60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigations on the entropy generation and heat transfer of an unsteady micropolar hybrid nanofluid flow over an inclined stretching surface

&
Received 04 Dec 2023, Accepted 16 Mar 2024, Published online: 29 Mar 2024

References

  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” presented at the Proc. 1995 ASME Inter. Mech. Eng. Cong. Expo, San Francisco, CA, Nov. 12-17, 1995.
  • O. Mahian et al., “Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory,” Phys. Rep., vol. 790, pp. 1–48, 2019. DOI: 10.1016/j.physrep.2018.11.004.
  • E. C. Dreaden, L. A. Austin, M. A. Mackey, and M. A. El-Sayed, “Size matters: gold nanoparticles in targeted cancer drug delivery,” Ther. Deliv., vol. 3, no. 4, pp. 457–78, Apr. 2012. DOI: 10.4155/tde.12.21.
  • D. Pal, “Combined effects of non-uniform heat source/sink and thermal radiation on heat transfer over an unsteady stretching permeable surface,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, no. 4, pp. 1890–1904, Apr. 2011. DOI: 10.1016/j.cnsns.2010.08.023.
  • K. K. Al-Chlaihawi, H. H. Alaydamee, A. E. Faisal, K. Al-Farhany, and M. A. Alomari, “Newtonian and non-Newtonian nanofluids with entropy generation in conjugate natural convection of hybrid nanofluid-porous enclosures: a review,” Heat Transf., vol. 51, no. 2, pp. 1725–1745, 2022. DOI: 10.1002/htj.22372.
  • A. J. Chamkha, A. M. Aly, and M. A. Mansour, “Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects,” Chem. Eng. Commun., vol. 197, no. 6, pp. 846–858, 2010. DOI: 10.1080/00986440903359087.
  • P. B. Kumar and S. Suripeddi, “A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel,” Eur. Phys. J. Spec. Top., vol. 230, no. 5, pp. 1465–1474, 2021. DOI: 10.1140/epjs/s11734-021-00057-5.
  • S. Srinivas, P. B. A. Reddy, and B. S. R. V. Prasad, “Effects of chemical reaction and thermal radiation on MHD flow over an inclined permeable stretching surface with non-uniform heat source/sink: an application to the dynamics of blood flow,” J. Mech. Med. Biol., vol. 14, no. 05, pp. 1450067, 2014. DOI: 10.1142/S0219519414500675.
  • Z. Mahmood and U. Khan, “Mathematical investigation of nanoparticle aggregation and heat transfer on mixed convective stagnation point flow of nanofluid over extendable vertical Riga plate,” Phys. Scr., vol. 98, no. 7, pp. 075209, 2023. DOI: 10.1088/1402-4896/acd91f.
  • M. Das, K. H. Shim, S. S. A. An, and D. K. Yi, “Review on gold nanoparticles and their applications,” Toxicol. Environ. Health Sci., vol. 3, no. 4, pp. 193–205, 2011. DOI: 10.1007/s13530-011-0109-y.
  • N. Elahi, M. Kamali, and M. H. Baghersad, “Recent biomedical applications of gold nanoparticles: a review,” Talanta, vol. 184, pp. 537–556, Jul. 2018. DOI: 10.1016/j.talanta.2018.02.088.
  • Z. Zhang et al., “Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods,” J. Am. Chem. Soc., vol. 136, no. 20, pp. 7317–26, May 2014. DOI: 10.1021/ja412735p.
  • E. Xifre-Perez, J. Ferre-Borull, J. Pallares, and L. F. Marsal, “Mesoporous alumina as a biomaterial for biomedical applications,” Open Mater. Sci., vol. 2, no. 1, pp. 13–32, 2015. DOI: 10.1515/mesbi-2015-0004.
  • I. Sharifi, H. Shokrollahi, and S. Amiri, “Ferrite-based magnetic nanofluids used in hyperthermia applications,” J. Magn. Magn. Mater., vol. 324, no. 6, pp. 903–915, 2012. DOI: 10.1016/j.jmmm.2011.10.017.
  • K. S. Mekheimer, W. M. Hasona, R. E. Abo-Elkhair, and A. Z. Zaher, “Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: application of cancer therapy,” Phys. Lett. A, vol. 382, no. 2-3, pp. 85–93, 2018. DOI: 10.1016/j.physleta.2017.10.042.
  • J. A. Ranga Babu, K. K. Kumar, and S. S. Rao, “State-of-art review on hybrid nanofluids,” Renew. Sustain. Energy Rev, vol. 77, pp. 551–565, 2017. DOI: 10.1016/j.rser.2017.04.040.
  • A. A. Minea, “Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches,” Int. J. Heat Mass Transf., vol. 104, pp. 852–860, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.012.
  • H. Xu and Q. Sun, “Generalized hybrid nanofluid model with the application of fully developed mixed convection flow in a vertical microchannel,” Commun. Theor. Phys., vol. 71, no. 8, pp. 903, 2019. DOI: 10.1088/0253-6102/71/8/903.
  • U. M. Zahid, Y. Akbar, and F. M. Abbasi, “Entropy generation analysis for peristaltically driven flow of hybrid nanofluid,” Chin. J. Phys., vol. 67, pp. 330–348, 2020. DOI: 10.1016/j.cjph.2020.07.009.
  • Ç. Yıldız, M. Arıcı, and H. Karabay, “Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al2O3-SiO2/water hybrid-nanofluid,” Int. J. Heat Mass Transf., vol. 140, pp. 598–605, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.06.028.
  • A. Jamaludin, K. Naganthran, R. Nazar, and I. Pop, “MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink,” Eur. J. Mech. B. Fluids, vol. 84, pp. 71–80, 2020. DOI: 10.1016/j.euromechflu.2020.05.017.
  • Z. Mahmood, U. Khan, and A. Al‑Zubaidi, “Nanofuid fow with slip condition over a moving surface: buoyancy and heat source effects at the separated stagnation point,” J. Therm. Anal. Calorim., vol. 149, no. 1, pp. 327–343, 2024. DOI: 10.1007/s10973-023-12721-0.
  • K. Rafique, Z. Mahmood, U. Khan, S. M. Eldin, and A. M. Alzubaidi, “Mathematical analysis of radius and length of CNTs on flow of nanofluid over surface with variable viscosity and Joule heating,” Heliyon, vol. 9, no. 7, pp. e17673, 2023. DOI: 10.1016/j.heliyon.2023.e17673.
  • A. Rauf, T. Mushtaq, M. Javed, H. Alahmadi, and S. A. Shehzad, “Modeling and analysis of Bödewadt hybrid nanofluid flow triggered by a stretchable stationary disk under Hall current,” Case Stud. Therm. Eng., vol. 49, pp. 103315, 2023. DOI: 10.1016/j.csite.2023.103315.
  • A. C. Eringen, “Theory of micropolar fluids,” Indiana Univ. Math. J., vol. 16, no. 1, pp. 1–18, Jul. 1966. DOI: 10.1512/iumj.1966.16.16001.
  • A. C. Eringen, “Micropolar mixture theory of porous media,” J. Appl. Phys., vol. 94, no. 6, pp. 4184–4190, 2003. DOI: 10.1063/1.1598640.
  • S. T. Hussain, S. Nadeem, and R. Ul Haq, “Model-based analysis of micropolar nanofluid flow over a stretching surface,” Eur. Phys. J. Plus, vol. 129, no. 8, pp. 1-10, Jul. 2014. DOI: 10.1140/epjp/i2014-14161-8.
  • N. A. Khan and M. Sulaiman, “Heat transfer and thermal conductivity of magneto micropolar fluid with thermal non-equilibrium condition passing through the vertical porous medium,” Waves Random Complex Medium, vol. 0, no.0, pp. 1–25, Jul. 2022. DOI: 10.1080/17455030.2022.2108161.
  • G. S. Guram and G. S. A. C. Smith, “Stagnation flows of micropolar fluids with strong and weak interactions,” Comput. Math. Appl., vol. 6, no. 2, pp. 213–233, 1980. DOI: 10.1016/0898-1221(80)90030-9.
  • D. Pal and G. Mandal, “Thermal radiation and MHD effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink,” Int. J. Mech. Sci., vol. 126, pp. 308–318, 2017. DOI: 10.1016/j.ijmecsci.2016.12.023.
  • D. Srinivasacharya and K. H. Bindu, “Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions,” Proc. Inst. Civ. Eng. Energy, vol. 111, pp. 165–177, 2016. DOI: 10.1016/j.energy.2016.05.101.
  • S. S. Ghadikolaei, K. Hosseinzadeh, M. Yassari, H. Sadeghi, and D. D. Ganji, “Boundary layer analysis of micropolar dusty fluid with TiO2 nanoparticles in a porous medium under the effect of magnetic field and thermal radiation over a stretching sheet,” J. Mol. Liq., vol. 244, pp. 374–389, 2017. DOI: 10.1016/j.molliq.2017.08.111.
  • Z. Shah et al., “Micropolar gold blood nanofluid flow and radiative heat transfer between permeable channels,” Comput. Methods Programs Biomed., vol. 186, pp. 105197, 2020. DOI: 10.1016/j.cmpb.2019.105197.
  • D. Rajkumar, A. S. Reddy, and A. J. Chamkha, “Entropy generation of magnetohydrodynamic pulsating flow of micropolar nanofluid in a porous channel through Cattaneo–Christov heat flux model with Brownian motion, thermophoresis and heat source/sink,” Waves Random Complex Medium, vol. 0, no. 0, pp. 1–26, 2022. DOI: 10.1080/17455030.2022.2124467.
  • R. Ul Haq, S. Nadeem, N. S. Akbar, and Z. H. Khan, “Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface,” IEEE Trans. Nanotechnol., vol. 14, no. 1, pp. 42–50, 2015. DOI: 10.1109/TNANO.2014.2363684.
  • M. Waqas et al., “Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition,” Int. J. Heat Mass Transf., vol. 102, pp. 766–772, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.142.
  • K. Govindarajulu and A. S. Reddy, “Magnetohydrodynamic pulsatile flow of third grade hybrid nanofluid in a porous channel with Ohmic heating and thermal radiation effects,” Phys. Fluids, vol. 34, no. 1, pp. 013105, 2022. DOI: 10.1063/5.0074894.
  • M. Ramzan, M. Bilal, and J. D. Chung, “MHD stagnation point Cattaneo–Christov heat flux in Williamson fluid flow with homogeneous–heterogeneous reactions and convective boundary condition—a numerical approach,” J. Mol. Liq., vol. 225, pp. 856–862, 2017. DOI: 10.1016/j.molliq.2016.10.139.
  • S. N. A. Azeman, A. Ishak, N. F. M. Roshdan, and N. H. Z. Abidin, “Magnetic analysis and dual solutions in MHD mixed convection slip flow near the stagnation-point on a nonlinearly vertical stretching sheet,” presented at the 1st J-Comse 2021 Conf. Proc., Penang, Malaysia, Jul. 12-13, 2022. DOI: 10.1063/5.0078535.
  • T. Akbar, S. Batool, R. Nawaz, and Q. M. Z. Zia, “Magnetohydrodynamics flow of nanofluid due to stretching/shrinking surface with slip effect,” Adv. Mech. Eng., vol. 9, no. 12, pp. 168781401774026, 2017. DOI: 10.1177/1687814017740266.
  • M. Hasan, E. Karim, and A. Samad, “MHD free convection flow past an inclined stretching sheet with considering viscous dissipation and radiation,” OJFD, vol. 07, no. 02, pp. 152–168, 2017. DOI: 10.4236/ojfd.2017.72010.
  • M. Gholinia, M. E. Hoseini, and S. Gholinia, “A numerical investigation of free convection MHD flow of Walters-B nanofluid over an inclined stretching sheet under the impact of Joule heating,” Therm. Sci. Eng. Prog., vol. 11, pp. 272–282, 2019. DOI: 10.1016/j.tsep.2019.04.006.
  • S. Srinivas, C. Kalyan Kumar, S. Badeti, and A. S. Reddy, “MHD Flow of Casson Nanofluid Over An Inclined Porous Stretching Surface,” in Recent Adv. Appl. Math. Appl. Dyn. Fluid Flow, Lect. Notes Mech. Eng., S. Srinivas, B. Satyanarayana, J. Prakash Ed(s). Singapore: Springer, 2023, pp. 155–165.
  • S. Jain and P. Gupta, “Entropy generation analysis of MHD viscoelasticity-based micropolar fluid flow past a stretching sheet with thermal slip and porous media,” Int. J. Appl. Comput. Math., vol. 5, no. 3, pp. 1-22, 2019. DOI: 10.1007/s40819-019-0643-x.
  • O. D. Makinde and I. L. Animasaun, “Thermophoresis and Brownian motion effects on MHD bioconvection of nano fluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution,” J. Mol. Liq., vol. 221, pp. 733–743, 2016. DOI: 10.1016/j.molliq.2016.06.047.
  • A. M. Alqahtani et al., “MHD rotating flow over a stretching surface: the role of viscosity and aggregation of nanoparticles,” Heliyon, vol. 9, no. 11, pp. e21107, 2023. DOI: 10.1016/j.heliyon.2023.e21107.
  • A. H. Ganie, Z. Mahmood, M. AlBaidani, N. S. Alharthi, and U. Khan, “Unsteady non-axisymmetric MHD Homann stagnation point flow of CNTs-suspended nanofluid over convective surface with radiation using Yamada–Ota model,” Int. J. Mod. Phys. B, vol. 37, no. 27, pp. 2350320, 2023. DOI: 10.1142/S0217979223503204.
  • B. Triveni, M. V. S. Rao, K. Gangadhar, and A. J. Chamkha, “Heat transfer analysis of MHD Casson nanofluid flow over a nonlinear stretching sheet in the presence of nonuniform heat source,” Numer. Heat Transf. Part A Appl., vol. 0, no. 0, pp. 1–20, 2023. DOI: 10.1080/10407782.2023.2219831.
  • M. Hatami, J. Hatami, and D. D. Ganji, “Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel,” Comput. Methods Programs Biomed., vol. 113, no. 2, pp. 632–641, 2014. DOI: 10.1016/j.cmpb.2013.11.001.
  • A. Khan, Z. Shah, E. Alzahrani, and S. Islam, “Entropy generation and thermal analysis for rotary motion of hydromagnetic Casson nanofluid past a rotating cylinder with Joule heating effect,” Int. Commun. Heat Mass Transf., vol. 119, pp. 104979, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104979.
  • T. A. Yusuf, F. Mabood, B. C. Prasannakumara, and I. E. Sarris, “Magneto-bioconvection flow of Williamson nanofluid over an inclined plate with gyrotactic microorganisms and entropy generation,” Fluids, vol. 6, no. 3, pp. 109, 2021. DOI: 10.3390/fluids6030109.
  • D. Dey and M. Hazarika, “Entropy generation of hydro-magnetic stagnation point flow of micropolar fluid with energy transfer under the effect of uniform suction/injection,” LAAR, vol. 50, no. 3, pp. 209–214, 2020. DOI: 10.52292/j.laar.2020.206.
  • S. Y. Jung and H. Park, “Experimental investigation of heat transfer of Al2O3 nanofluid in a microchannel heat sink,” Int. J. Heat Mass Transf., vol. 179, pp. 121729, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121729.
  • M. F. Javed et al., “Transport of Jeffrey nanomaterial in cubic autocatalytic chemically nonlinear radiated flow with entropy generation,” Appl. Nanosci., vol. 10, no. 8, pp. 3011–3019, 2020. DOI: 10.1007/s13204-019-01071-9.
  • M. Y. A. Jamalabadi, “Entropy generation in boundary layer flow of a micro polar fluid over a stretching sheet embedded in a highly absorbing medium,” Front. Heat Mass Transf., vol. 6, no. 1, pp. 1–13, 2015.
  • Z. Mahmood, M. A. El-Rahman, U. Khan, A. M. Hassan, and H. A. E. Khalifa, “Entropy generation due to nanofluid flow in porous media over radiative permeable exponentially surface with nanoparticle aggregation effect,” Tribol Int., vol. 188, pp. 108852, 2023. DOI: 10.1016/j.triboint.2023.108852.
  • B. M. Makhdoum et al., “Significance of entropy generation and nanoparticle aggregation on stagnation point flow of nanofluid over stretching sheet with inclined Lorentz force,” Arab. J. Chem., vol. 16, no. 6, pp. 104787, 2023. DOI: 10.1016/j.arabjc.2023.104787.
  • K. Rafique, Z. Mahmood, H. Alqahtani, and S. M. Eldin, “Various nanoparticle shapes and quadratic velocity impacts on entropy generation and MHD flow over a stretching sheet with Joule heating,” Alex. Eng. J., vol. 71, pp. 147–159, 2023. DOI: 10.1016/j.aej.2023.03.021.
  • K. Rafique, Z. Mahmood, S. Saleem, S. M. Eldin, and U. Khan, “Impact of nanoparticle shape on entropy production of nanofluid over permeable MHD stretching sheet at quadratic velocity and viscous dissipation,” Case Stud. Ther. Eng., vol. 45, pp. 102992, 2023. DOI: 10.1016/j.csite.2023.102992.
  • K. Guedri et al., “Mathematical analysis of nonlinear thermal radiation and nanoparticle aggregation on unsteady MHD flow of micropolar nanofluid over shrinking sheet,” Heliyon, vol. 9, no. 3, pp. e14248, 2023. DOI: 10.1016/j.heliyon.2023.e14248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.