Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
61
Views
9
CrossRef citations to date
0
Altmetric
Articles

Lorentz force influenced entropy generation in couple stress squeezed hybrid-nanofluid flow: Application to cardiovascular hemodynamics

, &
Pages 1254-1286 | Received 07 Jun 2023, Accepted 18 Sep 2023, Published online: 08 Oct 2023

References

  • A. Lawal and D. M. Kalyon, “Squeezing flow of viscoplastic fluids subject to wall slip,” Polym. Eng. Sci., vol. 38, no. 11, pp. 1793–1804, Nov. 1998. DOI: 10.1002/pen.10349.
  • C. Xu, L. Yuan, Y. Xu and W. Hang, “Squeeze flow of interstitial Herschel-Bulkley fluid between two rigid spheres,” Particuology, vol. 8, no. 4, pp. 360–364, Aug. 2010. DOI: 10.1016/j.partic.2009.07.008.
  • J. Engmann, C. Servais and A. S. Burbidge, “Squeeze flow theory and applications to rheometry: a review,” J. Non-Newtonian Fluid Mech., vol. 132, no. 1–3, pp. 1–27, Dec. 2005. DOI: 10.1016/j.jnnfm.2005.08.007.
  • P. S. Gupta and A. S. Gupta, “Squeezing flow between parallel plates,” Wear, vol. 45, no. 2, pp. 177–185, Nov. 1977. DOI: 10.1016/0043-1648(77)90072-2.
  • D. C. Kuzma, “Fluid inertia effects in squeeze films,” Appl. Sci. Res., vol. 18, no. 1, pp. 15–20, Jan. 1968. DOI: 10.1007/BF00382330.
  • C. Y. Wang and L. T. Watson, “Squeezing of a viscous fluid between elliptic plates,” Appl. Sci. Res., vol. 35, no. 2–3, pp. 195–207, Mar. 1979. DOI: 10.1007/BF00382705.
  • R. Usha and R. Sridharan, “Arbitrary squeezing of a viscous fluid between elliptic plates,” Fluid Dyn. Res., vol. 18, no. 1, pp. 35–51, Jun. 1996. DOI: 10.1016/0169-5983(96)00002-0.
  • A. G. Petrov and I. S. Kharlamova, “The solutions of Navier–Stokes equations in squeezing flow between parallel plates,” Eur. J. Mech. B. Fluids, vol. 48, pp. 40–48, Nov-Dec. 2014. DOI: 10.1016/j.euromechflu.2014.04.004.
  • M. Mustafa, T. Hayat and S. Obaidat, “On heat and mass transfer in the unsteady squeezing flow between parallel plates,” Meccanica, vol. 47, no. 7, pp. 1581–1589, Jan. 2012. DOI: 10.1007/s11012-012-9536-3.
  • S. Ghosh, S. Mukhopadhyay and T. Hayat, “Couple stress effects on three dimensional flow of magnetite-water based nanofluid over an extended surface in presence of non-linear thermal radiation,” Int. J. Appl. Comput. Math., vol. 4, no. 1, pp. 1–18, Nov. 2017. DOI: 10.1007/s40819-017-0443-0.
  • S. Jangili, S. O. Adesanya, H. A. Ogunseye and R. Lebelo, “Couple stress fluid flow with variable properties: a second law analysis,” Math. Methods App. Sci., vol. 42, no. 1, pp. 85–98, Jan. 2019. DOI: 10.1002/mma.5325.
  • M. W. Ahmad, et al., “Darcy-Forchheimer MHD couple stress 3D nanofluid over an exponentially stretching sheet through Cattaneo-Christov convective heat flux with zero nanoparticles mass flux conditions,” Entropy, vol. 21, no. 9, pp. 867, Sep. 2019. DOI: 10.3390/e21090867.
  • H. Basha, G. J. Reddy and M. G. Reddy, “Chemically reactive species of time-dependent natural convection couple stress fluid flow past an isothermal vertical flat plate,” Can. J. Phys., vol. 97, no. 2, pp. 166–175, Feb. 2019. DOI: 10.1139/cjp-2018-0169.
  • A. Tassaddiq, et al., “Thin film flow of couple stress magneto-hydrodynamics nanofluid with convective heat over an inclined exponentially rotating stretched surface,” Coatings, vol. 10, no. 4, pp. 338, Apr. 2020. DOI: 10.3390/coatings10040338.
  • T. Gul, et al., “Magneto-hydrodynamic impact on Carreau thin film couple stress nanofluid flow over an unsteady stretching sheet,” Math. Prob. Eng., vol. 2021, pp. 1–10, Sep. 2021. DOI: 10.1155/2021/8003805.
  • M. Jawad, A. Khan and S. A. A. Shah, “Examination of couple stress hybrid nanoparticles (CuO-Cu/Blood) as a targeted drug carrier with magnetic effects through porous sheet,” Braz. J. Phys., vol. 51, no. 4, pp. 1096–1107, May. 2021. DOI: 10.1007/s13538-021-00930-7.
  • F. Awad, N. A. H. Haroun, P. Sibanda and M. Khumalo, “On couple stress effects on unsteady nanofluid flow over stretching surfaces with vanishing nanoparticle flux at the wall,” JAFM, vol. 9, no. 6, pp. 1937–1944, Jun. 2016. DOI: 10.18869/acadpub.jafm.68.235.24940.
  • V. K. Rajendrappa, H. B. Naganagowda, J. S. Kumar and R. B. Thimmaiah, “Combined effect of piezo-viscous dependency and non-Newtonian couple stresses in porous squeeze-film circular plate,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 51, pp. 158–168, Nov. 2018.
  • A. Felicita, B. J. Gireesha, B. Nagaraja, P. Venkatesh and M. R. Krishnamurthy, “Mixed convective flow of Casson nanofluid in the microchannel with the effect of couple stresses: irreversibility analysis,” Int. J. Modell. Simul., pp. 1–15, Jan. 2023. DOI: 10.1080/02286203.2022.2156974.
  • A. Felicita, P. Venkatesh, B. J. Gireesha, B. Nagaraja and K. M. Eshwarappa, “Compressed flow of hybridized nanofluid entwined between two rotating plates exposed to radiation,” j Nanofluids, vol. 10, no. 2, pp. 186–199, Jun. 2021. DOI: 10.1166/jon.2021.1780.
  • B. J. Gireesha, P. Venkatesh and A. Felicita, “Entropy scrutiny of couple stress nanoliquid flow with slip and convective conditions in an upright microchannel,” Phys. Scr., vol. 96, no. 4, pp. 045302–18, Feb. 2021. DOI: 10.1088/1402-4896/abde0e.
  • B. Nagaraja, A. P. Ajaykumar, A. Felicita, P. Kumar and N. G. Rudraswamy, “Non-Darcy Forchheimer flow of Casson-Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole,” Appl. Math. Mech., pp. e202300134, May. 2023. DOI: 10.1002/zamm.202300134.
  • A. Felicita, B. J. Gireesha and P. Venkatesh, “Magnetohydrodynamic flow of a micropolar nanofluid in association with Brownian motion and thermophoresis: irreversibility analysis,” Heat Trans., vol. 52, no. 2, pp. 2032–2055, Mar. 2023. DOI: 10.1002/htj.22773.
  • H. Basha, “Magnetized dissipative Soret and Dufour effects on thermally radiative Casson fluid flow over a stretching cylinder with Cattaneo–Christov heat and mass flux models,” Waves Random Complex Medium., vol. 33, pp. 1–29, May. 2023. DOI: 10.1080/17455030.2023.2206491.
  • A. Bejan, “Entropy generation minimization: the new thermodynamics of finite‐size devices and finite‐time processes,” J. Appl. Phys., vol. 79, no. 3, pp. 1191–1218, Feb. 1996. DOI: 10.1063/1.362674.
  • S. O. Adesanya and O. D. Makinde, “Entropy generation in couple stress fluid flow through porous channel with fluid slippage,” IJEX, vol. 15, no. 3, pp. 344–362, Nov. 2014. DOI: 10.1504/IJEX.2014.065711.
  • S. O. Adesanya and O. D. Makinde, “Effects of couple stresses on entropy generation rate in a porous channel with convective heating,” Comp. Appl. Math., vol. 34, no. 1, pp. 293–307, Feb. 2014. DOI: 10.3390/e15114589.
  • O. D. Makinde and A. S. Eegunjobi, “Entropy generation in a couple stress fluid flow through a vertical channel filled with saturated porous media,” Entropy, vol. 15, no. 12, pp. 4589–4606, Oct. 2013. DOI: 10.3390/e15114589.
  • A. Nilankush, “Magnetized hybrid nanofluid flow within a cube fitted with circular cylinder and its different thermal boundary conditions,” J. Magn. Magn. Mater., vol. 564, no. 2, pp. 170167, Dec. 2022. DOI: 10.1016/j.jmmm.2022.170167.
  • A. Nilankush, “On the hydrothermal behaviour and entropy analysis of buoyancy driven magnetohydrodynamic hybrid nanofluid flow within an octagonal enclosure fitted with fins: application to thermal energy storage,” J. Energy Storage, vol. 53, pp. 105198, Sep. 2022. DOI: 10.1016/j.est.2022.105198.
  • A. Nilankush, “Buoyancy driven magnetohydrodynamic hybrid nanofluid flow within a circular enclosure fitted with fins,” Int. Commun. Heat Mass Transfer, vol. 133, pp. 105980, Apr. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105980.
  • A. Nilankush, S. Maity and P. K. Kundu, “Entropy generation optimization of unsteady radiative hybrid nanofluid flow over a slippery spinning disk,” Proc. Inst. Mech. Eng. C, vol. 236, no. 11, pp. 6007–6024, Jan. 2022. DOI: 10.1177/09544062211065384.
  • A. Nilankush, “On the flow patterns and thermal control of radiative natural convective hybrid nanofluid flow inside a square enclosure having various shaped multiple heated obstacles,” Eur. Phys. J. Plus, vol. 136, pp. 889, Aug. 2021. DOI: 10.1140/epjp/s13360-021-01892-0.
  • F. Mabood, T. Yusuf and G. Bognar, “Features of entropy optimization on MHD couple stress nanofluid slip flow with melting heat transfer and nonlinear thermal radiation,” Sci. Rep., vol. 10, no. 1, pp. 19163, Nov. 2020. DOI: 10.1038/s41598-020-76133-y.
  • A. Riaz, et al., “Mathematical analysis of entropy generation in the flow of viscoelastic nanofluid through an annular region of two asymmetric annuli having flexible surfaces,” Coatings, vol. 10, no. 3, pp. 213, Feb. 2020. DOI: 10.3390/coatings10030213.
  • S. A. Hussein, “Numerical simulation for peristaltic transport of radiative and dissipative MHD Prandtl nanofluid through the vertical asymmetric channel in the presence of double diffusion convection,” Numer. Heat Transf. B Fundam., pp. 1–27, Jul. 2023. DOI: 10.1080/10407790.2023.2235886.
  • N. Kanimozhi, R. Vijayaragavan and B. R. Kumar, “Impacts of multiple slip on magnetohydrodynamic Williamson and Maxwell nanofluid over a stretching sheet saturated in a porous medium,” Heat Transf. B Fundam., pp. 1–17, Jul. 2023. DOI: 10.1080/10407790.2023.2235079.
  • N. Vijay and K. Sharma, “Entropy generation analysis in MHD hybrid nanofluid flow: effect of thermal radiation and chemical reaction,” Heat Transf. B Fundam., vol. 84, no. 1, pp. 66–82, Apr. 2023. DOI: 10.1080/10407790.2023.2186989.
  • Z. Abbas, A. U. Rehman, S. Khaliq and M. Y. Rafiq, “Flow dynamics of MHD hybrid nanofluid past a moving thin needle with a temporal stability test: a Galerkin method approach,” Heat Transf. B Fundam., vol. 84, no. 3, pp. 329–347, Apr. 2023. DOI: 10.1080/10407790.2023.2202882.
  • I. Sakthi, R. Das and B. A. P. Reddy, “Entropy generation for the MHD flow of a blood-based hybrid nanofluid by thermal radiation over converging and diverging channels,” Heat Transf. B Fundam., pp. 1–28, Jul. 2023. DOI: 10.1080/10407790.2023.2232540.
  • D. Srinivasacharya, N. Srinivasacharyulu and O. Odelu, “Flow of couple stress fluid between two parallel porous plates,” Acta Mech. Sin., vol. 28, no. 1, pp. 41–50, May. 2012. DOI: 10.1007/s10409-011-0523-z.
  • D. Srinivasacharya, N. Srinivasacharyulu and O. Odelu, “Flow and heat transfer of couple stress fluid in a porous channel with expanding and contracting walls,” Int. Commun. Heat Mass Transfer, vol. 36, no. 2, pp. 180–185, Feb. 2009. DOI: 10.1016/j.icheatmasstransfer.2008.10.005.
  • D. R. V. S. R. K. Sastry, N. N. Kumar, P. K. Kameswaran and S. Shaw, “Unsteady 3D micropolar nanofluid flow through a squeezing channel: application to cardiovascular disorders,” Indian J. Phys., vol. 96, pp. 1–14, Jan. 2021. DOI: 10.1007/s12648-020-01951-9.
  • T. Hayat, R. Sajjad, A. Alsaedi, T. Muhammad and R. Ellahi, “On squeezed flow of couple stress nanofluid between two parallel plates,” Results Phys., vol. 7, pp. 553–561, Jan. 2017. DOI: 10.1016/j.rinp.2016.12.038.
  • A. R. Hassan, “The entropy generation analysis of a reactive hydromagnetic couple stress fluid flow through a saturated porous channel,” Appl. Math. Comput., vol. 369, pp. 124843–124853, Mar. 2020. DOI: 10.1016/j.amc.2019.124843.
  • D. Srinivasacharya and I. Sreenath, “Unsteady bio convection in a squeezing flow of a couple-stress fluid through horizontal channel,” Int. J. Appl. Comput. Math., vol. 6, no. 2, pp. 1–16, Feb. 2020. DOI: 10.1007/s40819-020-0779-8.
  • S. Usha and N. B. Naduvinamani, “Magnetized impacts of Brownian motion and thermophoresis on unsteady squeezing flow of nanofluid between two parallel plates with chemical reaction and Joule heating,” Heat Trans. Asian Res., vol. 48, no. 8, pp. 4174–4202, Dec. 2019. DOI: 10.1002/htj.21587.
  • B. Bin-Mohsin, N. Ahmed, U. Khan, S. Tauseef Mohyud-Din, Adnan, “A bioconvection model for a squeezing flow of nanofluid between parallel plates in the presence of gyrotactic microorganisms,” Eur. Phys. J. Plus, vol. 132, pp. 1–12, Apr. 2017. DOI: 10.1140/epjp/i2017-11454-4.
  • F. Saba, et al., “Heat transfer enhancement by coupling of carbon nanotubes and SiO2 nanofluids: a numerical approach,” Processes, vol. 7, no. 12, pp. 937, Dec. 2019. DOI: 10.3390/pr7120937.
  • M. M. Bhatti, H. F. Oztop, R. Ellahi, I. E. Sarris and M. H. Doranehgard, “Insight into the investigation of diamond (C) and Silica (SiO2) nanoparticles suspended in water based hybrid nanofluid with application in solar collector,” J. Mol. Liq., vol. 357, pp. 119134, Jul. 2022. DOI: 10.1016/j.molliq.2022.119134.
  • M. Khan and A. Rasheed, “Slip velocity and temperature jump effects on molybdenum disulfide MoS2 and silicon oxide SiO2 hybrid nanofluid near irregular 3D surface,” Alexandria Eng. J., vol. 60, no. 1, pp. 1689–1701, Feb. 2021. DOI: 10.1016/j.aej.2020.11.019.
  • S. O. Kareem, S. O. Adesanya and U. E. Vincent, “Second law analysis for hydromagnetic couple stress fluid flow through a porous channel,” Alexandria Eng. J., vol. 55, no. 2, pp. 925–931, Jun. 2016. DOI: 10.1016/j.aej.2016.02.020.
  • S. Usha, N. B. Naduvinamani and H. Basha, “Effect of magnetized variable thermal conductivity on flow and heat transfer characteristics of unsteady Williamson fluid,” Nonlinear Eng., vol. 9, no. 1, pp. 338–351, Aug. 2020. DOI: 10.1515/nleng-2020-0020.
  • R. K. V. Muhammed, H. Basha, G. J. Reddy, S. Usha and O. A. Beg, “Influence of variable thermal conductivity and dissipation on magnetic Carreau fluid flow along a micro-cantilever sensor in a squeezing regime,” Waves Random Complex Media., vol. 33, pp. 1–30, Nov. 2022. DOI: 10.1080/17455030.2022.2139013.
  • S. Usha, N. B. Naduvinamani and H. Basha, “A generalized perspective of Fourier and Fick’s laws: magnetized effects of Cattaneo-Christov models on transient nanofluid flow between two parallel plates with Brownian motion and thermophoresis,” Nonlinear Eng., vol. 9, no. 1, pp. 201–222, Apr. 2020. DOI: 10.1515/nleng-2020-0009.
  • H. Basha, “A generalized perspective of magnetized radiative squeezed flow of viscous fluid between two parallel disks with suction and blowing,” Heat Trans., vol. 49, no. 4, pp. 2248–2281, Jun. 2020. DOI: 10.1002/htj.21719.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.