Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 3
160
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Impacts of multiple slip on magnetohydrodynamic Williamson and Maxwell nanofluid over a stretching sheet saturated in a porous medium

, & ORCID Icon
Pages 344-360 | Received 29 Mar 2023, Accepted 04 Jul 2023, Published online: 19 Jul 2023

References

  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME Int. Mech. Eng. Congr. Expos., vol. 66, pp. 99-105, 1995.DOI: 10.1115/1.1532008.
  • J. Buongiorno, “Convective transport in nanofluids,” J Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • B. C. Sakiadis, “Boundary -layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow,” AIChE J., vol. 7, no. 1, pp. 26–28, 1961. DOI: 10.1002/aic.690070108.
  • L. J. Crane, “Flow past a stretching plate,” J. Appl. Math. Phys. (ZAMP), vol. 21, no. 4, pp. 645–647, 1970. DOI: 10.1007/BF01587695.
  • W. A. Khan and I. Pop, “Boundary layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transf., vol. 53, no. 11–12, pp. 2477–2483, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.032.
  • R. V. Williamson, “The flow of pseudoplastic materials,” Ind. Eng. Chem., vol. 21, no. 11, pp. 1108–1111, 1929. DOI: 10.1021/ie50239a035.
  • S. Nadeem, S. T. Hussain, and C. Lee, “Flow of a Williamson fluid over a stretching sheet,” Braz. J. Chem. Eng., vol. 30, no. 3, pp. 619–625, 2013. DOI: 10.1590/S0104-66322013000300019.
  • S. Nadeem and S. T. Hussain, “Flow and heat transfer analysis of Williamson nanofluid,” Appl. Nanosci., vol. 4, no. 8, pp. 1005–1012, 2014. DOI: 10.1007/s13204-013-0282-1.
  • H. Alfven, “Existence of electromagnetic-hydrodynamic waves,” Nature, vol. 150, no. 3805, pp. 405–406, 1942. DOI: 10.1038/150405d0.
  • S. Nadeem and S. T. Hussain, “Analysis of MHD Williamson nanofluid flow over a heated surface,” J. Appl. Fluid Mech., vol. 9, no. 2, pp. 729–739, 2016. DOI: 10.18869/acadpub.jafm.68.225.21487.
  • S. Nadeem, R. U. Haq, and Z. H. Khan, “Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 1, pp. 121–126, 2014. DOI: 10.1016/j.jtice.2013.04.006.
  • T. Srinivasulu and B. S. Goud, “Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet,” Case Stud. Therm. Eng., vol. 23, pp. 100819, 2021. DOI: 10.1016/j.csite.2020.100819.
  • Y. Wang and T. Hayat, “Fluctuating flow of a Maxwell fluid past a porous plate with variable suction,” Non Linear Anal.: Real World Appl., vol. 9, no. 4, pp. 1269–1282, 2008. DOI: 10.1016/j.nonrwa.2007.02.016.
  • S. Jeevitha, M. Chitra, and B. Rushi Kumar, “MHD flow in a rotating flow in a rotating vertical cone through a porous medium,” Heat Transf., vol. 52, no. 3, pp. 2165–2185, 2023. DOI: 10.1002/htj.22779.
  • T. Hayat, A. Shafiq, and A. Alsaedi, “Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation,” Alex. Eng. J., vol. 55, no. 3, pp. 2229–2240, 2016. DOI: 10.1016/j.aej.2016.06.004.
  • A. Kumar, R. Tripathi, R. Singh, and V. K. Chaurasiya, “Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation,” Phys. A: Stat. Mech. Appl., vol. 551, p. 123972, 2020. DOI: 10.1016/j.physa.2019.123972.
  • M. M. Bhatti and M. M. Rashidi, “Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet,” J. Mol. Liq., vol. 221, pp. 567–573, 2016. DOI: 10.1016/j.molliq.2016.05.049.
  • N. Kanimozhi, R. Vijayaragavan, and K. Shanmugam, “Impacts of thermal radiation, viscous dissipation, ohmic heating, and diffusion-thermo effects on unsteady MHD free convective rotating flow of second-grade fluid with Hall and ion-slip currents,” Heat Transf., vol. 51, no. 8, pp. 7435–7461, 2022. DOI: 10.1002/htj.22651.
  • K. L. Hsiao, “Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects,” Appl. Therm. Eng., vol. 112, pp. 1281–1288, 2017. DOI: 10.1016/j.applthermaleng.2016.08.208.
  • Z. Shah, L. B. McCash, A. Dawar, and E. Bonyah, “Entropy optimization in Darcy-Forchheimer MHD flow of water based copper and silver nanofluids with joule heating and viscous dissipation effects,” AIP Adv., vol. 10, no. 6, p. 065137, 2020. DOI: 10.1063/5.0014952.
  • W. A. Khan et al., “Impact of nanoparticles and radiation phenomenon on viscoelastic fluid,” Int. J. Mod. Phys. B, vol. 36, no. 5, p. 2250049, 2022.
  • W. A. Khan, “Impact of time-dependent heat and mass transfer phenomenon for magnetized Sutterby nanofluid flow,” Waves Random Complex Media, vol. 19, pp. 1–15, 2022. DOI: 10.1080/17455030.2022.2140857.
  • Z. Shah, M. Rooman, and M. Shutaywi, “Computational analysis of radiative engine oil-based Prandtl-Eyring hybrid nanofluid flow with variable heat transfer using the Cattaneo-Christov heat flux model,” RSC Adv., vol. 13, no. 6, pp. 3552–3560, 2023. DOI: 10.1039/d2ra08197k.
  • W. A. Khan et al., “A rheological analysis of nanofluid subjected to melting heat transport characteristics,” Appl. Nanosci., vol. 10, no. 8, pp. 3161–3170, 2020. DOI: 10.1007/s13204-019-01067-5.
  • W. A. Khan, et al., “Evaluating the characteristics of magnetic dipole for shear-thinning Williamson nanofluid with thermal radiation,” Comput. Methods Programs Biomed., vol. 191, p. 105396, 2020. DOI: 10.1016/j.cmpb.2020.105396.
  • T. Q. Tang et al., “Computational study and characteristics of magnetized gold-blood Oldroyd-B nanofluid flow and heat transfer in stenosis narrow arteries,” J. Magn. Magn. Mater., vol. 569, p. 170448, 2023. DOI: 10.1016/j.jmmm.2023.170448.
  • W. A. Khan et al., “Importance of heat generation in chemically reactive flow subjected to convectively heated surface,” Indian J. Phys., vol. 95, no. 1, pp. 89–97, 2021. DOI: 10.1007/s12648-019-01678-2.
  • N. Anjum et al., “Numerical analysis for thermal performance of modified Eyring Powell nanofluid flow subject to activation energy and bioconvection dynamic,” Case Stud. Therm. Eng., vol. 39, p. 102427, 2022. DOI: 10.1016/j.csite.2022.102427.
  • M. Tabrez and W. A. Khan, “Exploring physical aspects of viscous dissipation and magnetic dipole for ferromagnetic polymer nanofluid flow,” Waves Random Complex Media, vol. 27, pp. 1–20, 2022. DOI: 10.1080/17455030.2022.2135794.
  • S. Mukhopadhyay and K. Bhattacharyya, “Unsteady flow of a Maxwell fluid over a stretching surface in presence of chemical reaction,” J. Egyp. Math. Soc., vol. 20, no. 3, pp. 229–234, 2012. DOI: 10.1016/j.joems.2012.08.019.
  • S. Shateyi, “A new numerical approach to MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction,” Bound. Value Probl., vol. 2013, no. 1, pp. 1–14, 2013. DOI: 10.1186/1687-2770-2013-196.
  • M. R. Krishnamurthy, B. C. Prasannakumara, B. J. Gireesha, and R. S. R. Gorla, “Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium,” Eng. Sci. Technol. Int. J., vol. 19, no. 1, pp. 53–61, 2016. DOI: 10.1016/j.jestch.2015.06.010.
  • B. C. Prasannakumara, B. J. Gireesha, R. S. Gorla, and M. R. Krishnamurthy, “Effects of chemical reaction and nonlinear thermal radiation on Williamson nanofluid slip flow over a stretching sheet embedded in a porous medium,” J. Aero Space Eng., vol. 29, no. 5, p. 04016019, 2016.
  • L. Zheng, C. Zhang, X. Zhang, and J. Zhang, “Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium,” J. Franklin Inst., vol. 350, no. 5, pp. 990–1007, 2013. DOI: 10.1016/j.jfranklin.2013.01.022.
  • Y. B. Kho, A. Hussanan, M. K. A. Mohamed, and M. Z. Salleh, “Heat and mass transfer analysis on flow of Williamson nanofluid with thermal and velocity slips: Buongiorno model,” Prop. Power Res., vol. 8, no. 3, pp. 243–252, 2019. DOI: 10.1016/j.jppr.2019.01.011.
  • B. Ali, Y. Nie, S. A. Khan, M. T. Sadiq, and M. Tariq, “Finite element simulation of multiple slip effects on MHD unsteady Maxwell nanofluid flow over a permeable stretching sheet with radiation and thermo-diffusion in the presence of chemical reaction,” Processes, vol. 7, no. 9, p. 628, 2019. DOI: 10.3390/pr7090628.
  • J. Raza, F. Mebarek-Oudina, and B. Mahanthesh, “Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips,” Multidiscip. Model Mater. Struct., vol. 15, no. 5, pp. 871–894, 2019. DOI: 10.1108/MMMS-11-2018-0183.
  • M. M. Bhatti and R. Ellahi, “Numerical investigation of non-Darcian nanofluid flow across a stretchy elastic medium with velocity and thermal slips,” Numer. Heat Transf. B: Fundam., vol. 83, no. 5, pp. 1–21, 2023.
  • J. V. Tawade et al., “Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid over a linearly stretching sheet,” Results Eng., vol. 15, p. 100448, 2022. DOI: 10.1016/j.rineng.2022.100448.
  • I. Daprà and G. Scarpi, “Perturbation solution for pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture,” Int. J. Rock Min. Sci., vol. 44, no. 2, pp. 271–278, 2007. DOI: 10.1016/j.ijrmms.2006.07.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.