Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
89
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical inspection of (3 + 1)- perturbed Zakharov–Kuznetsov equation via fractional variational iteration method with Caputo fractional derivative

, , , , , , ORCID Icon & show all
Pages 1162-1177 | Received 12 May 2023, Accepted 30 Jul 2023, Published online: 29 Sep 2023

References

  • H. G. Sun, L. J. Jiang, and Y. Xia, “LBM simulation of non-Newtonian fluid seepage based on fractional-derivative constitutive model,” J. Petro. Sci Eng, vol. 213, no. 1, pp. 110378, 2022. DOI: 10.1016/j.petrol.2022.110378.
  • L. Bingqing, et al., “Quantifying fate and transport of nitrate in saturated soil systems using fractional derivative model,” Appl. Math. Model, vol. 81, pp. 279–295, 2020. DOI: 10.1016/j.apm.2019.12.005.
  • L. R. Evangelista, and E. K. Lenzi, An Introduction to Anomalous Diffusion and Relaxation. Switzerland: Springer Nature, 2023.
  • S. U. Khan, et al., “Inspecting heat transport phenomenon in the flow of non-Newtonian fluid in the presence of Newtonian heating and inclined slip: fractional derivative framework,” Waves Rand Comp Media, pp. 1–12, 2023. DOI: 10.1080/17455030.2022.2160029.
  • M. M. Kaleem, et al., “Effects of natural convection flow of fractional Maxwell hybrid nanofluid by finite difference method,” Waves Rand Comp Media, pp. 1–16, 2023. DOI: 10.1080/17455030.2022.2164381.
  • Z. Raizah, A. Khan, S. H. Awan, A. Saeed, A. M. Galal, and W. Weera, “Time-dependent fractional second-grade fluid flow through a channel influenced by unsteady motion of a bottom plate,” MATH, vol. 8, no. 1, pp. 423–446, 2023. DOI: 10.3934/math.2023020.
  • R. Aziz, F. Jarad, M. B. Riaz, and Z. H. Shah, “Generalized Mittag-Leffler Kernel form solutions of free convection heat and mass transfer flow of Maxwell fluid with Newtonian Heating: prabhakar fractional derivative approach,” Fractal Fract., vol. 6, no. 2, pp. 98, 2022. DOI: 10.3390/fractalfract6020098.
  • J. Gowda, “An investigation of fractional one-dimensional groundwater recharge by spreading using an efficient analytical technique,” Fractal Fractional, vol. 6, no. 5, pp. 249, 2022. DOI: 10.3390/fractalfract6050249.
  • A. Atangana, Mathematical Analysis of Groundwater Flow Models. Boca Raton, Florida: CRC Press, 2022.
  • K. Sayevand, J. T. Machado, and I. Masti, “Analysis of dual Bernstein operators in the solution of the fractional convection–diffusion equation arising in underground water pollution,” J. Comp. Appl. Mathe., vol. 399, pp. 113729, 2022. DOI: 10.1016/j.cam.2021.113729.
  • C. Lokendra, “On anomalous diffusion of devices in molecular communication systems,” IEEE, 2022. DOI: 10.1109/TMBMC.2022.3181506.
  • L. R., Evangelista, and E. K. Lenzi, An Introduction to Anomalous Diffusion and Relaxation. Switzerland: Springer Nature, 2023.
  • A. N., Rangaig, G. Pido, and C. P. Dulpina, “Solution of fractional Langevin equation with exponential kernel and its anomalous relaxation function,” In Appl of Frac Calc to Mode in Dynamics and Chaos. Boca Raton, Florida: Chapman and Hall/CRC, 2023, pp. 475–486. ISBN: 9781003006244.
  • G. S. Matias, et al., “A model of distributed parameters for non-Fickian diffusion in grain drying based on the fractional calculus approach,” Biosystems Engin., vol. 226, pp. 16–26, 2023. DOI: 10.1016/j.biosystemseng.2022.12.004.
  • A. Raza, et al., “Prabhakar-fractional simulations for the exact solution of Casson-type fluid with experiencing the effects of magneto-hydrodynamics and sinusoidal thermal conditions,” Int. J. Mod. Phys. B, vol. 37, no. 1, pp. 2350010, 2023. DOI: 10.1142/S0217979223500108.
  • A. Kinda, et al., “Local and global mild solution for gravitational effects of the time fractional Navier–Stokes equations,” Fractal Fractional, vol. 7, no. 1, pp. 26, 2023. DOI: 10.3390/fractalfract7010026.
  • M. Khan, et al., “Application of fractional derivatives in a Darcy medium natural convection flow of MHD nanofluid,” Ain Shams Engineering J., vol. 14, no. 9, pp. 102093, 2023. DOI: 10.1016/j.asej.2022.102093.
  • M. Alqhtani, et al., “Analysis of the fractional-order local Poisson equation in fractal porous media,” Symmetry, vol. 14, no. 7, pp. 1323, 2022. DOI: 10.3390/sym14071323.
  • Li, et al., “Applications of fractional derivatives in MHD free-convective oscillating flow of a blood based CNTs nanofluid across a porous medium,” Proc Inst Mech Eng, Part, pp. 09544089221082489, 2022. DOI: 10.1177/095440892210824.
  • S. N. Chandrasekaran, S. P. Näsholm, and S. Holm, “Wave equations for porous media described by the Biot model,” J. Acoust. Soc. Am., vol. 151, no. 4, pp. 2576–2586, 2022. DOI: 10.1121/10.0010164.
  • S. Kumar, “Fractional fuzzy model of advection-reaction-diffusion equation with application in porous media,” J. Por. Media, vol. 25, no. 7, pp. 15–33, 2022. DOI: 10.1615/JPorMedia.2021034897.
  • N. Sene, “Second-grade fluid with Newtonian heating under Caputo fractional derivative: analytical investigations via Laplace transforms,” mmnsa, vol. 2, no. 1, pp. 13–25, 2022. DOI: 10.53391/mmnsa.2022.01.002.
  • N. Sene, “Analytical solutions of a class of fluids models with the Caputo fractional derivative,” Fractal Fract, vol. 6, no. 1, pp. 35, 2022. DOI: 10.3390/fractalfract6010035.
  • M. Yavuz, N. Sene, and M. Yıldız, “Analysis of the influences of parameters in the fractional second-grade fluid dynamics,” Mathematics, vol. 10, no. 7, pp. 1125, 2022. DOI: 10.3390/math10071125.
  • M. I. Khan, et al., “Fractional simulations for thermal flow of hybrid nanofluid with aluminum oxide and titanium oxide nanoparticles with water and blood base fluids,” Nanotechnol. Rev., vol. 11, no. 1, pp. 2757–2767, 2022. DOI: 10.1515/ntrev-2022-0156.
  • M. S. Osman, “New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics,” Pramana – J. Phys., vol. 93, no. 2, pp. 1–10, 2019. DOI: 10.1007/s12043-019-1785-4.
  • S. Aman, Q. A. Mdallal, and I. Khan, “Heat transfer and second order slip effect on MHD flow of fractional Maxwell fluid in a porous medium,” J. King Saud University-Sci., vol. 32, no. 1, pp. 450–458, 2020. DOI: 10.1016/j.jksus.2018.07.007.
  • K. A. Abro, A. Siyal, and A. Atangana, “Thermal stratification of rotational second-grade fluid through fractional differential operators,” J. Therm. Anal. Calorim., vol. 143, no. 5, pp. 3667–3676, 2021. DOI: 10.1007/s10973-020-09312-8.
  • A. Qurashi, “New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method,” AIMS Mathematics, vol. 7, no. 2, pp. 2044–2060, 2022. DOI: 10.3934/math.2022117.
  • P. Sunthrayuth, et al., “Solving fractional-order diffusion equations in a plasma and fluids via a novel transform,” J. Function Spaces, vol. 2022, pp. 1–19, 2022. DOI: 10.3934/math.2022117.
  • B. Jalili, P. Jalil, A. Shateri, and D. D. Ganji, “Rigid plate submerged in a Newtonian fluid and fractional differential equation problems via Caputo fractional derivative,” PDE Appl Maths, vol. 6, pp. 100452, 2022. DOI: 10.1016/j.padiff.2022.100452.
  • M. Qayyum, et al., “Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method,” Sci Rep, vol. 12, no. 1, pp. 18406, 2022. DOI: 10.1038/s41598-022-23239-0.
  • H. P. Jani and T. R. Singh, “Study on fractional order atmospheric internal waves model by Aboodh transform homotopy perturbation method,” Int. J. Nonl Anal Appl, vol. 13, no. 2, pp. 2831–2847, 2022. DOI: 10.22075/IJNAA.2022.27566.3651.
  • N. A. Shah, et al., “Analytical investigation of fractional-order Korteweg–De-Vries-type equations under Atangana–Baleanu–Caputo Operator: modeling nonlinear waves in a plasma and fluid,” Symmetry, vol. 14, no. 4, pp. 739, 2022. DOI: 10.3390/sym14040739.
  • P. Sunthrayuth, et al., “On the solution of fractional Biswas–Milovic model via analytical method,” Symmetry, vol. 15, no. 1, pp. 210, 2023. DOI: 10.3390/sym15010210.
  • M. J. Du, “A specific method for solving fractional delay differential equation via fraction Taylor’s series,” Math. Prob. Eng., vol. 2022, pp. 1–6, 2022. DOI: 10.1155/2022/4044039.
  • Y. Jiang, H. Sun, Y. Bai, and Y. Zhang, “MHD flow, radiation heat and mass transfer of fractional Burgers’ fluid in porous medium with chemical reaction,” Comp & Maths Appl., vol. 115, pp. 68–79, 2022. DOI: 10.1016/j.camwa.2022.01.014.
  • H. Hanif, “A computational approach for boundary layer flow and heat transfer of fractional Maxwell fluid,” Math. Comp. Simu., vol. 191, pp. 1–13, 2022. DOI: 10.1016/j.matcom.2021.07.024.
  • J. S. Santos, A. E. Lazzaretti, D. R. Pipa, and M. J. Silva, “Two-phase flow pattern classification based on void fraction time series and machine learning,” Flow Meas Instr., vol. 83, pp. 102084, 2022. DOI: 10.1016/j.flowmeasinst.2021.102084.
  • M. Mozafarifard, et al., “Numerical study of anomalous heat conduction in absorber plate of a solar collector using time-fractional single-phase-lag model,” Case Stud Therm Eng., vol. 34, pp. 102071, 2022. DOI: 10.1016/j.csite.2022.102071.
  • A. Kurt, M. Şenol, O. Tasbozan, and M. Chand, “Two reliable methods for the solution of fractional coupled Burgers’ equation arising as a model of polydispersive sedimentation,” Appl. Math. Nonl. Scie., vol. 4, no. 2, pp. 523–534, 2019. DOI: 10.2478/AMNS.2019.2.00049.
  • H. Durur, O. Taşbozan, A. Kurt, and M. Şenol, “New wave solutions of time fractional Kadomtsev-Petviashvili equation arising in the evolution of nonlinear long waves of small amplitude,” Erzincan Uni J. Scie Tech., vol. 12, no. 2, pp. 807–815, 2019. DOI: 10.18185/erzifbed.488506.
  • M. Senol, O. Tasbozan, and A. Kurt, “Comparison of two reliable methods to solve fractional Rosenau‐Hyman equation,” Math Methods App. Sci., vol. 44, no. 10, pp. 7904–7914, 2021. DOI: 10.1002/mma.5497.
  • M. Şenol, M. Alquran, and H. D. Kasmaei, “On the comparison of perturbation-iteration algorithm and residual power series method to solve fractional Zakharov-Kuznetsov equation,” Results Phys., vol. 9, pp. 321–327, 2018. DOI: 10.1016/j.rinp.2018.02.056.
  • D. Baleanu, F. A. Ghassabzade, J. J. Nieto, and A. Jajarmi, “On a new and generalized fractional model for a real cholera outbreak,” Alex. Eng. J., vol. 61, no. 11, pp. 9175–9186, 2022. DOI: 10.1016/j.aej.2022.02.054.
  • L. Akinyemi, M. Şenol and S. N. Huseen, “Modified homotopy methods for generalized fractional perturbed Zakharov–Kuznetsov equation in dusty plasma,” Adva Diff Equ, vol. 1, pp. 1–27, 2021. DOI: 10.1186/s13662-020-03208-5.
  • R. Y. Molliq, M. S. M. Noorani, I. Hashim, and R. R. Ahmad, “Approximate solutions of fractional Zakharov–Kuznetsov equations by VIM,” J. Comp. Appl Maths, vol. 233, no. 2, pp. 103–108, 2009. DOI: 10.1016/j.cam.2009.03.010.
  • A. Prakash, M. Goyal, and S. Gupta, “Fractional variational iteration method for solving time-fractional Newell-Whitehead-Segel equation,” Nonlinear Engin., vol. 8, no. 1, pp. 164–171, 2019. DOI: 10.1515/nleng-2018-0001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.