65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of microchannel heat sink based on multi-objective particle swarm optimization algorithm for integrated circuit chips cooling

&
Received 11 May 2023, Accepted 13 Dec 2023, Published online: 25 Dec 2023

References

  • M. Ono, et al., “Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides,” Nat. Photon., vol. 14, no. 1, pp. 37–43, 2019. DOI: 10.1038/s41566-019-0547-7.
  • S. G. Kandlikar, et al., “Heat transfer in microchannels—2012 status and research needs,” J. Heat Trans.-T ASME, vol. 135, no. 9, pp. 1–18, 2013. DOI: 10.1115/1.4024354.
  • G. E. Moore, “Cramming more components onto integrated circuits,” Proc. IEEE, vol. 86, no. 1, pp. 82–85, 1998. DOI: 10.1109/JPROC.1998.658762.
  • M. Yang, et al., “Investigation on the performance prediction of microchannel heat sink based on machine learning approach,” J. Eng. Thermophys. Russ., no. 6, pp. 1704–1708, 2023.
  • F. Zhang, B. Wu, and B. Du, “Heat transfer optimization based on finned microchannel heat sink,” Int. J. Therm. Sci., vol. 172, pp. 107357, 2022. DOI: 10.1016/j.ijthermalsci.2021.107357.
  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • B. Ding, Z. H. Zhang, L. Gong, M. H. Xu, and Z. Q. Huang, “A novel thermal management scheme for 3D-IC chips with multi-cores and high power density,” Appl. Therm. Eng., vol. 168, pp. 114832, 2020. DOI: 10.1016/j.applthermaleng.2019.114832.
  • X. J. Shi, L. Shan, Y. J. Mu, and B. T. Yin, “Geometry parameters optimization for a microchannel heat sink with secondary flow channel,” Int. Commun. Heat Mass., vol. 104, pp. 89–100, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.03.009.
  • S. A. Sadri, H. Parsa, M. Saffar-Avval, and M. R. Hajmohammadi, “Configuration optimization of the honeycomb core in the latent heat thermal energy storage of a solar air heater: experimental and numerical study,” Int. J. Energy Res., vol. 46, no. 5, pp. 5924–5954, 2022. DOI: 10.1002/er.7532.
  • H. Parsa, M. Saffar-Avval, and M. R. Hajmohammadi, “3D simulation and parametric optimization of a solar air heater with a novel staggered cuboid baffles,” Int. J. Mech. Sci., vol. 205, no. 0, pp. 106607, 2021. DOI: 10.1016/j.ijmecsci.2021.106607.
  • H. A. Mohammed, N. H. Shuaib, R. Saidur, and P. Gunnasegaran, “The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes,” Int. Commun. Heat Mass., vol. 37, no. 8, pp. 1078–1086, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.06.014.
  • D. L. Jing, S. Y. Song, Y. L. Pan, and X. M. Wang, “Size dependences of hydraulic resistance and heat transfer of fluid flow in elliptical microchannel heat sinks with boundary slip,” Int. J. Heat Mass Transf., vol. 119, no. 0, pp. 647–653, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.149.
  • L. Gong, Y. P. Xu, B. Ding, Z. H. Zhang, and Z. Q. Huang, “Thermal management and structural parameters optimization of MCM-BGA 3D package model,” Int. J. Therm. Sci., vol. 147, pp. 106120, 2020. DOI: 10.1016/j.ijthermalsci.2019.106120.
  • J. P. McHale and S. V. Garimella, “Heat transfer in trapezoidal microchannels of various aspect ratios,” Int. J. Heat Mass Transf., vol. 53, nos. 1–3, pp. 365–375, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.09.020.
  • W. Li, M. Xiao, X. B. Peng, A. Garg, and L. Gao, “A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs,” Appl. Therm. Eng., vol. 147, pp. 90–100, 2019. DOI: 10.1016/j.applthermaleng.2018.10.060.
  • X. Y. Li, S. L. Wang, X. D. Wang, and T. H. Wang, “Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks,” Int. J. Therm. Sci., vol. 137, pp. 616–626, 2019. DOI: 10.1016/j.ijthermalsci.2018.12.029.
  • A. Husain and K. Y. Kim, “Shape optimization of micro-channel heat sink for micro-electronic cooling”, IEEE Trans. Comp. Packag. Technol., vol. 31, no. 2, pp. 322–330, 2008. DOI: 10.1109/TCAPT.2008.916791.
  • A. Maheswari and Y. K. Prajapati, “Thermal performance enhancement and optimization of double-layer microchannel heat sink with intermediate perforated rectangular fins,” Int. J. Therm. Sci., vol. 185, pp. 108043, 2023. DOI: 10.1016/j.ijthermalsci.2022.108043.
  • U. K. Alugoju, S. K. Dubey, and A. Javed, “Optimization of converging and diverging microchannel heat sink for electronic chip cooling,” IEEE Trans. Comp., Packag. Manufact. Technol., vol. 10, no. 5, pp. 817–827, 2020. DOI: 10.1109/TCPMT.2020.2985402.
  • S. B. Huang, J. Zhao, L. Gong, and X. Y. Duan, “Thermal performance and structure optimization for slotted microchannel heat sink,” Appl. Therm. Eng., vol. 115, pp. 1266–1276, 2017. DOI: 10.1016/j.applthermaleng.2016.09.131.
  • M. Ahmadian-Elmi, M. R. Hajmohammadi1, S. S. Nourazar, K. Vafai, and M. B. Shafii, “Investigating the effect of the presence of a pulsating heat pipe on the geometrical parameters of the microchannel heat sink,” Numer. Heat Trans A. Appl., pp. 1–17, 2023. DOI: 10.1080/10407782.2023.2188330.
  • M. Ahmadian-Elmi, M. R. Hajmohammadi1, S. S. Nourazar, K. Vafai, and M. B. Shafii, “Effect of filling ratio, number of loops, and transverse distance on the performance of pulsating heat pipe in a microchannel heat sink,” Numer. Heat Transf. A: Appl., pp. 1–22, 2023. DOI: 10.1080/10407782.2023.2200217.
  • S. Zehisaadat, R. K. Khalajzadeh, M. R. Hajmohammadi, and G. Lorenzini, “Geometric optimization of T-shaped fin and inverted fin based on minimum entropy generation objective,” J. Eng. Thermophys., vol. 31, no. 4, pp. 668–687, 2022. DOI: 10.1134/S1810232822040129.
  • D. W. Zhuang, Y. F. Yang, G. L. Ding, X. Y. Du, and Z. T. Hu, “Optimization of microchannel heat sink with rhombus fractal-like units for electronic chip cooling,” Int. J. Refrig., vol. 116, pp. 108–118, 2020. DOI: 10.1016/j.ijrefrig.2020.03.026.
  • M. R. Hajmohammadi, P. Alipour, and H. Parsa, “Microfluidic effects on the heat transfer enhancement and optimal design of microchannels heat sinks,” Int. J. Heat Mass Transf., vol. 126, pp. 808–815, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.037.
  • M. X. Jiang and Z. L. Pan, “Optimization of micro-channel heat sink with trapezoidal cavities and solid/slotted oval pins based on genetic algorithm and Back propagation neural network,” Therm. Sci., vol. 27, no. 1 Part A, pp. 179–193, 2023. DOI: 10.2298/TSCI220307121J.
  • M. X. Jiang and Z. L. Pan, “Optimization of open microchannel heat sink with pin fins by multi-objective genetic algorithm,” Therm. Sci., vol. 26, no. 4 Part B, pp. 3653–3665, 2022. DOI: 10.2298/TSCI211023015J.
  • Z. H. Wang, M. X. Li, F. S. Ren, B. J. Ma, H. Z. Yang, and Y. G. Zhu, “Sobol sensitivity analysis and multi-objective optimization of manifold microchannel heat sink considering entropy generation minimization,” Int. J. Heat Mass Transf., vol. 208, pp. 124046, 2023. DOI: 10.1016/j.ijheatmasstransfer.2023.124046.
  • M. E. Polat, U. Furkan, and C. Sertac, “Multi-objective optimization and performance assessment of microchannel heat sinks with micro pin-fins,” Int. J. Therm. Sci., vol. 174, pp. 107432, 2022. DOI: 10.1016/j.ijthermalsci.2021.107432.
  • G. L. Wang, G. F. Ding, R. Liu, D. D. Xie, Y. J. Wu, and X. D. Miao, “Multi-objective optimization of a bidirectional-ribbed microchannel based on CFD and NSGA-II genetic algorithm,” Int. J. Therm. Sci., vol. 181, pp. 107731, 2022. DOI: 10.1016/j.ijthermalsci.2022.107731.
  • D. Ansari, A. Husain, and K. Y. Kim, “Multiobjective optimization of a grooved micro-channel heat sink,” IEEE Trans. Comp. Packag. Technol., vol. 33, no. 4, pp. 767–776, 2010. DOI: 10.1109/TCAPT.2010.2070874.
  • T.-H. Wang, H.-C. Wu, J.-H. Meng, and W.-M. Yan, “Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm,” Int. J. Heat Mass Transf., vol. 149, pp. 119217, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119217.
  • E. P. Muhammed and C. Sertac, “Artificial neural network model and multi-objective optimization of microchannel heat sinks with diamond-shaped pin fins,” Int. J. Heat Mass Transf., vol. 194, pp. 123015, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.123015.
  • P. T. Yao, Y. L. Zhai, Z. H. Li, X. Shen, and H. Wang, “Thermal performance analysis of multi-objective optimized microchannels with triangular cavity and rib based on field synergy principle”, Case Stud. Therm. Eng., vol.25, pp. 100963, 2021. DOI: 10.1016/j.csite.2021.100963.
  • R. Song and M. M. Cui, “Single- and multi-objective optimization of a plate-fin heat exchanger with offset strip fins adopting the genetic algorithm,” Appl. Therm. Eng., vol. 159, pp. 113881, 2019. DOI: 10.1016/j.applthermaleng.2019.113881.
  • Y. Ge, S. C. Wang, Z. C. Liu, and W. Liu, “Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method,” Appl. Therm. Eng., vol. 148, no. 1, pp. 120–128, 2019. DOI: 10.1016/j.applthermaleng.2018.11.038.
  • H. Wang, Q. Wu, C. Wang, and Q. Z. Wang, “A universal high-efficiency cooling structure for high-power integrated circuits,” Appl. Therm. Eng., vol. 215, pp. 118849, 2022. DOI: 10.1016/j.applthermaleng.2022.118849.
  • S. Ali, et al., “Numerical investigation of microchannel heat sink with trefoil shape ribs,” Energies, vol. 14, no. 20, pp. 6764, 2021. DOI: 10.3390/en14206764.
  • X. Ze and Z. W. Zhu, “Multi-objective optimization of a composite orthotropic bridge with RSM and NSGA-II algorithm,” J. Constr. Steel. Res., vol. 188, pp. 106938, 2022. DOI: 10.1016/j.jcsr.2021.106938.
  • M. H. N. Hidayah, Z. Shayfull, S. M. Nasir, S. M. Sazli, and M. Fathullah, “Optimisation of thin shell parts by using particle swarm optimization (PSO) method,” AIP Conf. Proc., vol. 1885, no. 1, pp. 020051, 2017. DOI: 10.1063/1.5002245.
  • C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple objectives with particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 256–279, 2004. DOI: 10.1109/TEVC.2004.826067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.