Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
83
Views
3
CrossRef citations to date
0
Altmetric
Articles

Hydrothermal study on nano-bioconvective fluid flow over a vertical plate under the effect of magnetic field

, , &
Pages 469-483 | Received 10 Feb 2023, Accepted 13 Jul 2023, Published online: 14 Aug 2023

References

  • L. Ali, B. Ali and M. Bilal Ghori, “Melting effect on Cattaneo–Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach Image 1,” Comp. Math. Appl., vol. 109, pp. 260–269, 2022. DOI: 10.1016/j.camwa.2022.01.009.
  • O. D. Makinde and I. L. Animasaun, “Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution,” Int. J. Therm. Sci., vol. 109, pp. 159–171, 2016. DOI: 10.1016/j.ijthermalsci.2016.06.003.
  • R. Dhanai, P. Rana and L. Kumar, “Lie group analysis for bioconvection MHD slip flow and heat transfer of nanofluid over an inclined sheet: multiple solutions,” J. Taiwan Inst. Chem. Eng., vol. 66, pp. 283–291, 2016. DOI: 10.1016/j.jtice.2016.07.001.
  • O. D. Makinde, F. Mabood, W. A. Khan and M. S. Tshehla, “MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat,” J. Molec. Liq., vol. 219, pp. 624–630, 2016. DOI: 10.1016/j.molliq.2016.03.078.
  • A. Alsaedi, M. I. Khan, M. Farooq, N. Gull and T. Hayat, “Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms,” Adv. Powder Technol., vol. 28, no. 1, pp. 288–298, 2017. DOI: 10.1016/j.apt.2016.10.002.
  • A. Shafiq, Z. Hammouch and T. N. Sindhu, “Bioconvective MHD flow of tangent hyperbolic nanofluid with newtonian heating,” Int. J. Mech. Sci., vol. 133, pp. 759–766, 2017. DOI: 10.1016/j.ijmecsci.2017.07.048.
  • M. Khan and M. Azam, “Unsteady heat and mass transfer mechanisms in MHD Carreau nanofluid flow,” J. Molec. Liq., vol. 225, pp. 554–562, 2017. DOI: 10.1016/j.molliq.2016.11.107.
  • C. S. K. Raju, M. M. Hoque, N. Nowroz Anika, S. U. Mamatha and P. Sharma, “Natural convective heat transfer analysis of MHD unsteady Carreau nanofluid over a cone packed with alloy nanoparticles,” Powder Technol., vol. 317, pp. 408–416, 2017. DOI: 10.1016/j.powtec.2017.05.003.
  • H. Xu and J. Cui, “Mixed convection flow in a channel with slip in a porous medium saturated with a nanofluid containing both nanoparticles and microorganisms,” Int. J. Heat Mass Transfer, vol. 125, pp. 1043–1053, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.124.
  • T. Chakraborty, K. Das and P. Kumar Kundu, “Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions,” Alexandria Engineering J., vol. 57, no. 1, pp. 61–71, 2018. DOI: 10.1016/j.aej.2016.11.011.
  • S. Qayyum, M. Imtiaz, A. Alsaedi and T. Hayat, “Analysis of radiation in a suspension of nanoparticles and gyrotactic microorganism for rotating disk of variable thickness,” Chinese J. Phys., vol. 56, no. 5, pp. 2404–2423, 2018. DOI: 10.1016/j.cjph.2018.06.020.
  • S. Zaman and M. Gul, “Magnetohydrodynamic bioconvective flow of Williamson nanofluid containing gyrotactic microorganisms subjected to thermal radiation and Newtonian conditions,” J. Theor. Biol., vol. 479, pp. 22–28, 2019. DOI: 10.1016/j.jtbi.2019.02.015.
  • W. A. Khan, A. M. Rashad, M. M. M. Abdou and I. Tlili, “Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone,” Europ. J. Mech.—B/Fluids, vol. 75, pp. 133–142, 2019. DOI: 10.1016/j.euromechflu.2019.01.002.
  • S. Nadeem, M. Naveed Khan, N. Muhammad and S. Ahmad, “Mathematical analysis of bio-convective micropolar nanofluid,” J. Comput. Des. Eng., vol. 6, no. 3, pp. 233–242, 2019. DOI: 10.1016/j.jcde.2019.04.001.
  • I. Tlili, M. Ramzan, H. Un Nisa, M. Shutaywi, Z. Shah and P. Kumam, “Onset of gyrotactic microorganisms in MHD Micropolar nanofluid flow with partial slip and double stratification,” J. King Saud University—Sci., vol. 32, no. 6, pp. 2741–2751, 2020. DOI: 10.1016/j.jksus.2020.06.010.
  • R. Naz, M. Noor, Z. Shah, M. Sohail, P. Kumam and P. Thounthong, “Entropy generation optimization in MHD pseudoplastic fluid comprising motile microorganisms with stratification effect,” Alexandria Eng. J., vol. 59, no. 1, pp. 485–496, 2020. DOI: 10.1016/j.aej.2020.01.018.
  • K. Hosseinzadeh, S. Salehi, M. R. Mardani, F. Y. Mahmoudi, M. Waqas and D. D. Ganji, “Investigation of nano-bioconvective fluid motile microorganism and nanoparticle flow by considering MHD and thermal radiation,” Inform. Med. Unlock., vol. 21, pp. 100462, 2020. DOI: 10.1016/j.imu.2020.100462.
  • A. Saleh Alshomrani, M. ZakaUllah and D. Baleanu, “Importance of multiple slips on bioconvection flow of cross nanofluid past a wedge with gyrotactic motile microorganisms,” Case Stud. Therm. Eng., vol. 22, pp. 100798, 2020. DOI: 10.1016/j.csite.2020.100798.
  • I. Ahmad, et al., “Thermally developed Cattaneo-Christov Maxwell nanofluid over bidirectional periodically accelerated surface with gyrotactic microorganisms and activation energy,” Alexandria Eng. J., vol. 59, no. 6, pp. 4865–4878, 2020. DOI: 10.1016/j.aej.2020.08.051.
  • A. Aldabesh, et al., “Unsteady transient slip flow of Williamson nanofluid containing gyrotactic microorganism and activation energy,” Alexandria Eng. J., vol. 59, no. 6, pp. 4315–4328, 2020. DOI: 10.1016/j.aej.2020.07.036.
  • N. M. Khan, et al., “Dynamics of radiative Eyring-Powell MHD nanofluid containing gyrotactic microorganisms exposed to surface suction and viscosity variation,” Case Stud. Thermal Engineering, vol. 28, pp. 101659, 2021. DOI: 10.1016/j.csite.2021.101659.
  • M. Habibishandiz and Z. Saghir, “MHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder,” Int. J. Thermofluids, vol. 14, pp. 100151, 2022. DOI: 10.1016/j.ijft.2022.100151.
  • H. Waqas, U. Farooq, T. Muhammad, S. Hussain and I. Khan, “Thermal effect on bioconvection flow of Sutterby nanofluid between two rotating disks with motile microorganisms,” Case Stud. Thermal Eng., vol. 26, pp. 101136, 2021. DOI: 10.1016/j.csite.2021.101136.
  • G. Sankad, M. Ishwar and M. Dhange, “Varying wall temperature and thermal radiation effects on MHD boundary layer liquid flow containing gyrotactic microorganisms,” Partial Differen. Eq. Appl. Math., vol. 4, pp. 100092, 2021. DOI: 10.1016/j.padiff.2021.100092.
  • O. A. Famakinwa, O. K. Koriko, K. S. Adegbie and A. J. Omowaye, “Effects of viscous variation, thermal radiation, and Arrhenius reaction: the case of MHD nanofluid flow containing gyrotactic microorganisms over a convectively heated surface,” Partial Differen. Eq. Appl. Math., vol. 5, pp. 100232, 2022. DOI: 10.1016/j.padiff.2021.100232.
  • K. Naganthran, M. F. M. Basir, M. S. M. Kasihmuddin, S. E. Ahmed, F. B. Olumide and R. Nazar, “Exploration of dilatant nanofluid effects conveying microorganism utilizing scaling group analysis: FDM Blottner,” Physica A: Statis. Mech. Appl., vol. 549, pp. 124040, 2020. DOI: 10.1016/j.physa.2019.124040.
  • M. Elayarani, M. Shanmugapriya and P. Senthil Kumar, “Intensification of heat and mass transfer process in MHD carreau nanofluid flow containing gyrotactic microorganisms,” Chem. Eng. Proc.—Process Intensif., vol. 160, pp. 108299, 2021. DOI: 10.1016/j.cep.2021.108299.
  • H. Waqas, et al., “Numerical simulation for bioconvection effects on MHD flow of Oldroyd-B nanofluids in a rotating frame stretching horizontally,” Math. Comp. Simul., vol. 178, pp. 166–182, 2020. DOI: 10.1016/j.matcom.2020.05.030.
  • M. N. Khan, S. Nadeem, N. Ullah and A. Saleem, “Theoretical treatment of radiative Oldroyd-B nanofluid with microorganism pass an exponentially stretching sheet,” Surf. Interf., vol. 21, pp. 100686, 2020. DOI: 10.1016/j.surfin.2020.100686.
  • S. Hosseinzadeh, K. Hosseinzadeh, A. Hasibi and D. D. Ganji, “Hydrothermal analysis on non-Newtonian nanofluid flow of blood through porous vessels,” Proc. Institution Mech. Engineers, Part E: J. Process Mech. Eng., vol. 236, no. 4, pp. 1604–1615, 2022. DOI: 10.1177/09544089211069211.
  • A. Hussain and M. Y. Malik, “MHD nanofluid flow over stretching cylinder with convective boundary conditions and Nield conditions in the presence of gyrotactic swimming microorganism: a biomathematical model,” Int. Commun. Heat Mass Transfer, vol. 126, pp. 105425, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105425.
  • I. Animasaun, et al., “Insight into Darcy flow of ternary‐hybrid nanofluid on horizontal surfaces: exploration of the effects of convective and unsteady acceleration,” ZAMM‐J. APPl. Math. Mech./Zeitschrift Für Angewandte Mathematik Und Mechanik. DOI: 10.1002/zamm.202200197.
  • L. Todd, “A family of laminar boundary layers along a semi-infinite flat plate,” Fluid Dyn. Res., vol. 19, no. 4, pp. 235–249, 1997. DOI: 10.1016/S0169-5983(97)00038-5.
  • F. Mabood and W. Khan, “A computational study of unsteady radiative magnetohydrodynamic Blasius and Sakiadis flow with leading-edge accretion (ablation),” Heat Transfer-Asian Res., vol. 49, no. 3, pp. 1355–1373, 2020. DOI: 10.1016/j.camwa.2022.01.009.
  • N. C. Ro, Sca and I. Pop, “Unsteady boundary layer flow of a nanofluid past a moving surface in an external uniform free stream using Buongiorno’s model,” Computer Fluids, vol. 95, pp. 49–55, 2014. DOI: 10.1016/j.compfluid.2014.02.011.
  • Y.-Q. Song, B. D. Obideyi, N. A. Shah, I. L. Animasaun, Y. M. Mahrous and J. D. Chung, “Significance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface,” Case Stud. Therm. Eng., vol. 26, pp. 101050, 2021. DOI: 10.1016/j.csite.2021.101050.
  • W. Cao, I. L. Animasaun, S.-J. Yook, V. A. Oladipupo and X. Ji, “Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: ternary-hybrid nanofluid,” Int. Commun. Heat Mass Transfer, vol. 135, pp. 106069, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.