47, no. 29, pp. 13911–13920, 2022. DOI: 10.1016/j.ijhydene.2022.02.141.
  • M. I. Khan, S. A. Khan, T. Hayat, S. Qayyum, and A. Alsaedi, “Entropy generation analysis in MHD flow of viscous fluid by a curved stretching surface with cubic autocatalysis chemical reaction,” Euro. Phy. J. Plus., vol. 135, pp. 249, 2020.
  • T. Hayat, W. Shinwari, S. A. Khan, and A. Alsaedi, “Entropy optimized dissipative flow of Newtonian nanoliquid by a curved stretching surface,” Case Stud. Therm. Eng., vol. 27, pp. 101263, 2021. DOI: 10.1016/j.csite.2021.101263.
  • M. I. Afridi, A. Wakif, M. Qasim, and A. Hussanan, “Irreversibility analysis of dissipative fluid flow over a curved surface stimulated by variable thermal conductivity and uniform magnetic field: Utilization of generalized differential quadrature method,” Entropy, vol. 20, no. 12, pp. 943, 2018. DOI: 10.3390/e20120943.
  • G. Revathi, et al., “Entropy optimization in hybrid radiative nanofluid (CH3 OH+SiO2+Al2O3) flow by a curved stretching sheet with cross-diffusion effect,” Appl. Nanosci., vol. 13, no. 1, pp. 337–351, 2021. DOI: 10.1007/s13204-021-01679-w.
  • S. Shah and S. Hussain, “Slip effect on mixed convective flow and heat transfer of magnetized UCM fluid through a porous medium in consequence of novel heat flux model,” Res. Phy., vol. 20, pp. 103749, 2021. DOI: 10.1016/j.rinp.2020.103749.
  • Z. Abbas, M. Naveed, and M. Sajjid, “Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation,” J. Mol. Liq., vol. 215, no. 1, pp. 756–762, 2016. DOI: 10.1016/j.molliq.2016.01.012.
  • N. Ahmed, et al., “Nonlinear thermal radiation and chemical reaction effects on a Cu-CuO/NaAlg Hybrid nanofluid flow past a stretching curved surface”, MDPI., vol. 7, no. 12, pp. 962, 2019. DOI: 10.3390/pr7120962.
  • K. M. Sanni, Q. Hussain, and S. Asghar, “Thermal analysis of a hydromagnetic viscoelastic fluid flow over a continuous curved stretching surface in the presence of radiative heat flux,” Arab. J. Sci. Eng., vol. 46, no. 1, pp. 631–644, 2021. DOI: 10.1007/s13369-020-04671-8.
  • T. Hayat, M. Rashid, M. Imtiaz, and A. Alsaedi, “MHD convective flow due to a curved surface with thermal radiation and chemical reaction,” J. Mol. Liq., vol. 225, pp. 482–489, 2017. DOI: 10.1016/j.molliq.2016.11.096.
  • M. Sagheer, S. Shah, H. Hussain, and M. Akhtar, “Impact of non-uniform heat source/sink on magnetohydrodynamic Maxwell nanofluid flow over a convectively heated stretching surface with chemical reaction,” J. Nanofluids, vol. 8, no. 4, pp. 795–805, 2019. DOI: 10.1166/jon.2019.1622.
  • S. Shah, S. Hussain, M. Sagheer, and M. Bilal, “Numerical study of three dimensional mixed convective Maxwell nanofluid flow over a stretching surface with non-linear thermal radiation and convective boundary conditions”, J. Nanofluids, vol.8, no. 1, pp. 160–170, 2019. DOI: 10.1166/jon.2019.1555.
  • S. U. Haq, M. B. Ashraf, and H. Junaid, “Convective flow of Carreau fluid over a curved surface in presence of thermophoresis and Brownian motion,” Waves Random Complex Media, vol. 32, pp. 1–15, 2022. DOI: 10.1080/17455030.2022.2053239.
  • M. Ashraf, A. Khan, and Z. Ullah, “The convective flow of Carreau fluid over a curved stretching surface with homogeneous-heterogeneous reactions and viscous dissipation,” Waves Random Complex Media, vol. 32, pp. 1–17, 2022. DOI: 10.1080/17455030.2022.2032867.
  • M. B. Ashraf, A. Tanveer, S. Ulhaq, and Rafiullah, “Effects of Cattaneo-Christov heat flux on MHD Jeffery nano fluid flow past a stretching cylinder”, J. Mag. Magn. Mater., vol. 565, 170154, 2023. DOI: 10.1016/j.jmmm.2022.170154.
  • E. M. Sparrow, H. Quack, and C. J. Boerner, “Local nonsimilarity boundary layer solutions,” Am. Ins. Aeronau. Astronaut. J., vol. 8, no. 11, pp. 1936–1942, 1970. DOI: 10.2514/3.6029.
  • E. M. Sparrow and H. S. Yu, “Local non-similarity thermal boundary-layer solutions,” J. Heat Transf., vol. 93, no. 4, pp. 328–334, 1971. DOI: 10.1115/1.3449827.
  • U. Farooq, T. Hayat, A. Alsaedi, and S. J. Liao, “Series solutions of non-similarity boundary layer flow of nano-fluids over stretching surfaces,” Numer. Algor., vol. 70, no. 1, pp. 43–59, 2015. DOI: 10.1007/s11075-014-9934-9.
  • A. Raees, U. Farooq, M. Hussain, W. A. Khan, and F. B. Farooq, “Non-similar mixed convection analysis for magnetic flow of second-grade nanofluid over a vertically stretching sheet,” Commun. Theor. Phys., vol. 73, no. 6, pp. 065801, 2021. DOI: 10.1088/1572-9494/abe932.
  • U. Farooq, M. Hussain, M. A. Ijaz, W. A. Khan, and F. Bashir Farooq, “Impact of non-similar modeling on Darcy-Forchheimer-Brinkman model for forced convection of Casson nano-fluid in non-Darcy porous media,” Int. Commun. Heat Mass Transf., vol. 125, pp. 105312, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105312.
  • W. J. Minkowycz and E. M. Sparrow, “Local nonsimilar solutions for natural convection on a vertical cylinder,” J. Heat Transf., vol. 96, no. 2, pp. 178–183, 1974. DOI: 10.1115/1.3450161.
  • U. Farooq, R. Razzaq, M. I. Khan, Y. M. Chu, and D. C. Lu, “Modeling and numerical computation of nonsimilar forced convective flow of viscous material towards an exponential surface,” Int. J. Mod. Phys. B., vol. 35, no. 08, pp. 2150118, 2021. DOI: 10.1142/S0217979221501186.
  • M. Yang, C. Li, L. Luo, R. Li, and Y. Long, “Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling,” Int. Commun. Heat Mass Transf., vol. 125, pp. 105317, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105317.
  • K. Guedri, Z. Mahmood, B. M. Fadhl, B. M. Makhdoum, S. M. Eldin, and U. Khan, “Mathematical analysis of nonlinear thermal radiation and nanoparticle aggregation on unsteady MHD flow of micropolar nanofluid over shrinking sheet,” Heliyon, vol. 9, no. 3, pp. e14248, 2023. DOI: 10.1016/j.heliyon.2023.e14248.
  • S. U. Haq, M. B. Ashraf, and R. Nawaz, “Nonsimilar solution of hybrid nanofluid over curved stretching surface with viscous dissipation: A numerical study,” Numer. Heat Transf. A: Appl., vol. 83, no. 11, pp. 1–20, 2023. DOI: 10.1080/10407782.2023.2202349.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.