37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study of hybrid binary Al2O3-Cu-H2O nanofluid coating boundary layer flow from an exponentially stretching/shrinking perforated substrate with Cattaneo-Christov heat flux, heat source, suction and multiple slip effects

, , &
Received 08 Jan 2024, Accepted 28 Apr 2024, Published online: 17 May 2024

References

  • A. Can, F. Selimefendigil and H. F. Oztop, “A review on soft computing and nanofluid applications for battery thermal management,” J. Energy Storage, vol. 53, pp. 105214, 2022. DOI: 10.1016/j.est.2022.105214.
  • A. K. Hamzat, M. I. Omisanya, A. Z. Sahin, O. R. Oyetunji and N. A. Olaitan, “Application of nanofluid in solar energy harvesting devices: a comprehensive review,” Energy Convers. Manag., vol. 266, pp. 115790, 2022. DOI: 10.1016/j.enconman.2022.115790.
  • S. M. Hussain, W. Jamshed, R. Safdar, F. Shahzad, N. A. A. Mohd Nasir and I. Ullah, “Chemical reaction and thermal characteristics of Maxwell nanofluid flow-through solar collector as a potential solar energy cooling application: a modified Buongiorno’s model,” Energy Environ, vol. 34, no. 5, pp. 1409–1432, 2022. DOI: 10.1177/0958305X221088113.
  • J. Prakash, E. P. Siva, D. Tripathi, S. Kuharat and O. A. Bég, “Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: modelling a solar magneto-biomimetic nanopump,” Renew Energ., vol. 133, pp. 1308–1326, 2019. DOI: 10.1016/j.renene.2018.08.096.
  • K. M. Jadeja, R. Bumataria and N. Chavda, “Nanofluid as a coolant in internal combustion engine–a review,” Int. J. Ambient Energ., vol. 44, no. 1, pp. 363–380, 2022. DOI: 10.1080/01430750.2022.2127891.
  • D. Tripathi, S. Bhushan, O. A. Bég and N. S. Akbar, “Transient peristaltic diffusion of nanofluids: a model for micropumps in medical engineering,” J. Hydrodyn., vol. 30, no. 6, pp. 1001–1011, 2018. DOI: 10.1007/s42241-018-0140-4.
  • L. Wu, Z. Xie, L. Gu, B. Song and L. Wang, “Investigation of the tribological behavior of graphene oxide nanoplates as lubricant additives for ceramic/steel contact,” Tribol. Int., vol. 128, pp. 113–120, 2018. DOI: 10.1016/j.triboint.2018.07.027.
  • A. Sumithra, et al., “Computation of inclined magnetic field, thermophoresis and Brownian motion effects on mixed convective electroconductive nanofluid flow in a rectangular porous enclosure with adiabatic walls and hot slits,” Int. J. Mod. Phys. B., 2023. DOI: 10.1142/S0217979224503983.
  • D. M. Kim, S. W. Baek and J. Yoon, “Ignition characteristics of kerosene droplets with the addition of aluminum nanoparticles at elevated temperature and pressure,” Combust Flame, vol. 173, pp. 106–113, 2016. DOI: 10.1016/j.combustflame.2016.07.033.
  • J. C. Umavathi and O. A. Bég, “Computation of thermo-solutal convection with Soret-Dufour cross diffusion in a vertical duct containing carbon/metallic nanofluids,” Proc. IMechE Part C- J. Mech. Engng., vol. 236, no. 13, pp. 7456–7472, 2022. DOI: 10.1177/09544062211072693.
  • S. Tanvir and L. Qiao, “Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels,” AIAA J. Propul. Power, vol. 31, no. 1, pp. 408–415, 2015. DOI: 10.2514/1.B35500.
  • H. R. Chauhan, et al., “Role of micro- and nano-CeO2 reinforcements on characteristics and tribological performance of HVOF sprayed Cr3C2-NiCr coatings,” Surface Coat. Technol., vol. 467, pp. 129684, 2023. DOI: 10.1016/j.surfcoat.2023.129684.
  • S. O. Salawu, M. D. Shamshuddin and O. Anwar Bég, “Influence of magnetization, variable viscosity and thermal conductivity on Von Karman swirling flow of H2O-Fe3O4 and H2O-Mn-ZNFe2O4 ferromagnetic nanofluids from a stretchable rotating disk: smart spin coating simulation,” Mater. Sci. Engng. B, vol. 279, pp. 115659, 2022. DOI: 10.1016/j.mseb.2022.115659.
  • J. C. Umavathi, O. A. Bég, U. F. Khan, T. A. Bég and A. Kadir, “Computation of swirling hydromagnetic nanofluid flow containing gyrotactic microorganisms from a spinning disk to a porous medium with Hall current and anisotropic slip effects,” ZAMM‐Journal APPl. Mathematics Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, vol. 103, no. 9, pp. e202100575, 2023. DOI: 10.1002/zamm.202100575.
  • F. Ghadami, A. Zakeri, A. S. R. Aghdam and R. Tahmasebi, “Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite coatings,” Surface Coat. Technol., vol. 373, pp. 7–16, 2019. DOI: 10.1016/j.surfcoat.2019.05.062.
  • S. Sun, et al., “Effect of CeO2 addition on microstructure and mechanical properties of in-situ (Ti, Nb) C/Ni coating,” Surface Coat. Technol., vol. 359, pp. 300–313, 2019. DOI: 10.1016/j.surfcoat.2018.12.083.
  • M. Li, S. Zhang, H. Li, Y. He, J.-H. Yoon and T.-Y. Cho, “Effect of nano-CeO2 on cobalt-based alloy laser coatings,” J. Mater. Process. Technol., vol. 202, no. 1-3, pp. 107–111, 2008. DOI: 10.1016/j.jmatprotec.2007.08.050.
  • R. Posner, N. Fink, G. Giza and G. Grundmeier,., “Corrosive delamination and ion transport along stretch-formed thin conversion films on galvanized steel,” Surface Coatings Technol., vol. 253, pp. 227–233, 2014. DOI: 10.1016/j.surfcoat.2014.05.041.
  • R. van Tijum, B. V. C. de Jong, W. P. Vellinga and J. De Hosson, “In-situ birefringence microscopy of uniaxially stretched metal–polymer laminate,” Surface Coat. Technol., vol. 201, no. 8, pp. 4633–4639, 2017. DOI: 10.1016/j.surfcoat.2006.10.002.
  • M. Nasir, M. Waqas, O. A. Bég, S. Znaidia, W. A. Khan and N. Zamri, “Functional magnetic Maxwell viscoelastic nanofluids for tribological coatings- a model for stretching flow using the generalized theory of heat-mass fluxes, Darcy-Forchheimer formulation and dual convection,” Tribol. Int., vol. 187, pp. 108610, 2023. DOI: 10.1016/j.triboint.2023.108610.
  • S. Qu, J. Liu, X. Han, Y. Deng, C. Zhong and W. Hu, “Dynamic stretching–electroplating metal-coated textile for a flexible and stretchable zinc–air battery,” Carbon Energ., vol. 4, no. 5, pp. 867–877, 2022. DOI: 10.1002/cey2.204.
  • M. T. Almansoori, X. Li and L. Zheng, “A brief review on E-skin and its multifunctional sensing applications,” CSM, vol. 4, no. 1, pp. 3–14, 2019. DOI: 10.2174/2405465804666190313154903.
  • B. Venkateswarlu and P. V. Satya Narayana, “Cu-Al2O3/H2O hybrid nanofluid flow past a porous stretching sheet due to temperature-dependent viscosity and viscous dissipation,” Heat Trans., vol. 50, no. 1, pp. 432–449, 2021. DOI: 10.1002/htj.21884.
  • O. A. Bég, S. Kuharat, M. Ferdows, M. Das, A. Kadir and M. Shamshuddin, “Magnetic nano-polymer flow with magnetic induction and nanoparticle solid volume fraction effects: solar magnetic nano-polymer fabrication simulation,” Proc. IMechE-Part N: J Nanoengng Nanomater. Nano-Sys., vol. 233, no. 1, pp. 27–45, 2019. DOI: 10.1177/2397791419838714.
  • B. K. Siddiqui, S. Batool, Q. Mahmood Ul Hassan and M. Malik, “Repercussions of homogeneous and heterogeneous reactions of 3D flow of Cu-water and Al2O3-water nanofluid and entropy generation estimation along stretching cylinder,” Ain Shams Eng. J., vol. 13, no. 1, pp. 101493, 2022. DOI: 10.1016/j.asej.2021.05.007.
  • M. Garvandha, V. K. Narla, D. Tripathi and O. A. Bég, “Modelling the impact of melting and nonlinear radiation on reactive Buongiorno nanofluid boundary layer flow from an inclined stretching cylinder with cross diffusion and curvature effects,” in Energy Systems and Nanotechnology, Advances in Sustainability Science and Technology Book Series. D. Tripathi and S. Shamra, (Eds). Germany: Springer. pp. 279–306., 2021, DOI: 10.1007/978-981-16-1256-5_15.
  • M. J. Uddin, O. A. Bég and A. I. “Ismail, “Radiative-convective nanofluid flow past a stretching/shrinking sheet with slip effects,” AIAA J. Thermophy. Heat Transfer, vol. 29, no. 3, pp. 513–523, 2015. DOI: 10.2514/1.T4372.
  • N. A. Latiff, M. J. Uddin, O. A. Bég and A. I. M. Ismail, “Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/ shrinking sheet,” Proc. IMECHE- Part N: J. Nanoengng. Nanosys., vol. 230, no. 4, pp. 177–187, 2016. DOI: 10.1177/1740349915613817.
  • T. Thumma, O. A. Bég and A. Kadir, “Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet,” J. Molecular Liquid., vol. 232, pp. 159–173, 2017. DOI: 10.1016/j.molliq.2017.02.032.
  • C. Cattaneo, “Sulla conduzione del calore,” Atti Del Seminario Maermatico e Fisico Dell Universita di Modena e Reggio Emilia, vol. 3, pp. 83–101, 1948.
  • C. I. Christov, “On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction,” Mech Res. Comm., vol. 36, no. 4, pp. 481–486, 2009. DOI: 10.1016/j.mechrescom.2008.11.003.
  • B. Straughan, “Thermal convection with the Cattaneo–Christov model,” Int. J. Heat Mass Transf., vol. 53, no. 1-3, pp. 95–98, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.10.001.
  • M. Ciarletta and B. Straughan, “Uniqueness and structural stability for the Cattaneo–Christov equations,” Mech. Res. Comm., vol. 37, no. 5, pp. 445–447, 2010. DOI: 10.1016/j.mechrescom.2010.06.002.
  • V. Tibullo and V. Zampoli, “A uniqueness result for the Cattaneo–Christove heat conduction model applied to incompressible fluids,” Mech. Res. Comm., vol. 38, no. 1, pp. 77–79, 2011. DOI: 10.1016/j.mechrescom.2010.10.008.
  • S. A. M. Haddad, “Thermal instability in Brinkman porous media with Cattaneo– Christov heat flux,” Int. J. Heat Mass Transf., vol. 68, pp. 659–668, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.09.039.
  • T. Hayat, M. Ijaz Khan, M. Farooq, A. Alsaedi, M. Waqas and T. Yasmeen, “Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thickness surface,” Int. J. Heat Mass Transf., vol. 99, pp. 702–710, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.016.
  • M. Nasir, M. Waqas, O. A. Bég and N. Zamri, “Homotopy analysis of mixed convection flow of a magnetized viscoelastic nanofluid from a stretching surface in non-Darcy porous media with revised Fourier and Fickian approaches,” Waves Random Complex Media, pp. 1–28, 2023. DOI: 10.1080/17455030.2023.2178824.
  • T. Hayat, M. Ijaz Khan, M. Farooq, T. Yasmeen and A. Alsaedi, “Stagnation point flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions,” J. Mol. Liq., vol. 220, pp. 49–55, 2016. DOI: 10.1016/j.molliq.2016.04.032.
  • H. Gul, M. Ramzan, J. D. Chung, Y.-M. Chu and S. Kadry, “Multiple slips impact in the MHD hybrid nanofluid flow with Cattaneo–Christov heat flux and autocatalytic chemical reaction,” Sci. Rep., vol. 11, no. 1, pp. 14625, 2021. DOI: 10.1038/s41598-021-94187-4.
  • Y. Zhang, N. Shahmir, M. Ramzan, H. Alotaibi and H. M. Aljohani, “Upshot of melting heat transfer in a Von Karman rotating flow of gold-silver/engine oil hybrid nanofluid with Cattaneo-Christov heat flux,” Case Stud. Thermal Engng., vol. 26, pp. 101149, 2021. DOI: 10.1016/j.csite.2021.101149.
  • H. Waqas, T. Muhammad, S. Noreen, U. Farooq and M. Alghamdi, “Cattaneo-Christov heat flux and entropy generation on hybrid nanofluid flow in a nozzle of rocket engine with melting heat transfer,” Case Stud. Thermal Engng., vol. 28, pp. 101504, 2021. DOI: 10.1016/j.csite.2021.101504.
  • S. Jakeer, P. BalaAnki Reddy, A. M. Rashad and H. A. Nabwey, “Impact of heated obstacle position on magneto-hybrid nanofluid flow in a lid-driven porous cavity with Cattaneo-Christov heat flux pattern,” Alexandria Engng. J., vol. 60, no. 1, pp. 821–835, 2021. DOI: 10.1016/j.aej.2020.10.011.
  • K. Muhammad, T. Hayat, S. Momani and S. Asghar, “FDM analysis for squeezed flow of hybrid nanofluid in presence of Cattaneo-Christov (C-C) heat flux and convective boundary condition,” Alexandria Engng. J., vol. 61, no. 6, pp. 4719–4727, 2022. DOI: 10.1016/j.aej.2021.10.027.
  • G. Kumaran, R. Sivaraj, V. Ramachandra Prasad, O. Anwar Beg, H.-H. Leung and F. Kamalov, “Numerical study of axisymmetric magneto-gyrotactic bioconvection in non-Fourier tangent hyperbolic nano-functional reactive coating flow of a cylindrical body in porous media,” Eur. Phys. J. Plus, vol. 136, no. 11, pp. 1107, 2021. DOI: 10.1140/epjp/s13360-021-02099-z.
  • J. Prakash, D. Tripathi, O. A. Bég and V. Srivastava, “EMHD Casson hybrid nanofluid flow over an exponentially accelerated rotating porous surface,” J. Por Media, vol. 25, no. 11, pp. 1–24, 2022. DOI: 10.1615/JPorMedia.2022041050.
  • S. A. Devi and S. S. U. Devi, “Numerical investigation of hydromagnetic hybrid Cu-Al2O3 /water nanofluid flow over a permeable stretching sheet with suction,” Int. J. Nonlinear Sci. Numer. Simul., vol. 17, no. 5, pp. 249–257, 2016. . DOI: 10.1515/ijnsns-2016-0037.
  • M. D. Shamshuddin, N. Akkurt, O. A. Bég, H. J. Leonard and T. A. Bég, “Analysis of unsteady rotating thermo-solutal MoS2-EO Brinkman electro-conductive nanofluid transport with heat source, radiative and chemical reaction effects: modelling a hybrid rotating nanofluid Hall MHD generator,” Partial Diff. Eq. Appl.Math., vol. 7, pp. 100525, 2023. DOI: 10.1016/j.padiff.2023.100525.
  • J. Tripathi, B. Vasu, O. A. Bég, R. S. R. Gorla and P. K. Kameswaran, “Computational simulation of rheological blood flow containing hybrid nanoparticles in an inclined catheterized artery with stenotic, aneurysmal and slip effects,” Comput. Biol. Med., vol. 139, pp. 105009, 2021. DOI: 10.1016/j.compbiomed.2021.105009.
  • J. Prakash, D. Tripathi, O. A. Bég, A. K. Tiwari and R. Kumar, “Thermo-electro kinetic rotating non-Newtonian hybrid nanofluid flow from an accelerating vertical surface,” Heat Trans., vol. 51, no. 2, pp. 1746–1777, 2021. DOI: 10.1002/htj.22373.
  • W. Al-Kouz, et al., “Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the Galerkin finite element method,” Eur. Phys. J. Plus., vol. 136, no. 11, pp. 1184, 2021. DOI: 10.1140/epjp/s13360-021-02192-3.
  • R. Gandhi, B. K. Sharma, C. Kumawat and O. A. Bég, “Modelling and analysis of magnetic hybrid nanoparticle (Au-Al2O3/blood) based drug delivery through a bell-shaped occluded artery with Joule heating, viscous dissipation and variable viscosity effects,” Proc. IMechE-Part E-J. Process Mech. Engng., vol. 236, no. 5, pp. 2024–2043, 2021. DOI: 10.1177/09544089221080273.
  • M. M. Bhatti, O. A. Bég and S. I. Abdelsalam, “A computational framework of magnetized MgO-Ni/Water based hybrid nanofluid stagnation flow on an elastic stretching surface through a porous medium with application in solar energy coatings,” Nanomaterials. Special Issue Role Nanofluid. Renew. Energy Engng., vol. 12, no. 7, pp. 1049, 2022. DOI: 10.3390/nano12071049.
  • U. S. Mahabaleshwar, T. Anusha, O. A. Bég, D. Yadav and T. Botmart, “Impact of Navier’s slip and chemical reaction on the hydromagnetic hybrid nanofluid flow and mass transfer due to porous stretching sheet,” Sci. Rep., vol. 12, no. 1, pp. 10451, 2022. DOI: 10.1038/s41598-022-14692-y.
  • M. M. Bhatti, O. A. Bég, R. Ellahi, M. H. Doranehgard and F. Rabiei, “Electro-magnetohydrodynamics hybrid nanofluid flow with Gold and Magnesium oxide nanoparticles through vertical parallel plates,” J. Magnetism Magnet. Mater., vol. 564, pp. 170136, 2022. DOI: 10.1016/j.jmmm.2022.170136.
  • K. Venkatadri, S. Fazuruddin, O. A. Bég and O. Ramesh, “Natural convection of nanofluid flow in a porous medium in a right-angle trapezoidal enclosure: a Tiwari and Das’ nanofluid model,” J. Taibah Univ. Sci., vol. 17, no. 1 2023. DOI: 10.1080/16583655.2023.2263224.
  • A. Sumithra, et al., “Computational study of MHD mixed convective flow of Cu/Al2O3-water nanofluid in a porous rectangular cavity with slits, viscous heating, Joule dissipation and heat source/sink effects,” Waves Random Complex Media, 2023. DOI: 10.1080/17455030.2023.2168786.
  • K. Venkatadri, H. F. Öztop, V. R. Prasad, S. Parthiban and O. A. Bég, “RSM-based sensitivity analysis of hybrid nanofluid MHD flow in an enclosure filled with non-Darcy porous medium using the Lattice Boltzmann Method,” Numerical Heat Transfer A, vol. 85, no. 6, pp. 875–899, 2023. DOI: 10.1080/10407782.2023.2193708.
  • K. B. S. Latha, et al., “Computation of stagnation coating flow of electro-conductive ternary Williamson hybrid GO-Au-CO3O4/EO nanofluid with a Cattaneo-Christov heat flux model and magnetic induction,” Sci. Rep., vol. 13, no. 1, pp. 10972, 2023. DOI: 10.1038/s41598-023-37197-8.
  • M. G. Reddy, D. Tripathi and O. A. Bég, “Numerical modelling of electromagnetohydrodynamic (EMHD) radiative transport of hybrid Ti6Al4V-AA7075/H2O nanofluids from a Riga plate sensor surface,” in Nanomaterials and Nanoliquids: Applications in Energy and Environment,” Advances in Sustainability Science and Technology, Chapter 12, D. Tripathi. (Eds.), 2024, DOI: 10.1007/978-981-99-6924-1_12.
  • F. A. A. Elsebaee, et al., “Motile microorganism-based trihybrid nanofluid flow with an application of magnetic effect across a slender stretching sheet: numerical approach,” AIP Adv., vol. 13, no. 3 2023., DOI: 10.1063/5.0144191.
  • S. M. Mousavi, M. N. Rostami, M. Yousefi, S. Dinarvand, I. Pop and M. A. Sheremet,. “Dual solutions for Casson hybrid nanofluid flow due to a stretching/shrinking sheet: a new combination of theoretical and experimental models,” Chin. J. Phys., vol. 71, pp. 574–588, 2021. DOI: 10.1016/j.cjph.2021.04.004.
  • M. Rifat, et al., “Computation of stagnation point convection flow of CNT-nanofluids from a stretching sheet with melting: dual solutions,” ASME Open J. Engng., vol. 2, pp. 021052.1–14, 2023. DOI: 10.1115/1.4063645.
  • P. De, H. Mondal and U. K. Bera, “Dual solutions of heat and mass transfer of nanofluid over a stretching/shrinking sheet with thermal radiation,” Meccanica, vol. 51, no. 1, pp. 117–124, 2016. DOI: 10.1007/s11012-015-0205-1.
  • M. Ferdows, T. Tazin, K. Zaimi, O. A. Bég and T. A. Bég, “Dual solutions in Hiemenz flow of an electro-conductive viscous nanofluid containing elliptic single-/multi-wall carbon nanotubes with magnetic induction effects,” ASME Open J. Engng., vol. 1, pp. 011040–1-14, 2022. DOI: 10.1115/1.4055278.
  • A. Kumar Pandey, S. Rajput, K. Bhattacharyya, A. J. Chamkha and D. Yadav, “Potential impacts of Cattaneo–Christov model of heat flux on the flow of Carreau–Yasuda fluid with mixed convection over a vertical stationary flat plate,” Forces Mech, vol. 11, pp. 100179, 2023. DOI: 10.1016/j.finmec.2023.100179.
  • T. Hayat, M. Qasim and S. Mesloub, “MHD flow and heat transfer over permeable stretching sheet with slip conditions,” Numerical Method. Fluid., vol. 66, no. 8, pp. 963–975, 2011. DOI: 10.1002/fld.2294.
  • I. Waini, A. Ishak and I. Pop, “Dufour and Soret effects on Al2O3-water nanofluid flow over a moving thin needle: tiwari and Das model,” HFF, vol. 31, no. 3, pp. 766–782, 2021. DOI: 10.1108/HFF-03-2020-0177.
  • K. Venkatadri, V. Ramachandra Prasad, O. A. Bég, S. Kuharat, T. A. Bég and S. Saha, “Magneto-thermo-gravitational Rayleigh–Bénard convection of an electro-conductive micropolar fluid in a square enclosure: finite volume computation, Numerical Heat Transfer, Part A: applications,” Numerical Heat Transfer, Part A Appl., pp. 1–26, 2024. DOI: 10.1080/10407782.2023.2299290.
  • M. Z. Abidin, N. Ullah, A. Hussain, S. Saadaoui, M. M. I. Mohamed and A. Deifalla, “Case study of entropy optimization with the flow of non-Newtonian nanofluid past converging conduit with slip mechanism: an application of geothermal engineering,” Case Stud. Thermal Engineering, vol. 52, pp. 103764, 2023. DOI: 10.1016/j.csite.2023.103764.
  • N. Ullah, D. N. K. Marwat, M. M. I. Mohamed and S. B. Moussa, “Steady flow of thin film over porous moving and non‐flat sheet with nonlinear kinematics of exponential type,” ZAMM‐Journal APPl. Mathematics Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, vol. 104, no. 1, pp. e202300057, 2024. DOI: 10.1002/zamm.202300057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.