43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal and solutal stratified Heimanz flow of AA7072-deionized water over a wedge in the presence of bioconvection

, ORCID Icon, , , & ORCID Icon
Received 23 Jun 2023, Accepted 26 Jan 2024, Published online: 07 Mar 2024

References

  • X. Li, A. U. Khan, M. R. Khan, S. Nadeem and S. U. Khan, “Oblique stagnation point flow of nanofluids over stretching/shrinking sheet with cattaneo–christov heat flux model: existence of dual solution,” Asymmetry Carbohydr., vol. 11, no. 9, pp. 1070, 2019. DOI: 10.3390/sym11091070.
  • M. R. Khan, K. Pan, A. U. Khan and N. Ullah, “Comparative study on heat transfer in cnts-water nanofluid over a curved surface,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104707, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104707.
  • S. Nadeem, M. Riaz Khan and A. U. Khan, “Mhd oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions,” Phys. Scr., vol. 94, no. 7, pp. 075204, 2019. DOI: 10.1088/1402-4896/ab0973.
  • D. Qaiser, Z. Zheng and M. R. Khan, “Numerical assessment of mixed convection flow of walters-b nanofluid over a stretching surface with Newtonian heating and mass transfer,” Therm. Sci. Eng. Prog., vol. 22, pp. 100801, 2020. DOI: 10.1016/j.tsep.2020.100801.
  • M. R. Khan, K. Pan, A. U. Khan and S. Nadeem, “Dual solutions for mixed convection flow of sio2- al2o3/water hybrid nanofluid near the stagnation point over a curved surface,” Phys. A (Amsterdam, Neth, vol. 547, pp. 123959, 2020. DOI: 10.1016/j.physa.2019.123959.
  • S. Nadeem, M. R. Khan and A. U. Khan, “Mhd stagnation point flow of viscous nanofluid over a curved surface,” Phys. Scr., vol. 94, no. 11, pp. 115207, 2019. DOI: 10.1088/1402-4896/ab1eb6.
  • P. Barnoon, D. Toghraie, F. Eslami and B. Mehmandoust, “Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: single-phase and two-phase approaches,” Comput. Math. Appl., vol. 77, no. 3, pp. 662–692, 2019. DOI: 10.1016/j.camwa.2018.10.005.
  • K. Al-Farhany, M. A. Alomari, N. Biswas, A. Laouer, A. M. Abed and W. Sridhar, “Magnetohydrodynamic double-diffusive mixed convection in a curvilinear cavity filled with nanofluid and containing conducting fins,” Int. Commun. Heat Mass Transf., vol. 144, pp. 106802, 2023. DOI: 10.1016/j.icheatmasstransfer.2023.106802.
  • T. Hymavathi and W. Sridhar, “Numerical solution to mass transfer in mhd flow of Casson fluid with suction and chemical reaction,” Int. J. Chem. Sci., vol. 14, no. 4, pp. 2183–2197, 2016.
  • W. Sridhar, G. Vijaya Lakshmi, K. Al-Farhany and G. R. Ganesh, “Mhd Williamson nanofluid across a permeable medium past an extended sheet with constant and irregular thickness,” Heat Trans., vol. 50, no. 8, pp. 8134–8154, 2021. DOI: 10.1002/htj.22270.
  • T. Javed, A. Ghaffari and T. Hayat, “Enhancement of heat transfer in elastico-viscous fluid due to nanoparticles, where the fluid is impinging obliquely to the stretchable surface: a numerical study,” Appl. Appl. Math. Int. J., vol. 11, no. 1, pp. 16, 2016.
  • W. K. Usafzai, A. M. Saeed, E. H. Aly, V. Puneeth and I. Pop, “Wall jet nanofluid flow with thermal energy and radiation in the presence of power-law,” Numer. Heat Transf. A Appl., pp. 1–13, 2023. DOI: 10.1080/10407782.2023.2222456.
  • J. Buongiorno, “Convective transport in nanofluids,” Am. J. Heat Mass Transf., vol. 128, no. 3, pp. 240-250, 2006.
  • M. Eslamian, M. Ahmed, M. El-Dosoky and M. Saghir, “Effect of thermophoresis on natural convection in a rayleigh–benard cell filled with a nanofluid,” Int. J. Heat Mass Trans., vol. 81, pp. 142–156, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.001.
  • M. H. Matin and B. Ghanbari, “Effects of Brownian motion and thermophoresis on the mixed convection of nanofluid in a porous channel including flow reversal,” Transp. Porous Med., vol. 101, no. 1, pp. 115–136, 2014. DOI: 10.1007/s11242-013-0235-x.
  • Z. Haddad, E. Abu-Nada, H. F. Oztop and A. Mataoui, “Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement,” Int. J. Therm. Sci., vol. 57, pp. 152–162, 2012. DOI: 10.1016/j.ijthermalsci.2012.01.016.
  • P. Durgaprasad, S. Varma, M. M. Hoque and C. Raju, “Combined effects of Brownian motion and thermophoresis parameters on three-dimensional (3d) Casson nanofluid flow across the porous layers slendering sheet in a suspension of graphene nanoparticles,” Neural Comput. Applic., vol. 31, no. 10, pp. 6275–6286, 2019. DOI: 10.1007/s00521-018-3451-z.
  • K. Rafique et al., “Brownian motion and thermophoretic diffusion effects on micropolar type nanofluid flow with soret and dufour impacts over an inclined sheet: Keller-box simulations,” Astrophys. vol. 12, no. 21, pp. 4191, 2019. DOI: 10.3390/en12214191.
  • A. Mahmood, B. Chen and A. Ghaffari, “Hydromagnetic Hiemenz flow of micropolar fluid over a nonlinearly stretching/shrinking sheet: dual solutions by using Chebyshev spectral newton iterative scheme,” J. Magn. Magnet. Mater., vol. 416, pp. 329–334, 2016. DOI: 10.1016/j.jmmm.2016.05.001.
  • E. Sangeetha and P. De, “Stagnation point flow of bioconvective mhd nanofluids over Darcy Forchheimer porous medium with thermal radiation and buoyancy effect,” BioNanoSci, vol. 13, no. 3, pp. 1022–1035, 2023. DOI: 10.1007/s12668-023-01132-y.
  • E. Sangeetha, P. De and R. Das, “Hall and ion effects on bioconvective maxwell nanofluid in non–darcy porous medium,” Special Top. Rev. Porous Media, vol. 14, no. 4, pp. 1–30, 2023. DOI: 10.1615/SpecialTopicsRevPorousMedia.v14.i4.10.
  • E. Sangeetha and P. De, “Bioconvective casson nanofluid flow toward stagnation point in non-darcy porous medium with buoyancy effects, chemical reaction, and thermal radiation,” Heat Trans., vol. 52, no. 2, pp. 1529–1551, 2023. DOI: 10.1002/htj.22753.
  • M. S. Iqbal, A. Ghaffari and I. Mustafa, “Investigation into thermophoresis and Brownian motion effects of nanoparticles on radiative heat transfer in Hiemenz flow using spectral method,” Sci. Iran., vol. 0, no. 0, pp. 0–0, 2019. DOI: 10.24200/sci.2019.52384.2683.
  • X. Xin, A. M. Saeed, F. A. M. Al-Yarimi, V. Puneeth and S. S. Narayan, “The flow analysis of Williamson nanofluid considering the Thompson and troian slip conditions at the boundary,” Numer. Heat Transf. A Appl., pp. 1–17, 2023. DOI: 10.1080/10407782.2023.2212922.
  • M. I. Ur Rehman et al., “Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy–Forchheimer model,” Numer. Heat Transf. B Fund., vol. 84, no. 4, pp. 432–448, 2023. DOI: 10.1080/10407790.2023.2211228.
  • J. He, Q. Deng, K. Xiao and Z. Feng, “Impingement heat transfer enhancement in crossflow by a skewed twisted rib pair for simplified leading edge structure,” Numer. Heat Transf. A Appl., vol. 84, no. 7, pp. 715–731, 2023. DOI: 10.1080/10407782.2022.2154724.
  • J. N. Jamal Mohamed, V. Rathinasamy, K. Karuppan and R. Parthasarathy, “Numerical investigation of convective cooling in a rectangular vented cavity with two inlets and a hot obstacle,” Numer. Heat Transf. A Appl., vol. 84, no. 7, pp. 695–714, 2023. DOI: 10.1080/10407782.2022.2154723.
  • H. Saffari, M. Kamali, E. Vatanjoo and E. Aminian, “Theoretical investigation on microstructured hybrid surface heat transfer characteristics with Marangoni convection effect,” Numer. Heat Transf. A Appl., vol. 84, no. 7, pp. 675–694, 2022. DOI: 10.1080/10407782.2022.2154085.
  • H. Upreti, P. Bartwal, A. K. Pandey and O. Makinde, “Heat transfer assessment for au-blood nanofluid flow in Darcy-Forchheimer porous medium using induced magnetic field and Cattaneo-Christov model,” Numer. Heat Transf. B Fund., pp. 1–17, 2023. DOI: 10.1080/10407790.2023.2265555.
  • E. Sangeetha and P. De, “Gyrotactic microorganisms suspended in MHD nanofluid with activation energy and binary chemical reaction over a non-Darcian porous medium,” Waves Random Complex Media, pp. 1–17, 2022. DOI: 10.1080/17455030.2022.2112114.
  • V. Puneeth, S. Manjunatha, B. J. Gireesha and R. S. R. Gorla, “Magneto convective flow of Casson nanofluid due to Stefan blowing in the presence of bio-active mixers,” Proc. Inst. Mech. Eng. N., pp. 23977914211016692, 2021.
  • V. Puneeth, S. Manjunatha, O. Makinde and B. Gireesha, “Bioconvection of a radiating hybrid nanofluid past a thin needle in the presence of heterogeneous–homogeneous chemical reaction,” Am. J. Heat Mass Transf., vol. 143, no. 4, pp. 042502, 2021.
  • V. Puneeth, S. Manjunatha and B. Gireesha, “Quartic autocatalysis of homogeneous and heterogeneous reactions in the bioconvective flow of radiating micropolar nanofluid between parallel plates,” Heat Trans., vol. 50, no. 6, pp. 5925–5950, 2021. DOI: 10.1002/htj.22156.
  • Y.-M. Chu et al., “Nonlinear radiative bioconvection flow of maxwell nanofluid configured by bidirectional oscillatory moving surface with heat generation phenomenon,” Phys. Scr., vol. 95, no. 10, pp. 105007, 2020. DOI: 10.1088/1402-4896/abb7a9.
  • S. Islam et al., “Mhd darcy-forchheimer flow due to gyrotactic microorganisms of casson nanoparticles over a stretched surface with convective boundary conditions,” Phys. Scr., vol. 96, no. 1, pp. 015206, 2020. DOI: 10.1088/1402-4896/abc284.
  • N. S. Khan, Q. Shah and A. Sohail, “Dynamics with cattaneo-christov heat and mass flux theory of bioconvection oldroyd-b nanofluid,” Adv. Mater., Mech. Struct. Eng. Proc. Int. Conf., vol. 12, no. 7, pp. 1–20, 2020.
  • H. Waqas, S. U. Khan, I. Tlili, M. Awais and M. S. Shadloo, “Significance of bioconvective and thermally dissipation flow of viscoelastic nanoparticles with activation energy features: novel biofuels significance,” Symmetry, vol. 12, no. 2, pp. 214, 2020. DOI: 10.3390/sym12020214.
  • C. S. Reddy, F. Ali, K. Al-Farhany and W. Sridhar, “Numerical analysis of gyrotactic microorganisms in mhd radiative Eyring–Powell nanofluid across a static/moving wedge with soret and dufour effects,” ZAMM-J. Appl. Math. Mech./Zeitschrif. Angew. Math. Mech., vol. 102, no. 11, pp. e202100459, 2022.
  • I. Mustafa, S. Shahbaz, A. Ghaffari, T. Muhammad et al., “Non-similar solution for a power-law fluid flow over a moving wedge,” Alexandria Eng. J., vol. 75, pp. 287–296, 2023. DOI: 10.1016/j.aej.2023.05.077.
  • P. Lin, A. Ghaffari, Usman, “Heat and mass transfer in a steady flow of sutterby nanofluid over the surface of a stretching wedge,” Phys. Scr., vol. 96, no. 6, p. 065003, 2021. DOI: 10.1088/1402-4896/abecf7.
  • V. Puneeth et al., “Stratified bioconvective jet flow of williamson nanofluid in porous medium in the presence of arrhenius activation energy,” J. Comput. Biophys. Chem., vol. 22, no. 03, pp. 309–319, 2023. DOI: 10.1142/S2737416523400069.
  • M. Sheikholeslami, D. Ganji and M. Rashidi, “Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model,” J. Magn. Magn. Mater., vol. 416, pp. 164–173, 2016. DOI: 10.1016/j.jmmm.2016.05.026.
  • M. Sheikholeslami and D. Ganji, “Nanofluid hydrothermal behavior in existence of Lorentz forces considering joule heating effect,” J. Mol. Liq., vol. 224, pp. 526–537, 2016. DOI: 10.1016/j.molliq.2016.10.037.
  • A. Dogonchi and D. Ganji, “Convection–radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation,” Appl. Thermal Eng., vol. 103, pp. 705–712, 2016. DOI: 10.1016/j.applthermaleng.2016.04.121.
  • M. M. Rashidi, “The modified differential transform method for solving mhd boundary-layer equations,” Comput. Phys. Commun., vol. 180, no. 11, pp. 2210–2217, 2009. DOI: 10.1016/j.cpc.2009.06.029.
  • V. Puneeth, S. Manjunatha and B. J. Gireesha, “Bioconvection in buoyancy induced flow of Williamson nanofluid over a riga plate-dtm-padé approach,” J. Nanofluids, vol. 9, no. 4, pp. 269–281, 2020. DOI: 10.1166/jon.2020.1760.
  • A. Pedro Pablo Cárdenas and W. Ardila, “The Zhou’s method for solving the white-dwarfs equation,” Acta Polytech. Phys. Appl. Math., vol. 2013, pp. 28-32, 2013.
  • P. P. C. Alzate, J. J. L. Salazar and C. A. R. Varela, “The Zhou’s method for solving the Euler equidimensional equation,” Appl. Math., vol. 07, no. 17, pp. 2165–2173, 2016. DOI: 10.4236/am.2016.717172.
  • E. Erfani, M. M. Rashidi and A. B. Parsa, “The modified differential transform method for solving off-centered stagnation flow toward a rotating disc,” Int. J. Comput. Methods, vol. 07, no. 04, pp. 655–670, 2010. DOI: 10.1142/S0219876210002404.
  • N. A. Yacob, A. Ishak and I. Pop, “Falkner–skan problem for a static or moving wedge in nanofluids,” Int. J. Ther. Sci., vol. 50, no. 2, pp. 133–139, 2011. DOI: 10.1016/j.ijthermalsci.2010.10.008.
  • S. Dinarvand, M. N. Rostami and I. Pop, “A novel hybridity model for tio 2-cuo/water hybrid nanofluid flow over a static/moving wedge or corner,” Sci Rep., vol. 9, no. 1, pp. 16290, 2019. DOI: 10.1038/s41598-019-52720-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.