39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal radiation effect on the Maxwell graphene based nanofluid passing through a squeezing channel

ORCID Icon, , , ORCID Icon &
Received 09 Jun 2023, Accepted 27 Oct 2023, Published online: 21 Nov 2023

References

  • H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles: dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles,” Netsu Bussei, vol. 7, no. 4, pp. 227–233, 1993. DOI: 10.2963/jjtp.7.227.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, vol. 66, D. A. Siginer and H. P. Wang, Eds. New York: ASME, 1995, pp. 99–105.
  • J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett., vol. 78, no. 6, pp. 718–720, 2001. DOI: 10.1063/1.1341218.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • L. A. Lund et al., “Temporal stability analysis of magnetized hybrid nanofluid propagating through an unsteady shrinking sheet: partial slip conditions,” Comput. Mater. Contin., vol. 66, no. 2, pp. 1963–1975, 2021. DOI: 10.32604/cmc.2020.011976.
  • M. Ibrahim et al., “Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field,” Powder Technol., vol. 384, pp. 522–541, 2021. DOI: 10.1016/j.powtec.2021.01.077.
  • M. Izadi, M. Ghalambaz, and S. A. M. Mehryan, “Location impact of a pair of magnetic sources on melting of a magneto-ferro phase change substance,” Chin. J. Phys., vol. 65, pp. 377–388, 2020. DOI: 10.1016/j.cjph.2020.03.002.
  • A. Hajjar, S. A. M. Mehryan, and M. Ghalambaz, “Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension,” Int. J. Mech. Sci., vol. 166, p. 105243, 2020. DOI: 10.1016/j.ijmecsci.2019.105243.
  • A. I. Alsabery et al., “Entropy generation and natural convection flow of hybrid nanofluids in a partially divided wavy cavity including solid blocks,” Energies, vol. 13, no. 11, p. 2942, 2020. DOI: 10.3390/en13112942.
  • M. K. Mishra, G. S. Seth, and R. Sharma, “Scrutiny of heat transfer and nanoparticle migration within a channel filled with nanofluid,” Heat Transf., vol. 49, no. 5, pp. 2770–2788, 2020. DOI: 10.1002/htj.21744.
  • U. Khan et al., “γ-Nanofluid thermal transport between parallel plates suspended by micro-cantilever sensor by incorporating the effective Prandtl model: applications to biological and medical sciences,”Molecules, vol. 25, no. 8, p. 1777, 2020. DOI: 10.3390/molecules25081777.
  • P. Chandra and R. Das, “Finite-element-based machine-learning algorithm for studying gyrotactic-nanofluid flow via stretching surface,” Int. J. Numer. Methods Fluids, vol. 95, no. 12, pp. 1888–1912, 2023. DOI: 10.1002/fld.5229.
  • I. S. Oyelakin, O. Adeyeye, P. Sibanda, and Z. Omar, “On a new block method for an MHD nanofluid flow with an exponentially decaying internal heat generation,” Numer. Methods Fluids, vol. 93, no. 6, pp. 1816–1824, 2021. DOI: 10.1002/fld.4953.
  • A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys, vol. 81, no. 1, pp. 109–162, 2009. DOI: 10.1103/RevModPhys.81.109.
  • C. Chung et al., “Biomedical applications of graphene and graphene oxide,” Acc. Chem. Res., vol. 46, no. 10, pp. 2211–2224, 2013. DOI: 10.1021/ar300159f.
  • S. M. Upadhya, Mahesha, and C. S. K. Raju, “Unsteady flow of Carreau fluid in a suspension of dust and graphene nanoparticles with Cattaneo–Christov heat flux,” J. Heat Transf., vol. 140, no. 9, p. 092401, 2018. DOI: 10.1115/1.4039904.
  • Mahesha, H. B. Santhosh, and C. S. K. Raju, “Unsteady Carreau radiated flow in a deformation of graphene nanoparticles with heat generation and convective conditions,” J. Nanofluids, vol. 7, no. 6, pp. 1130–1137, 2018. DOI: 10.1166/jon.2018.1545.
  • S. Barış and M. S. Dokuz, “Three-dimensional stagnation point flow of a second-grade fluid towards a moving plate,” Int. J. Eng. Sci, vol. 44, no. 1–2, pp. 49–58, 2006. DOI: 10.1016/j.ijengsci.2005.08.008.
  • M. H. Haroun, “Effect of Deborah number and phase difference on peristaltic transport of a third-order fluid in an asymmetric channel,” Commun. Nonlinear Sci. Numer. Simul., vol. 12, no. 8, pp. 1464–1480, 2007. DOI: 10.1016/j.cnsns.2006.03.002.
  • M. Sajid, T. Hayat, and S. Asghar, “Non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching sheet,” “Int. J. Heat Mass Transf., vol. 50, no. 9–10, pp. 1723–1736, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.10.011.
  • T. Hayat, S. Noreen, and M. Sajid, “Heat transfer analysis of the steady flow of a fourth grade fluid,” Int. J. Therm. Sci., vol. 47, no. 5, pp. 591–599, 2008. DOI: 10.1016/j.ijthermalsci.2007.05.005.
  • Y.-M. Chu et al., “Cattaneo-Christov double diffusions (CCDD) in entropy optimized magnetized second grade nanofluid with variable thermal conductivity and mass diffusivity,” J. Mater. Res. Technol., vol. 9, no. 6, pp. 13977–13987, 2020. DOI: 10.1016/j.jmrt.2020.09.101.
  • T. Hayat, A. M. Siddiqui, and S. Asghar, “Some simple flows of an Oldroyd-B fluid,” Int. J. Eng. Sci., vol. 39, no. 2, pp. 135–147, 2001. DOI: 10.1016/S0020-7225(00)00026-4.
  • C. Fetecau and C. Fetecau, “A new exact solution for the flow of Maxwell fluid past an infinite plate,” Int. J. Non-Linear Mech., vol. 38, no. 3, pp. 423–427, 2003. DOI: 10.1016/S0020-7462(01)00062-2.
  • Y. Wang and T. Hayat, “Fluctuating flow of Maxwell fluid past a porous plate with variable suction,” Nonlinear Anal. Real World Appl., vol. 9, no. 4, pp. 1269–1282, 2008. DOI: 10.1016/j.nonrwa.2007.02.016.
  • C. Fetecau, M. Athar, and C. Fetecau, “Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate,” Comput. Math. Appl., vol. 57, no. 4, pp. 596–603, 2009. DOI: 10.1016/j.camwa.2008.09.052.
  • T. Hayat, Z. Abbas, and M. Sajid, “MHD stagnation point flow of an upper-convected Maxwell fluid over a stretching surface,” Chaos Solit. Fractals, vol. 39, no. 2, pp. 840–848, 2009. DOI: 10.1016/j.chaos.2007.01.067.
  • M. M. Heyhat and N. Khabazi, “Non-isothermal flow of Maxwell fluids above fixed flat plates under the influence of a transverse magnetic field,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 225, no. 4, pp. 909–916, 2011. DOI: 10.1243/09544062JMES2245.
  • J. Wang, M. Ijaz Khan, W. A. Khan, S. Z. Abbas, and M. Imran Khan, “Transportation of heat generation/absorption and radiative heat flux in homogeneous–heterogeneous catalytic reactions of non-Newtonian fluid (Oldroyd-B model),” Comput. Methods Programs Biomed., vol. 189, p. 105310, 2020. DOI: 10.1016/j.cmpb.2019.105310.
  • M. K. Nayak, S. Shaw, M. I. Khan, V. S. Pandey, and M. Nazeer, “Flow and thermal analysis on Darcy-Forchheimer flow of copper-water nanofluid due to a rotating disk a static and dynamic approach,” J. Mater. Res. Technol., vol. 9, no. 4, pp. 7387–7408, 2020. DOI: 10.1016/j.jmrt.2020.04.074.
  • M. I. Khan and F. Alzahrani, “Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid: numerical computations,” Int. J. Mod. Phys. B, vol. 34, no. 13, p. 2050132, 2020. DOI: 10.1142/S0217979220501325.
  • S. Z. Abbas et al., “Modeling and analysis of unsteady second-grade nanofluid flow subject to mixed convection and thermal radiation,” Soft Comput., vol. 26, no. 3, pp. 1033–1042, 2022. DOI: 10.1007/s00500-021-06575-7.
  • Y.-M. Chu et al., “Thermophoretic particles deposition features in thermally developed flow of Maxwell fluid between two infinite stretched disks,” J. Mater. Res. Technol., vol. 9, no. 6, pp. 12889–12898, 2020. DOI: 10.1016/j.jmrt.2020.09.011.
  • V. Kumar et al., “Analysis of single and multi-wall carbon nanotubes (SWCNT/MWCNT) in the flow of Maxwell nanofluid with the impact of magnetic dipole,” Comput. Theor. Chem., vol. 1200, p. 113223, 2021. DOI: 10.1016/j.comptc.2021.113223.
  • G. Rasool, A. Shafiq, Y. M. Chu, M. S. Bhutta, and A. Ali, “Optimal homotopic exploration of features of Cattaneo-Christov model in second grade nanofluid flow via Darcy-Forchheimer medium subject to viscous dissipation and thermal radiation,” Comb. Chem. High Throughput Screen., vol. 25, no. 14, pp. 2485–2497, 2022. DOI: 10.2174/1386207324666210903144447.
  • S. Vemulawada et al., “Thermal analysis on electromagnetic regulated peristaltic blood-based graphane/diamond nanofluid flow with entropy optimization,” Numer. Heat Transf. B: Fundam., vol. 84, no. 5, pp. 514–538, 2023. DOI: 10.1080/10407790.2023.2211731.
  • X. Xue and H. Zhou, “Soft computing methods for predicting daily global solar radiation,” Numer. Heat Transf. B: Fundam., vol. 76, no. 1, pp. 18–31, 2019. DOI: 10.1080/10407790.2019.1637629.
  • D.-S. Yang, et al., “Calculating the multi-domain transient heat conduction with heat source problem by virtual boundary meshfree Galerkin method,” Numer. Heat Transf. B: Fundam., vol. 74, no. 1, pp. 465–479, 2018. DOI: 10.1080/10407790.2018.1505091.
  • M. K. Mishra, G. S. Seth, and R. Sharma, “Navier’s slip effect on mixed convection flow of non-Newtonian nanofluid: Buongiorno’s model with passive control approach,” Int. J. Appl. Comput. Math., vol. 5, no. 4, pp. 1–23, 2019. DOI:10.1007/s40819-019-0686-z.
  • A. Ghaffari, I. Mustafa, and T. Javed, “Influence of nonlinear radiation on natural convection flow of carbon nanotubes suspended in water-based fluid along a vertical wavy surface,” Phys. Scr., vol. 94, no. 11, p. 115214, 2019. DOI: 10.1088/1402-4896/ab23b8.
  • M. Shahzad et al., “Transport of radiative heat transfer in dissipative cross nanofluid flow with entropy generation and activation energy,” Phys. Scr., vol. 94, no. 11, p. 115224, 2019. DOI: 10.1088/1402-4896/ab2caf.
  • H. Waqas, S. U. Khan, M. Imran, and M. M. Bhatti, “Thermally developed Falkner–Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: buongiorno’s nanofluid model,” Phys. Scr., vol. 94, no. 11, p. 115304, 2019. DOI: 10.1088/1402-4896/ab2ddc.
  • E. Hosseini, G. B. Loghmani, M. Heydari, and M. M. Rashidi, “A numerical simulation of MHD flow and radiation heat transfer of nanofluids through a porous medium with variable surface heat flux and chemical reaction,” J. Math. Ext., vol. 13, pp. 31–67, 2019.
  • K. Ramesh et al., “Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy,” Surf. Interfaces, vol. 21, p. 100749, 2020. DOI: 10.1016/j.surfin.2020.100749.
  • S. Muthukumar, S. Sureshkumar, S. El-Sapa, and A. J. Chamkha, “Impacts of uniform and sinusoidal heating in a nanofluid saturated porous chamber influenced by the thermal radiation and the magnetic field,” Numer. Heat Transf. A: Appl., vol. 84, no. 5, pp. 488–506, 2023. DOI: 10.1080/10407782.2022.2137072.
  • M. Ramzan, N. Shaheen, H. A. S. Ghazwani, Y. Elmasry, and S. Kadry, “Application of Corcione correlation in a nanofluid flow on a bidirectional stretching surface with Cattaneo–Christov heat flux and heat generation/absorption,” Numer. Heat Transf. A: Appl., vol. 84, no. 6, pp. 569–585, 2023. DOI: 10.1080/10407782.2022.2145396.
  • S. P. Anjali Devi and B. Ganga, “Effects of viscous and Joules dissipation on MHD flow, heat and mass transfer past a stretching porous surface embedded in a porous medium,” Nonlinear Anal. Model. Control, vol. 14, no. 3, pp. 303–314, 2009. DOI: 10.15388/NA.2009.14.3.14497.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail, and F. Salah, “Effects of thermal radiation, viscous and Joule heating on electrical MHD nanofluid with double stratification,” Chin. J. Phys., vol. 55, no. 3, pp. 630–651, 2017. DOI: 10.1016/j.cjph.2017.04.001.
  • R. Sharma, S. M. Hussain, C. S. K. Raju, G. S. Seth, and A. J. Chamakha, “Study of graphene Maxwell nanofluid flow past a linearly stretched sheet: a numerical and statistical approach,” Chin. J. Phys., vol. 68, pp. 671–683, 2020. DOI: 10.1016/j.cjph.2020.10.013.
  • S. M. Hussain, R. Sharma, M. R. Mishra, and S. S. Alrashidy, “Hydromagnetic dissipative and radiative graphene Maxwell nanofluid flow past a stretched sheet-numerical and statistical analysis,” Mathematics, vol. 8, no. 11, p. 1929, 2020. DOI: 10.3390/math8111929.
  • G. C. Shit and S. Mukherjee, “Differential transform method for unsteady magneto hydrodynamic nanofluid flow in the presence of thermal radiation,” J. Nanofluids, vol. 8, no. 5, pp. 998–1009, 2019. DOI: 10.1166/jon.2019.1643.
  • M. Mustafa, T. Hayat, and S. Obaidat, “On heat and mass transfer in the unsteady squeezing flow between parallel plates,” Meccanica, vol. 47, no. 7, pp. 1581–1589, 2012. DOI: 10.1007/s11012-012-9536-3.
  • O. Pourmehran, M. Rahimi-Gorji, M. Gorji-Bandpy, and D. Ganji, “Analytical investigation of squeezing unsteady nanofluid flow between parallel plates by LSM and CM,” Alex. Eng. J., vol. 54, no. 1, pp. 17–26, 2015. DOI: 10.1016/j.aej.2014.11.002.
  • N. Acharya, K. Das, and P. K. Kundu, “The squeezing flow of Cu-water and Cu-kerosene nanofluids between two parallel plates,” Alex. Eng. J., vol. 55, no. 2, pp. 1177–1186, 2016. DOI: 10.1016/j.aej.2016.03.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.