Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 8
823
Views
1
CrossRef citations to date
0
Altmetric
Articles

A modified dynamic Lee model for two-phase closed thermosyphon (TPCT) simulation

, , , , & ORCID Icon
Pages 1041-1055 | Received 08 May 2023, Accepted 18 Sep 2023, Published online: 02 Oct 2023

References

  • J. Cao et al., “A review on independent and integrated/coupled two-phase loop thermosyphons,” Appl. Energy, vol. 280, pp. 115885, Dec. 2020. DOI: 10.1016/j.apenergy.2020.115885.
  • R. Wen, W. Liu, X. Ma, and R. Yang, “Coupling droplets/bubbles with a liquid film for enhancing phase-change heat transfer,” iScience, vol. 24, no. 6, pp. 102531, Jun. 2021. DOI: 10.1016/j.isci.2021.102531.
  • V. Guichet and H. Jouhara, “Condensation, evaporation and boiling of falling films in wickless heat pipes (two-phase closed thermosyphons): a critical review of correlations,” Int. J. Thermofluids, vol. 1–2, pp. 100001, Feb. 2020. DOI: 10.1016/j.ijft.2019.100001.
  • B. Fadhl, L. C. Wrobel, and H. Jouhara, “Numerical modelling of the temperature distribution in a two-phase closed thermosyphon,” Appl. Therm. Eng., vol. 60, no. 1–2, pp. 122–131, Oct. 2013. DOI: 10.1016/j.applthermaleng.2013.06.044.
  • H. Jouhara and H. Ezzuddin, “Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A,” Energy, vol. 61, no. 1, pp. 128–138, Nov. 2013. DOI: 10.1016/j.energy.2012.10.016.
  • S. Kloczko and A. Faghri, “Thermal performance and flow characteristics of two-phase loop thermosyphons,” Numer. Heat Transf., Part A, vol. 77, no. 7, pp. 683–701, Jan. 2020. DOI: 10.1080/10407782.2020.1714342.
  • Y.-C. Weng, H.-P. Cho, C.-C. Chang, and S.-L. Chen, “Heat pipe with PCM for electronic cooling,” Appl. Energy, vol. 88, no. 5, pp. 1825–1833, May 2011. DOI: 10.1016/j.apenergy.2010.12.004.
  • L. L. Vasiliev, “State-of-the-art on heat pipe technology in the former Soviet Union,” Appl. Therm. Eng., vol. 18, no. 7, pp. 507–551, Jul. 1998. DOI: 10.1016/S1359-4311(97)00005-7.
  • D. Redpath, “Thermosyphon heat-pipe evacuated tube solar water heaters for northern maritime climates,” Sol. Energy, vol. 86, no. 2, pp. 705–715, Feb. 2012. DOI: 10.1016/j.solener.2011.11.015.
  • L. L. Vasiliev, “Heat pipes in modern heat exchangers,” Appl. Therm. Eng., vol. 25, no. 1, pp. 1–19, Jan. 2005. DOI: 10.1016/j.applthermaleng.2003.12.004.
  • S. H. Noie-Baghban and G. R. Majideian, “Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals,” Appl. Therm. Eng., vol. 20, no. 14, pp. 1271–1282, Oct. 2000. DOI: 10.1016/S1359-4311(99)00092-7.
  • H. Jouhara and A. Robinson, “An experimental study of small-diameter wickless heat pipes operating in the temperature range 200 °C to 450 °C,” Heat Transf. Eng., vol. 30, no. 13, pp. 1041–1048, Jul. 2009. DOI: 10.1080/01457630902921113.
  • C. Zhang, S. Wu, F. Yao, and D. Sun, “Numerical study on vapor–liquid phase change in an enclosed narrow space,” Numer. Heat Transf., Part A, vol. 77, no. 2, pp. 199–214, Jan. 2020. DOI: 10.1080/10407782.2019.1685821.
  • C. R. Kharangate and I. Mudawar, “Review of computational studies on boiling and condensation,” Int. J. Heat Mass Transf., vol. 108, no. Part A, pp. 1164–1196, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.065.
  • G. Y. Soh, G. H. Yeoh, and V. Timchenko, “An algorithm to calculate interfacial area for multiphase mass transfer through the volume-of-fluid method,” Int. J. Heat Mass Transf., vol. 100, pp. 573–581, Sep. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.006.
  • G. Y. Soh, G. H. Yeoh, and V. Timchenko, “Improved volume-of-fluid (VOF) model for predictions of velocity fields and droplet lengths in microchannels,” Flow Meas. Instrum., vol. 51, pp. 105–115, Oct. 2016. DOI: 10.1016/j.flowmeasinst.2016.09.004.
  • J. Choi and Y. Zhang, “Numerical simulation of oscillatory flow and heat transfer in pulsating heat pipes with multi-turns using OpenFOAM,” Numer. Heat Transf., Part A, vol. 77, no. 8, pp. 761–781, Feb. 2020. DOI: 10.1080/10407782.2020.1717202.
  • F. He, W. Dong, and J. Wang, “Modeling and numerical investigation of transient two-phase flow with liquid phase change in porous media,” Nanomaterials (Basel), vol. 11, no. 1, pp. 183–196, Jan. 2021. DOI: 10.3390/nano11010183.
  • Y. You, G. Wang, C. Guo, and H. Jiang, “Study on mass transfer time relaxation parameter of indirect evaporative cooler considering primary air condensation,” Appl. Therm. Eng., vol. 181, pp. 115958, Nov. 2020. DOI: 10.1016/j.applthermaleng.2020.115958.
  • Z. Cao, D. Sun, J. Wei, and B. Yu, “Boiling heat transfer by using the VOSET method based on unstructured grids,” Chin. Sci. Bull., vol. 65, no. 17, pp. 1723–1733, Jun. 2020. DOI: 10.1360/TB-2019-0573.
  • Q. Shen, D. Sun, S. Su, N. Zhang, and T. Jin, “Development of heat and mass transfer model for condensation,” Int. Commun. Heat Mass Transf., vol. 84, pp. 35–40, May 2017. DOI: 10.1016/j.icheatmasstransfer.2017.03.009.
  • D. Sun, J. Xu, and Q. Chen, “Modeling of the evaporation and condensation phase-change problems with FLUENT,” Numer. Heat Transf., Part B, vol. 66, no. 4, pp. 326–342, Aug. 2014. DOI: 10.1080/10407790.2014.915681.
  • Y. Zai, Y. Qiao, C. Song, H. Tao, and Y. Li, “Numerical analysis of flow characteristics and bubble behavior inside a two-phase closed thermosyphon under various temperature difference” Numer. Heat Transf., Part A, pp. 1–18, Jan. 2023. DOI: 10.1080/10407782.2023.2178561.
  • Y. Liu, Z. Li, Y. Jiang, C. Guo, and D. Tang, “Analysis of the two-phase flow, heat transfer, and instability characteristics in a loop thermosyphon,” Numer. Heat Transf., Part A, vol. 79, no. 9, pp. 656–680, May 2021. DOI: 10.1080/10407782.2021.1882820.
  • C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201–225, Jan. 1981. DOI: 10.1016/0021-9991(81)90145-5.
  • M. Huang, L. Wu, and B. Chen, “A piecewise linear interface-capturing volume-of-fluid method based on unstructured grids,” Numer. Heat Transf., Part B, vol. 61, pp. 412–437, Jun. 2012. DOI: 10.1080/10407790.2012.672818.
  • S. C. K. De Schepper, G. J. Heynderickx, and G. B. Marin, “Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker,” Comput. Chem. Eng., vol. 33, no. 1, pp. 122–132, Jan. 2009. DOI: 10.1016/j.compchemeng.2008.07.013.
  • Y. W. Kuang, W. Wang, R. Zhuan, and C. C. Yi, “Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux,” Ann. Nucl. Energy, vol. 75, pp. 158–167, Jan. 2015. DOI: 10.1016/j.anucene.2014.08.008.
  • H. Yao, C. Yue, Y. Wang, H. Chen, and Y. Zhu, “Numerical investigation of the heat and mass transfer performance of a two-phase closed thermosiphon based on a modified CFD model,” Case Stud. Therm. Eng., vol. 26, pp. 101155, Aug. 2021. DOI: 10.1016/j.csite.2021.101155.
  • Z. Xu, Y. Zhang, B. Li, and J. Huang, “Modeling the phase change process for a two-phase closed thermosyphon by considering transient mass transfer time relaxation parameter,” Int. J. Heat Mass Transf., vol. 101, pp. 614–619, Oct. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.075.
  • S. Abadi, W. A. Davies, P. Hrnjak, and J. P. Meyer, “Numerical study of steam condensation inside a long inclined flattened channel,” Int. J. Heat Mass Transf., vol. 134, pp. 450–467, May 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.063.
  • B. Fadhl, L. C. Wrobel, and H. Jouhara, “CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a,” Appl. Therm. Eng., vol. 78, pp. 482–490, Mar. 2015. DOI: 10.1016/j.applthermaleng.2014.12.062.
  • A. Alizadehdakhel, M. Rahimi, and A. A. Alsairafi, “CFD modeling of flow and heat transfer in a thermosyphon,” Int. Commun. Heat Mass Transf., vol. 37, no. 3, pp. 312–318, Mar. 2010. DOI: 10.1016/j.icheatmasstransfer.2009.09.002.
  • A. A. Alammar, R. K. Al-Dadah, and S. M. Mahmoud, “Numerical investigation of effect of fill ratio and inclination angle on a thermosiphon heat pipe thermal performance,” Appl. Therm. Eng., vol. 108, pp. 1055–1065, Sep. 2016. DOI: 10.1016/j.applthermaleng.2016.07.163.
  • Y. Wang et al., “CFD simulation of an intermediate temperature, two-phase loop thermosiphon for use as a linear solar receiver,” Appl. Energy, vol. 207, pp. 36–44, Dec. 2017. DOI: 10.1016/j.apenergy.2017.05.168.
  • Y. Wang, X. Wang, H. Chen, R. A. Taylor, and Y. Zhu, “A combined CFD/visualized investigation of two-phase heat and mass transfer inside a horizontal loop thermosiphon,” Int. J. Heat Mass Transf., vol. 112, pp. 607–619, Sep. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.132.
  • X. Wang, H. Yao, J. Li, Y. Wang, and Y. Zhu, “Experimental and numerical investigation on heat transfer characteristics of ammonia thermosyhpons at shallow geothermal temperature,” Int. J. Heat Mass Transf., vol. 136, pp. 1147–1159, Jun. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.080.
  • X. Wang, Y. Zhu, and Y. Wang, “Development of pressure-based phase change model for CFD modelling of heat pipes,” Int. J. Heat Mass Transf., vol. 145, pp. 118763, Dec. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118763.
  • Y. Kim, J. Choi, S. Kim, and Y. Zhang, “Effects of mass transfer time relaxation parameters on condensation in a thermosyphon,” J. Mech. Sci. Technol., vol. 29, no. 12, pp. 5497–5505, Dec. 2015. DOI: 10.1007/s12206-015-1151-5.
  • K. Kafeel and A. Turan, “Simulation of the response of a thermosyphon under pulsed heat input conditions,” Int. J. Therm. Sci., vol. 80, pp. 33–40, Jun. 2014. DOI: 10.1016/j.ijthermalsci.2014.01.020.
  • Z. Xu, Y. Zhang, B. Li, C.-C. Wang, and Y. Li, “The influences of the inclination angle and evaporator wettability on the heat performance of a thermosyphon by simulation and experiment,” Int. J. Heat Mass Transf., vol. 116, pp. 675–684, Jan. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.028.
  • Z. Xu, Y. Zhang, B. Li, C.-C. Wang, and Q. Ma, “Heat performances of a thermosyphon as affected by evaporator wettability and filling ratio,” Appl. Therm. Eng., vol. 129, pp. 665–673, Jan. 2018. DOI: 10.1016/j.applthermaleng.2017.10.073.
  • H. Liu, J. Tang, L. Sun, Z. Mo, and G. Xie, “An assessment and analysis of phase change models for the simulation of vapor bubble condensation,” Int. J. Heat Mass Transf., vol. 157, pp. 119924, Aug. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119924.
  • G. Chen, T. Nie, and X. Yan, “An explicit expression of the empirical factor in a widely used phase change model,” Int. J. Heat Mass Transf., vol. 150, pp. 119279, Apr. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119279.
  • Z. Tan, Z. Cao, W. Chu, and Q. Wang, “Dynamic correction on condensation time relaxation coefficient of Lee model based on mass conservation mechanism,” Int. Commun. Heat Mass Transf., vol. 142, pp. 106621, Mar. 2023. DOI: 10.1016/j.icheatmasstransfer.2023.106621.
  • A. Brusly Solomon, A. Mathew, K. Ramachandran, B. C. Pillai, and V. K. Karthikeyan, “Thermal performance of anodized two phase closed thermosyphon (TPCT),” Exp. Therm. Fluid Sci., vol. 48, pp. 49–57, Jul. 2013. DOI: 10.1016/j.expthermflusci.2013.02.007.
  • M. L. Huber, E. W. Lemmon, and M. D. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamics and Transport Properties-REFPROP, in: Vol. Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, 2013.
  • S.-D. Fertahi, T. Bouhal, Y. Agrouaz, T. Kousksou, T. El Rhafiki, and Y. Zeraouli, “Performance optimization of a two-phase closed thermosyphon through CFD numerical simulations,” Appl. Therm. Eng., vol. 128, pp. 551–563, Jan. 2018. DOI: 10.1016/j.applthermaleng.2017.09.049.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, Jun. 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • R. Marek and J. Straub, “Analysis of the evaporation coefficient and the condensation coefficient of water,” Int. J. Heat Mass Transf., vol. 44, no. 1, pp. 39–53, Jan. 2001. DOI: 10.1016/S0017-9310(00)00086-7.
  • F. Dong, Z. Wang, T. Cao, and J. Ni, “A novel interphase mass transfer model toward the VOF simulation of subcooled flow boiling,” Numer. Heat Transf., Part A, vol. 76, no. 4, pp. 220–231, Aug. 2019. DOI: 10.1080/10407782.2019.1627838.
  • Y. Lin et al., “A numerical study of slug bubble growth during flow boiling in a diverging microchannel,” Numer. Heat Transf., Part A, vol. 80, no. 7, pp. 356–367, Oct. 2021. DOI: 10.1080/10407782.2021.1947093.