Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 7
84
Views
0
CrossRef citations to date
0
Altmetric
Articles

Space–time method for analyzing transient heat conduction in functionally graded materials

, &
Pages 828-841 | Received 16 Jun 2023, Accepted 01 Sep 2023, Published online: 19 Sep 2023

References

  • J. Sladek, V. Sladek, H. H. H. Lu, and D. L. Young, “The FEM analysis of FGM piezoelectric semiconductor problems,” Compos. Struct., vol. 163, pp. 13–20, 2017. DOI: 10.1016/j.compstruct.2016.12.019.
  • X. Yue, F. Wang, Q. Hua, and X.-Y. Qiu, “A novel space–time meshless method for nonhomogeneous convection–diffusion equations with variable coefficients,” Appl. Math. Lett., vol. 92, pp. 144–150, 2019. DOI: 10.1016/j.aml.2019.01.018.
  • L. Qiu, F. Wang, J. Lin, Q.-H. Qin, and Q. Zhao, “A novel combined space-time algorithm for transient heat conduction problems with heat sources in complex geometry,” Comput. Struct., vol. 247, pp. 106495, 2021. DOI: 10.1016/j.compstruc.2021.106495.
  • F. Wang, C.-M. Fan, C. Zhang, and J. Lin, “A localized space-time method of fundamental solutions for diffusion and convection-diffusion problems,” Adv. Appl. Math. Mech., vol. 12, no. 4, pp. 940–958, 2020. DOI: 10.4208/aamm.OA-2019-0269.
  • Y. Li et al., “A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties,” Adv. Mater. Technol., vol. 5, no. 6, pp. 1900981, 2020. DOI: 10.1002/admt.201900981.
  • M. M. Shahzamanian, A. Partovi, and P. D. Wu, “Finite element analysis of elastic–plastic and fracture behavior in functionally graded materials (FGMs),” SN Appl. Sci., vol. 2, no. 12, pp. 2135, 2020. DOI: 10.1007/s42452-020-03901-w.
  • E. Martínez-Pañeda, “On the finite element implementation of functionally graded materials,” Materials, vol. 12, no. 2, pp. 287, 2019. DOI: 10.3390/ma12020287.
  • O. Bourihane, K. Mhada, and Y. Sitli, “New finite element model for the stability analysis of a functionally graded material thin plate under compressive loadings,” Acta Mech., vol. 231, no. 4, pp. 1587–1601, 2020. DOI: 10.1007/s00707-019-02609-2.
  • I. Eshraghi and S. Dag, “Forced vibrations of functionally graded annular and circular plates by domain-boundary element method,” Z. Angew. Math Mech., vol. 100, no. 8, pp. e201900048, 2020. DOI: 10.1002/zamm.201900048.
  • H. Guo, X. Zhuang, X. Fu, Y. Zhu, and T. Rabczuk, “Physics-informed deep learning for three-dimensional transient heat transfer analysis of functionally graded materials,” Comput. Mech., vol. 72, no. 1, pp. 1–12, 2023. DOI: 10.1007/s00466-023-02287-x.
  • C. Wang, Y. Gu, L. Qiu, and F. Wang, “Analysis of 3D transient heat conduction in functionally graded materials using a local semi-analytical space-time collocation scheme,” Eng. Anal. Bound. Elem., vol. 149, pp. 203–212, 2023. DOI: 10.1016/j.enganabound.2023.01.034.
  • A. Noorizadegan, D. L. Young, and C.-S. Chen, “A novel local radial basis function collocation method for multi-dimensional piezoelectric problems,” J. Intell. Mater. Syst. Struct., vol. 33, no. 12, pp. 1574–1587, 2022. DOI: 10.1177/1045389X21105720.
  • M. Hamaidi, A. Naji, and A. Charafi, “Space–time localized radial basis function collocation method for solving parabolic and hyperbolic equations,” Eng. Anal. Bound. Elem., vol. 67, pp. 152–163, 2016. DOI: 10.1016/j.enganabound.2016.03.009.
  • G. M. M. Reddy, P. Nanda, M. Vynnycky, and J. A. Cuminato, “Efficient numerical solution of boundary identification problems: MFS with adaptive stochastic optimization,” Appl. Math. Comput., vol. 409, pp. 126402, 2021. DOI: 10.1016/j.amc.2021.126402.
  • O. Askour, A. Tri, B. Braikat, H. Zahrouni, and M. Potier-Ferry, “Method of fundamental solutions and high order algorithm to solve nonlinear elastic problems,” Eng. Anal. Bound. Elem., vol. 89, pp. 25–35, 2018. DOI: 10.1016/j.enganabound.2018.01.007.
  • D. L. Young, C. K. Chou, C. W. Chen, J. Y. Lai, and D. W. Watson, “Method of fundamental solutions for three-dimensional exterior potential flows,” J. Eng. Mech., vol. 142, no. 11, pp. 04016080, 2016. DOI: 10.1061/(ASCE)EM.1943-7889.000113.
  • S. G. Ahmed, “Numerical solution of moving boundary problems using a new hybrid grid and meshless method,” Eng. Anal. Bound. Elem., vol. 103, pp. 22–31, 2019. DOI: 10.1016/j.enganabound.2019.02.008.
  • D. E. Myers, S. De Iaco, D. Posa, and L. De Cesare, “Space-time radial basis functions,” Comput. Math. Appl., vol. 43, no. 3–5, pp. 539–549, 2002. DOI: 10.1016/S0898-1221(01)00304-2.
  • B. Tóth and A. Düster, “h-Adaptive radial basis function finite difference method for linear elasticity problems,” Comput. Mech., vol. 71, no. 3, pp. 433–452, 2023. DOI: 10.1007/s00466-022-02249-9.
  • A. Sutradhar, G. H. Paulino, and L. J. Gray, “Transient heat conduction in homogeneous and non-homogeneous materials by the Laplace transform Galerkin boundary element method,” Eng. Anal. Bound. Elem., vol. 26, no. 2, pp. 119–132, 2002. DOI: 10.1016/S0955-7997(01)00090-X.
  • C.-S. Chen, A. Noorizadegan, D. L. Young, and C. S. Chen, “On the selection of a better radial basis function and its shape parameter in interpolation problems,” Appl. Math. Comput., vol. 442, pp. 127713, 2023. DOI: 10.1016/j.amc.2022.127713.
  • A. Noorizadegan, C.-S. Chen, D. L. Young, and C. S. Chen, “Effective condition number for the selection of the RBF shape parameter with the fictitious point method,” Appl. Numer. Math., vol. 178, pp. 280–295, 2022. DOI: 10.1016/j.apnum.2022.04.003.
  • G. E. Fasshauer and J. G. Zhang, “On choosing ‘optimal’ shape parameters for RBF approximation,” Numer. Algor., vol. 45, no. 1–4, pp. 345–368, 2007. DOI: 10.1007/s11075-007-9072-8.
  • S. Rippa, “An algorithm for selecting a good value for the parameter c in radial basis function interpolation,” Adv. Comput. Math., vol. 112, no. 2, pp. 193–210, 1999. DOI: 10.1023/A:1018975909870.
  • J. C. Bruch Jr. and G. Zyvoloski, “Transient two-dimensional heat conduction problems solved by the finite element method,” Int. J. Numer. Meth. Eng., vol. 8, no. 3, pp. 481–494, 1974. DOI: 10.1002/nme.1620080304.
  • M. Li, C. S. Chen, C. C. Chu, and D. L. Young, “Transient 3D heat conduction in functionally graded materials by the method of fundamental solutions,” Eng. Anal. Bound. Elem., vol. 45, pp. 62–67, 2014. DOI: 10.1016/j.enganabound.2014.01.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.