Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
152
Views
0
CrossRef citations to date
0
Altmetric
Articles

A conservative finite volume method for incompressible two-phase flows on unstructured meshes

ORCID Icon & ORCID Icon
Pages 426-453 | Received 04 Nov 2022, Accepted 10 Jul 2023, Published online: 21 Jul 2023

References

  • S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988. Nov. DOI: 10.1016/0021-9991(88)90002-2.
  • F. Gibou, R. Fedkiw and S. Osher, “A review of level-set methods and some recent applications,” J. Comput. Phys., vol. 353, pp. 82–109, 2018. DOI: 10.1016/j.jcp.2017.10.006.
  • M. Sussman and E. Fatemi, “An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow,” SIAM J. Sci. Comput., vol. 20, no. 4, pp. 1165–1191, 1999. DOI: 10.1137/S1064827596298245.
  • Z. Gu, H. Wen, C. Yu and T. W. Sheu, “Interface-preserving level set method for simulating dam-break flows,” J. Comput. Phys., vol. 374, pp. 249–280, 2018. DOI: 10.1016/j.jcp.2018.07.057.
  • E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,” J. Comput. Phys., vol. 210, no. 1, pp. 225–246, 2005. DOI: 10.1016/j.jcp.2005.04.007.
  • T. Wacławczyk, “A consistent solution of the re-initialization equation in the conservative level-set method,” J. Comput. Phys., vol. 299, no. Supplement C, pp. 487–525, 2015. DOI: 10.1016/j.jcp.2015.06.029.
  • R. Chiodi and O. Desjardins, “A reformulation of the conservative level set reinitialization equation for accurate and robust simulation of complex multiphase flows,” J. Comput. Phys., vol. 343, pp. 186–200, 2017. DOI: 10.1016/j.jcp.2017.04.053.
  • T. Wacławczyk, “On a relation between the volume of fluid, level-set and phase field interface models,” Int. J. Multiphase Flow, vol. 97, pp. 60–77, 2017. DOI: 10.1016/j.ijmultiphaseflow.2017.08.003.
  • W. G. Price and Y. G. Chen, “A simulation of free surface waves for incompressible two-phase flows using a curvilinear level set formulation,” Int. J. Numer. Meth. Fluids, vol. 51, no. 3, pp. 305–330, 2006. DOI: 10.1002/fld.1126.
  • Y. Aiming, C. Sukun, Y. Liu and Y. Xiaoquan, “An upwind finite volume method for incompressible inviscid free surface flows,” Comput. Fluids, vol. 101, pp. 170–182, 2014.
  • S. Bhat and J. C. Mandal, “Contact preserving Riemann solver for incompressible two-phase flows,” J. Comput. Phys., vol. 379, pp. 173–191, 2019. DOI: 10.1016/j.jcp.2018.10.039.
  • B. Vermeire, N. Loppi and P. Vincent, “Optimal runge-kutta schemes for pseudo time-stepping with high-order unstructured methods,” J. Comput. Phys., vol. 383, pp. 55–71, 2019. DOI: 10.1016/j.jcp.2019.01.003.
  • B. R. Hodges, “An artificial compressibility method for 1d simulation of open-channel and pressurized-pipe flow,” Water, vol. 12, no. 6, pp. 1727, 2020. DOI: 10.3390/w12061727.
  • S. Parameswaran and J. C. Mandal, “A novel Roe solver for incompressible two-phase flow problems,” J. Comput. Phys., vol. 390, pp. 405–424, 2019. DOI: 10.1016/j.jcp.2019.04.012.
  • E. Olsson, G. Kreiss and S. Zahedi, “A conservative level set method for two phase flow II,” J. Comput. Phys., vol. 225, no. 1, pp. 785–807, 2007. DOI: 10.1016/j.jcp.2006.12.027.
  • N. Balcázar, L. Jofre, O. Lehmkuhl, J. Castro and J. Rigola, “A finite-volume/level-set method for simulating two-phase flows on unstructured grids,” Int. J. Multiphase Flow, vol. 64, pp. 55–72, 2014. DOI: 10.1016/j.ijmultiphaseflow.2014.04.008.
  • J. C. Mandal and J. Subramanian, “On the link between weighted least-squares and limiters used in higher-order reconstructions for finite volume computations of hyperbolic equations,” Appl. Numer. Math., vol. 58, no. 5, pp. 705–725, 2008. DOI: 10.1016/j.apnum.2007.02.003.
  • J. K. Patel and G. Natarajan, “A novel consistent and well-balanced algorithm for simulations of multiphase flows on unstructured grids,” J. Comput. Phys., vol. 350, pp. 207–236, 2017. DOI: 10.1016/j.jcp.2017.08.047.
  • J. Brackbill, D. Kothe and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • A. J. Chorin, “A numerical method for solving incompressible viscous flow problems,” J. Comput. Phys., vol. 2, no. 1, pp. 12–26, 1967. DOI: 10.1016/0021-9991(67)90037-X.
  • J. L. Chang and D. Kwak, “On the method of pseudo compressibility for numerically solving incompressible flows,” AIAA 22nd Aerospace Sciences Meeting, 1984. in cited By 11. DOI: 10.2514/6.1984-252.
  • E. Turkel, “Preconditioned methods for solving the incompressible and low speed compressible equations,” J. Comput. Phys., vol. 72, no. 2, pp. 277–298, 1987. DOI: 10.1016/0021-9991(87)90084-2.
  • N. Hakimi, “Preconditioning Methods for Time Dependent Navier-Stokes Equations,” Phd thesis, Dept. of Fluid Mechanics, Vrije Universiteit Brussel, December, 1997.
  • P. Nithiarasu, “An efficient artificial compressibility (ac) scheme based on the characteristic based split (cbs) method for incompressible flows,” Int. J. Numer. Meth. Eng., vol. 56, no. 13, pp. 1815–1845, 2003. DOI: 10.1002/nme.712.
  • A. Rizzi and L.-E. Eriksson, “Computation of inviscid incompressible flow with rotation,” J. Fluid Mech., vol. 153, no. 1, pp. 275–312, 1985. DOI: 10.1017/S0022112085001264.
  • A. G. Malan, R. W. Lewis and P. Nithiarasu, “An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: part I. theory and implementation,” Int. J. Numer. Meth. Eng., vol. 54, no. 5, pp. 695–714, 2002. DOI: 10.1002/nme.447.
  • A. G. Malan, R. W. Lewis and P. Nithiarasu, “An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: part II. application,” Int. J. Numer. Meth. Eng., vol. 54, no. 5, pp. 715–729, 2002. DOI: 10.1002/nme.443.
  • A. L. Gaitonde, “A dual-time method for two-dimensional unsteady incompressible flow calculations,” Int. J. Numer. Meth. Eng., vol. 41, no. 6, pp. 1153–1166, 1998. DOI: 10.1002/(SICI)1097-0207(19980330)41:6<1153::AID-NME334>3.0.CO;2-9.
  • S. Gottlieb, “On high order strong stability preserving runge-kutta and multi step time discretizations,” J. Sci. Comput., vol. 25, no. 1, pp. 105–128, 2005. Oct. DOI: 10.1007/s10915-004-4635-5.
  • R. S. Chandrakant, “Incompressible Flow Computations: HLLC-AC based Numerical Approach,” Phd thesis, Dept. of Aerospace Engineering, Indian Institute of Technology, July, 2016., Bombay
  • S. Parameswaran and J. Mandal, “A stable interface-preserving reinitialization equation for conservative level set method,” Eur. J. Mech. - B/Fluids, vol. 98, pp. 40–63, 2023. DOI: 10.1016/j.euromechflu.2022.11.001.
  • I. Chakraborty, G. Biswas and P. Ghoshdastidar, “A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids,” Int. J. Heat Mass Transfer, vol. 58, no. 1-2, pp. 240–259, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.11.027.
  • J. C. Mandal, S. Rao and J. Subramanian, “High-resolution finite volume computations using a novel weighted least-squares formulation,” Int. J. Numer. Meth. Fluids, vol. 56, no. 8, pp. 1425–1431, 2008. DOI: 10.1002/fld.1707.
  • J. Blazek, “Chapter 5 - Unstructured Finite-Volume Schemes,” in Computational Fluid Dynamics: Principles and Applications (Third Edition) (J. Blazek, ed.), pp. 121–166. Oxford: butterworth-Heinemann, third edition ed., 2015,
  • W. J. Coirier, “An adaptively-refined, Cartesian, cell-based scheme for the Euler and Navier-Stokes equations,” PhD thesis, The University of Michigan, 1994.
  • S. Veluri, C. Roy, A. Choudhary and E. Luke, “Finite volume diffusion operators for compressible CFD on unstructured grids,” in 19th AIAA Computational Fluid Dynamics, 2009. DOI: 10.2514/6.2009-4141.
  • E. Sozer, C. Brehm and C. C. Kiris, “Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered CFD solvers,” 52nd Aerospace Sciences Meeting, 2014. in DOI: 10.2514/6.2014-1440.
  • T. W. H. Sheu and C. H. Yu, “Numerical simulation of free surface by an area-preserving level set method,” Commun. Comput. phys, vol. 11, no. 4, pp. 1347–1371, 2012. DOI: 10.4208/cicp.120510.150511s.
  • T. W. H. Sheu, C. H. Yu and P. H. Chiu, “Development of level set method with good area preservation to predict interface in two-phase flows,” Int. J. Numer. Meth. Fluids, vol. 67, no. 1, pp. 109–134, 2011. DOI: 10.1002/fld.2344.
  • S. T. Zalesak, “Fully multidimensional flux-corrected transport algorithms for fluids,” J. Comput. Phys., vol. 31, no. 3, pp. 335–362, 1979. DOI: 10.1016/0021-9991(79)90051-2.
  • I. Tadjbakhsh and J. B. Keller, “Standing surface waves of finite amplitude,” J. Fluid Mech., vol. 8, no. 03, pp. 442–451, 07 1960. DOI: 10.1017/S0022112060000724.
  • S. Kang and F. Sotiropoulos, “Numerical modeling of 3d turbulent free surface flow in natural waterways,” Adv. Water Resour., vol. 40, pp. 23–36, 2012. DOI: 10.1016/j.advwatres.2012.01.012.
  • S. P. Bhat and J. Mandal, “An improved HLLC-type solver for incompressible two-phase fluid flows,” Comput. Fluids, vol. 244, pp. 105570, 2022. DOI: 10.1016/j.compfluid.2022.105570.
  • J. C. Martin and W. J. Moyce, “Part IV. an experimental study of the collapse of liquid columns on a rigid horizontal plane,” Philos. Trans. R. Soc. Lond. A, vol. 244, no. 882, pp. 312–324, 1952.
  • Y. Zhang, Q. Zou and D. Greaves, “Numerical simulation of free-surface flow using the level-set method with global mass correction,” Int. J. Numer. Meth. Fluids, vol. 63, no. June 2009, pp. n/a–n/a, 2009. DOI: 10.1002/fld.2090.
  • S. Hysing, “Mixed element FEM level set method for numerical simulation of immiscible fluids,” J. Comput. Phys., vol. 231, no. 6, pp. 2449–2465, 2012. DOI: 10.1016/j.jcp.2011.11.035.
  • N. Balcázar, O. Lehmkuhl, L. Jofre, J. Rigola and A. Oliva, “A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes,” Comput. Fluids, vol. 124, pp. 12–29, 2016. Special Issue for ICMMES-2014. DOI: 10.1016/j.compfluid.2015.10.005.
  • S. Hysing, et al., “Quantitative benchmark computations of two-dimensional bubble dynamics,” Int. J. Numer. Meth. Fluids, vol. 60, no. 11, pp. 1259–1288, 2009. DOI: 10.1002/fld.1934.
  • J. H. Duncan, “The breaking and non-breaking wave resistance of a two-dimensional hydrofoil,” J. Fluid Mech, vol. 126, pp. 507–520, 1983. DOI: 10.1017/S0022112083000294.
  • A. D. Mascio, R. Broglia and R. Muscari, “On the application of the single-phase level set method to naval hydrodynamic flows,” Comput. Fluids, vol. 36, no. 5, pp. 868–886, 2007. DOI: 10.1016/j.compfluid.2006.08.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.