Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
41
Views
4
CrossRef citations to date
0
Altmetric
Articles

Investigation of the effects of various nanoparticle morphologies on mass and heat transport in SiO2-H2O unsteady magnetohydrodynamic nanofluid flow through a stretched cylinder

, , ORCID Icon &
Pages 1130-1145 | Received 27 Feb 2023, Accepted 01 Sep 2023, Published online: 06 Oct 2023

References

  • L. J. Crane, “Flow past a stretching plate,” J. Appl. Math. Phys. (ZAMP), vol. 21, no. 4, pp. 645–647, Jul. 1970. DOI: 10.1007/BF01587695.
  • J. Ahmed, A. Shahzad, M. Khan and R. Ali, “A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet,” AIP Adv., vol. 5, no. 11, pp. 117117, Nov. 2015. DOI: 10.1063/1.4935571.
  • W. Azeem Khan, “Impact of time-dependent heat and mass transfer phenomenon for magnetized Sutterby nanofluid flow,” Waves Random Complex Media, vol. 32, no. 6, pp. 1–15, 2022. DOI: 10.1080/17455030.2022.2140857.
  • U. Hayat, R. Ali, S. Shaiq and A. Shahzad, “A numerical study on thin film flow and heat transfer enhancement for copper nanoparticles dispersed in ethylene glycol,” Rev. Adv. Mater. Sci., vol. 62, no. 1, pp. 20220320, 2023. DOI: 10.1515/rams-2022-0320.
  • J. Prakash, R. Balaji, D. Tripathi, A. K. Tiwari and R. Sharma, “Composite nanofluids flow driven by electroosmosis through squeezing parallel plates in presence of magnetic fields,” In Advancements in Nanotechnology for Energy and Environment. Springer, Singapore, 2022, pp. 273–293. DOI: 10.1007/978-981-19-5201-2_14.
  • H. Yang, et al., “Thermal inspection for viscous dissipation slip flow of hybrid nanofluid (TiO2–Al2O3/C2H6O2) using cylinder, platelet and blade shape features,” Sci. Rep., vol. 13, no. 1, pp. 8316, 2023. DOI: 10.1038/s41598-023-34640-8.
  • O. E. Medina, C. Olmos, S. H. Lopera, F. B. Cortés and C. A. J. E. Franco, “Nanotechnology applied to thermal enhanced oil recovery processes: a review,” Energies, vol. 12, no. 24, pp. 4671, Dec., 2019. DOI: 10.3390/en12244671.
  • R. Gugulothu and N. J. H. T. Sanke, “Effect of helical baffles and water‐based Al2O3, CuO, and SiO2 nanoparticles in the enhancement of thermal performance for shell and tube heat exchanger,” Heat Transfer, vol. 51, no. 5, pp. 3768–3793, Jul. 2022. DOI: 10.1002/htj.22474.
  • V. Thakore, F. Ren, H. Wang, J.-A. J. Wang and Y. Polsky, “High Temperature, High Pressure Stability of Aqueous Foams for Potential Application in Enhanced Geothermal System (EGS),” Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2022.
  • J. Alsarraf, A. A. Alnaqi and A. A. A. A. Al-Rashed, “Effect of nanoparticles shape on the cooling process of a lithium ion battery in geometry with capillary channels in the presence of phase change material,” J. Energy Storage, vol. 48, pp. 103998, Apr. 2022. DOI: 10.1016/j.est.2022.103998.
  • J. Akram, N. S. Akbar and D. Tripathi, “Comparative study on ethylene glycol based Ag-Al2O3 and Al2O3 nanofluids flow driven by electroosmotic and peristaltic pumping: a nano-coolant for radiators,” Phys. Scr., vol. 95, no. 11, pp. 115208, 2020. DOI: 10.1088/1402-4896/abbd6b.
  • S. Camara and A. B. Sulin, “Study of a double-acting solar collector for use in the absorption cooling system in hot regions,” Thermal Sci. Eng. Prog., vol. 31, pp. 101286, Jun. 2022. DOI: 10.1016/j.tsep.2022.101286.
  • M. Ma, M. Xie and Q. Ai, “Simulation on influences of Al2O3 nanofluids as coolant for nuclear power plant based on modified empirical formula of nanofluids thermal properties at high temperature and high pressure,” Energy Sources A, vol. 44, no. 1, pp. 454–468, Mar. 2022. DOI: 10.1080/15567036.2022.2046213.
  • S. Shaiq, E. N. Maraj and A. Shahzad, “An unsteady instigated induced magnetic field’s influence on the axisymmetric stagnation point flow of various shaped copper and silver nanomaterials submerged in ethylene glycol over an unsteady radial stretching sheet,” Numer. Heat Transfer Part A Appl., pp. 1–23, 2023. DOI: 10.1080/10407782.2023.2193351.
  • W. A. Khan, “Dynamics of gyrotactic microorganisms for modified Eyring Powell nanofluid flow with bioconvection and nonlinear radiation aspects,” Waves Random Complex Media, pp. 1–11, 2023. DOI: 10.1080/17455030.2023.2168086.
  • M. Irfan, W. A. Khan, A. A. Pasha, M. I. Alam, N. Islam and M. Zubair, “Significance of non-Fourier heat flux on ferromagnetic Powell-Eyring fluid subject to cubic autocatalysis kind of chemical reaction,” Int. Commun. Heat Mass Transfer, vol. 138, pp. 106374, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106374.
  • J. Akram, N. S. Akbar and D. Tripathi, “Thermal analysis on MHD flow of ethylene glycol-based BNNTs nanofluids via peristaltically induced electroosmotic pumping in a curved microchannel,” Arab. J. Sci. Eng., vol. 47, no. 6, pp. 7487–7503, 2022. DOI: 10.1007/s13369-021-06173-7.
  • D. Tripathi, J. Prakash, M. Gnaneswara Reddy and R. Kumar, “Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel,” Indian J. Phys., vol. 95, no. 11, pp. 2411–2421, 2021. DOI: 10.1007/s12648-020-01906-0.
  • S. U. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab (ANL), Argonne, IL (United States), 1995.
  • W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transfer, vol. 53, no. 11-12, pp. 2477–2483, May. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.032.
  • K. Logesh, V. Ramesh, P. B. Thilak Kumar, P. Vijaya Kumar and B. Akash, “Preparation and property studies of SiO2/H2O nanofluid,” Mater. Today: Proc., vol. 18, pp. 4816–4820, Jan. 2019. DOI: 10.1016/j.matpr.2019.07.470.
  • Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu, “Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe,” Int. J. Heat Mass Transfer, vol. 50, no. 11–12, pp. 2272–2281, Jun., 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.10.024.
  • D. Tripathi, J. Prakash and O. A. Bég, “Peristaltic pumping of hybrid nanofluids through an asymmetric microchannel in the presence of electromagnetic fields,” J. Thermal Sci. Eng. Appl., 2020.
  • I. Ullah, “Heat transfer enhancement in Marangoni convection and nonlinear radiative flow of gasoline oil conveying Boehmite alumina and aluminum alloy nanoparticles,” Int. Commun. Heat Mass Transfer, vol. 132, pp. 105920, Mar. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105920.
  • S. Shaiq and E. N. Maraj, “Role of the induced magnetic field on dispersed CNTs in propylene glycol transportation toward a curved surface,” Arab. J. Sci. Eng., vol. 44, no. 9, pp. 7515–7528, Sep. 2019. DOI: 10.1007/s13369-019-03828-4.
  • T. Naseem, U. Nazir, M. Sohail, H. Alrabaiah, E.-S. M. Sherif and C. Park, “Numerical exploration of thermal transport in water-based nanoparticles: a computational strategy,” Case Stud. Thermal Eng., vol. 27, pp. 101334, Oct. 2021. DOI: 10.1016/j.csite.2021.101334.
  • W. A. Khan, et al., “Impact of nanoparticles and radiation phenomenon on viscoelastic fluid,” Int. J. Mod. Phys. B, vol. 36, no. 05, pp. 2250049, 2022. DOI: 10.1142/S0217979222500497.
  • S. Ahmad, A. Anjum, S. Sheriff, S. Saleem and M. Farooq, “Heat transport performance of hydromagnetic hybrid nanofluid under the slip regime,” Ricerche Mat., pp. 1-15, Apr. 2022. DOI: 10.1007/s11587-022-00690-9.
  • W. Khan, Z. Arshad, A. Hobiny, S. Saleem, A. Al-Zubaidi and M. Irfan, “Impact of magnetized radiative flow of sutterby nanofluid subjected to convectively heated wedge,” Int. J. Mod. Phys. B, vol. 36, no. 16, pp. 2250079, 2022. DOI: 10.1142/S0217979222500795.
  • J. Akram, N. S. Akbar and D. Tripathi, “A theoretical investigation on the heat transfer ability of water-based hybrid (Ag–Au) nanofluids and Ag nanofluids flow driven by electroosmotic pumping through a microchannel,” Arab. J. Sci. Eng., vol. 46, no. 3, pp. 2911–2927, 2021. DOI: 10.1007/s13369-020-05265-0.
  • N. Anjum, W. A. Khan, A. Hobiny, M. Azam, M. Waqas and M. Irfan, “Numerical analysis for thermal performance of modified Eyring Powell nanofluid flow subject to activation energy and bioconvection dynamic,” Case Stud. Thermal Eng., vol. 39, pp. 102427, 2022. DOI: 10.1016/j.csite.2022.102427.
  • J. Prakash, A. Sharma and D. Tripathi, “Convective heat transfer and double diffusive convection in ionic nanofluids flow driven by peristalsis and electromagnetohydrodynamics,” Pramana – J. Phys., vol. 94, no. 1, pp. 4, 2020. DOI: 10.1007/s12043-019-1873-5.
  • W. A. Khan, M. Waqas, W. Chammam, Z. Asghar, U. A. Nisar and S. Z. Abbas, “Evaluating the characteristics of magnetic dipole for shear-thinning Williamson nanofluid with thermal radiation,” Comput. Methods Programs Biomed., vol. 191, pp. 105396, 2020. DOI: 10.1016/j.cmpb.2020.105396.
  • N. S. Akbar, A. B. Huda, M. B. Habib and D. Tripathi, “Nanoparticles shape effects on peristaltic transport of nanofluids in presence of magnetohydrodynamics,” Microsyst. Technol., vol. 25, no. 1, pp. 283–294, 2019. DOI: 10.1007/s00542-018-3963-6.
  • Z. Elahi, M. T. Iqbal and A. Shahzad, “Numerical simulation of heat transfer development of nanofluids in a thin film over a stretching surface,” Braz. J. Phys., vol. 52, no. 2, pp. 36, Jan. 2022. DOI: 10.1007/s13538-021-01023-1.
  • N. A. Zainal, R. Nazar, K. Naganthran and I. Pop, “Unsteady MHD hybrid nanofluid flow towards a horizontal cylinder,” Int. Commun. Heat Mass Transfer, vol. 134, pp. 106020, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106020.
  • R. Ali, A. Shahzad, K. Us Saher, Z. Elahi and T. Abbas, “The thin film flow of Al2O3 nanofluid particle over an unsteady stretching surface,” Case Stud. Thermal Eng., vol. 29, pp. 101695, Jan., 2022. DOI: 10.1016/j.csite.2021.101695.
  • T. Hayat and S. Nadeem, “Flow of 3D Eyring-Powell fluid by utilizing Cattaneo-Christov heat flux model and chemical processes over an exponentially stretching surface,” Results Phys., vol. 8, pp. 397–403, Mar. 2018. DOI: 10.1016/j.rinp.2017.12.038.
  • S. Nadeem, S. Ahmad and N. Muhammad, “Cattaneo-Christov flux in the flow of a viscoelastic fluid in the presence of Newtonian heating,” J. Mol. Liq., vol. 237, pp. 180–184, Jul. 2017. DOI: 10.1016/j.molliq.2017.04.080.
  • W. A. Khan, M. Waqas, S. Kadry, Z. Asghar, S. Z. Abbas and M. Irfan, “On the evaluation of stratification based entropy optimized hydromagnetic flow featuring dissipation aspect and Robin conditions,” Comput. Methods Programs Biomed., vol. 190, pp. 105347, 2020. DOI: 10.1016/j.cmpb.2020.105347.
  • J. Prakash, D. Tripathi and O. A. Bég, “Comparative study of hybrid nanofluids in microchannel slip flow induced by electroosmosis and peristalsis,” Appl. Nanosci., vol. 10, no. 5, pp. 1693–1706, 2020. DOI: 10.1007/s13204-020-01286-1.
  • W. A. Khan, N. Anjum, M. Waqas, S. Z. Abbas, M. Irfan and T. Muhammad, “Impact of stratification phenomena on a nonlinear radiative flow of sutterby nanofluid,” J. Mater. Res. Technol., vol. 15, pp. 306–314, 2021. DOI: 10.1016/j.jmrt.2021.08.011.
  • J. Prakash, E. P. Siva, D. Tripathi and M. Kothandapani, “Nanofluids flow driven by peristaltic pumping in occurrence of magnetohydrodynamics and thermal radiation,” Mater. Sci. Semicond. Process., vol. 100, pp. 290–300, 2019. DOI: 10.1016/j.mssp.2019.05.017.
  • W. A. Khan, H. Sun, M. Shahzad, M. Ali, F. Sultan and M. Irfan, “Importance of heat generation in chemically reactive flow subjected to convectively heated surface,” Indian J. Phys., vol. 95, no. 1, pp. 89–97, 2021. DOI: 10.1007/s12648-019-01678-2.
  • A. Sharma, D. Tripathi, R. K. Sharma and A. K. Tiwari, “Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids,” Physica A, vol. 535, pp. 122148, 2019. DOI: 10.1016/j.physa.2019.122148.
  • W. A. Khan, M. Ali, M. Irfan, M. Khan, M. Shahzad and F. Sultan, “A rheological analysis of nanofluid subjected to melting heat transport characteristics,” Appl. Nanosci., vol. 10, no. 8, pp. 3161–3170, 2020. DOI: 10.1007/s13204-019-01067-5.
  • J. Akram, N. S. Akbar and D. Tripathi, “Numerical simulation of electrokinetically driven peristaltic pumping of silver-water nanofluids in an asymmetric microchannel,” Chin. J. Phys., vol. 68, pp. 745–763, 2020. DOI: 10.1016/j.cjph.2020.10.015.
  • W. A. Khan, M. Ali, M. Shahzad, F. Sultan, M. Irfan and Z. Asghar, “A note on activation energy and magnetic dipole aspects for Cross nanofluid subjected to cylindrical surface,” Appl. Nanosci., vol. 10, no. 8, pp. 3235–3244, 2020. DOI: 10.1007/s13204-019-01220-0.
  • M. Waqas, W. A. Khan, A. A. Pasha, N. Islam and M. M. Rahman, “Dynamics of bioconvective Casson nanoliquid from a moving surface capturing gyrotactic microorganisms, magnetohydrodynamics and stratifications,” Thermal Sci. Eng. Progress, vol. 36, pp. 101492, 2022. DOI: 10.1016/j.tsep.2022.101492.
  • Z. Hussain and W. Azeem Khan, “Impact of thermal-solutal stratifications and activation energy aspects on time-dependent polymer nanoliquid,” Waves Random Complex Media, pp. 1–11, 2022. DOI: 10.1080/17455030.2022.2128229.
  • N. S. Omar, N. Nachok and N. M. Arifin, “Stagnation point flow over a stretching or shrinking cylinder in a copper-water nanofluid,” Indian J. Sci. Technol., vol. 8, no. 31, pp. 1-7, 2015. DOI: 10.17485/ijst/2015/v8i31/85405(2015).
  • M. N. I. Johari, I. A. Zakaria, W. H. Azmi and W. A. N. W. Mohamed, “Green bio glycol Al2O3-SiO2 hybrid nanofluids for PEMFC: the thermal-electrical-hydraulic perspectives,” Int. Commun. Heat Mass Transfer, vol. 131, pp. 105870, Feb. 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105870.
  • B. Ullah, U. Khan, H. A. Wahab, I. Khan, D. Baleanu and K. S. Nisar, “Comparative thermal performance in SiO2-H2O and (MoS2-SiO2)-H2O over a curved stretching semi-infinite region: a numerical investigation,” Comput. Mater. Contin., vol. 66, no. 1, pp. 947–960, 2020. DOI: 10.32604/cmc.2020.012430.
  • M. A. Fikri, et al., “Characteristic of TiO2-SiO2 nanofluid with water/ethylene glycol mixture for solar application,” ARFMTS, vol. 81, no. 2, pp. 1–13, 2021. DOI: 10.37934/arfmts.81.2.113.
  • S. F. A. Talib, et al., “Thermophysical properties of silicon dioxide (SiO2) in ethylene glycol/water mixture for proton exchange membrane fuel cell cooling application,” Energy Procedia, vol. 79, pp. 366–371, Nov. 2015. DOI: 10.1016/j.egypro.2015.11.504.
  • S. Bibi, Z. Elahi and A. Shahzad, “Impacts of different shapes of nanoparticles on SiO2 nanofluid flow and heat transfer in a liquid film over a stretching sheet,” Phys. Scr., vol. 95, no. 11, pp. 115217, Oct. 2020. DOI: 10.1088/1402-4896/abbc9d.
  • J. Ahmed, A. Shahzad, A. Farooq, M. Kamran, S. Ud-Din Khan and S. Ud-Din Khan, “Thermal analysis in swirling flow of titanium dioxide–aluminum oxide water hybrid nanofluid over a rotating cylinder,” J. Thermal Anal. Calorim., vol. 144, no. 6, pp. 2175–2185, Jun. 2021. DOI: 10.1007/s10973-020-10190-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.