43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mixed convection hybrid nanofluid flow over a rotating cone in a rotating fluid environment with interfacial nanolayer effect

, , ORCID Icon, &
Received 20 Mar 2024, Accepted 02 Jun 2024, Published online: 17 Jun 2024

References

  • L. S. Sundar, “Synthesis and characterization of hybrid nanofluids and their usage in different heat exchangers for an improved heat transfer rate: a critical review,” Eng. Sci. Technol. Int. J., vol. 44, pp. 101468, Aug 2023. DOI: 10.1016/j.jestch.2023.101468.
  • Aziz. U. Awan, B. Ali, S. A. A. Shah, M. Oreijah, K. Guedri and S. M. Eldin, “Numerical analysis of heat transfer in Ellis hybrid nanofluid flow subject to a stretching cylinder,” Case Stud. Therm. Eng., vol. 49, pp. 103222–103222, Sep 2023. DOI: 10.1016/j.csite.2023.103222.
  • H. A. Nabwey, A. M. Rashad, W. A. Khan, S. M. M. El-Kabeir and S. AbdElnaem, “Heat transfer in MHD flow of Carreau ternary-hybrid nanofluid over a curved surface stretched exponentially,” Front. Phys., vol. 11, p. 1212715, June 2023. DOI: 10.3389/fphy.2023.1212715.
  • Nur.I. Kamis, M.F.M Basir, T.K. Ahmad, L.Y. Jiann, Heat transfer of thin-film Casson hybrid nanofluid flow across an unsteady stretching sheet, AMM vol. 3, no. 1, pp. 14–23, 2023. DOI: 10.33292/amm.v3i1.27.
  • W. Yu and S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated maxwell,” J. Nanopart. Res., vol. 5, pp. 167–171, April 2003. DOI: 10.1023/A:1024438603801.
  • Q. Z. Xue, “Model for effective thermal conductivity of nanofluids,” Phys. Lett. A, vol. 307, no. 5–6, pp. 313–317, Feb 2003. DOI: 10.1016/S0375-9601(02)01728-0.
  • Y. Feng, B. Yu, P. Xu and M. Zou, “The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles,” J. Phys. D Appl. Phys., vol. 40, no. 10, pp. 3164–3171, 2007. DOI: 10.1088/0022-3727/40/10/020.
  • H. Jiang, H. Li, Q. Xu and L. Shi, “Effective thermal conductivity of nanofluids Considering interfacial nano-shells,” Mater. Chem. Phys., vol. 148, no. 1–2, pp. 195–200, Nov 2014. DOI: 10.1016/j.matchemphys.2014.07.031.
  • C. Y. Tso, S. C. Fu and C. Y. Chao, “A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness,” Int. J. Heat Mass Transf., vol. 70, pp. 202–214, Mar 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.077.
  • H. F. Abbasov, “Determination of nanolayer thickness and effective thermal conductivity of nanofluids,” J. Dispers Sci. Technol., vol. 40, no. 4, pp. 594–603, Sep 2018. DOI: 10.1080/01932691.2018.1475241.
  • S. Farooq, M. I. Khan, A. Riahi, W. Chammam and W. A. Khan, “Modeling and interpretation of peristaltic transport in single wall carbon nanotube flow with entropy optimization and Newtonian heating,” Comput. Methods Prog. Biomed., vol. 192, pp. 105435, Aug 2020. DOI: 10.1016/j.cmpb.2020.105435.
  • Y. M. Chu et al., “Double diffusion effect on the bio-convective magnetized flow of tangent hyperbolic liquid by a stretched nano-material with Arrhenius Catalysts,” Case Stud. Thermal Eng., vol. 44, pp. 102838, April 2023. DOI: 10.1016/j.csite.2023.102838.
  • M. Nazeer, F. Hussain, Q. Shahzad, M. I. Khan, S. Kadry and Y. M. Chu, “Perturbation solution of the multiphase flows of third grade dispersions suspended with Hafnium and crystal particles,” Surf. Interfaces, vol. 22, pp. 100803, Feb 2021. DOI: 10.1016/j.surfin.2020.100803.
  • D. Mohanty, N. Sethy, G. Mahanta and S. Shaw, “Impact of the interfacial nanolayer on Marangoni convective Darcy-Forchheimer hybrid nanofluid flow over an infinite porous disk with Cattaneo-Christov heat flux,” Therm, Sci. Eng. Prog., vol. 41, pp. 101854, June 2023. DOI: 10.1016/j.tsep.2023.101854.
  • M. Nazeer, M. I. Khan, M. U. Rafiq and N. B. Khan, “Numerical and scale analysis of Eyring-Powell nanofluid towards a magnetized stretched Riga surface with entropy generation and internal resistance,” Int. Commun. Heat Mass Transf., vol. 119, pp. 104968, Dec 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104968.
  • C. L. Tien and I. J. Tsuji, “A theoretical analysis of laminar forced flow and heat transfer about a rotating cone,” ASME. J. Heat Transf., vol. 87, no. 2,pp. 184–190, May 1965. DOI: 10.1115/1.3689069.
  • K. A. Yih, “Mixed convection about a cone in a porous medium: the entire regime,” Int. Commun. Heat Mass Transf., vol. 26, no. 7, pp. 1041–1050, Oct 1999. DOI: 10.1016/S0735-1933(99)00093-7.
  • D. Anilkumar and S. Roy, “Unsteady mixed convection flow on a rotating cone in a rotating fluid,” Appl. Math. Comput., vol. 155, no. 2, pp. 545–561, Aug 2004. DOI: 10.1016/S0096-3003(03)00799-9.
  • C. S. Raju and N. Sandeep, “Dual solutions for unsteady heat and mass transfer in bio-convection flow towards a rotating cone/plate in a rotating fluid,” JERA, vol. 20, pp. 161–176, Oct 2015. DOI: 10.4028/www.scientific.net/JERA.20.161.
  • H. Hanif, I. Khan and S. Shafie, “MHD natural convection in cadmium telluride nanofluid over a vertical cone embedded in a porous medium,” Phys. Scr., vol. 94, no. 12, pp. 125208, Sep 2019. DOI: 10.1088/1402-4896/ab36e1.
  • M. Ramzan, M. Mohammad and F. Howari, “Magnetized suspended carbon nanotubes based nanofluid flow with bio-convection and entropy generation past a vertical cone,” Sci. Rep., vol. 9, no. 1, pp. 12225, Aug 2019. DOI: 10.1038/s41598-019-48645-9.
  • M. Ramzan, M. Mohammad, F. Howari, J.D. Chung, Entropy analysis of carbon nano tubes based nanofluid flow past a vertical cone with thermal radiation, Entropy, vol. 21, no. 7, p. 642, June 2019. DOI: 10.3390/e21070642.
  • Y. M. Chu, F. Shah, M. I. Khan, S. Kadry, Z. Abdelmalek and W. A. Khan, “Cattaneo-Christov double diffusions (CCDD) in entropy optimized magnetized second grade nanofluid with variable thermal conductivity and mass diffusivity,” J. Materials Res. Technol., vol. 9, no. 6, pp. 13977–13987, Dec 2020. DOI: 10.1016/j.jmrt.2020.09.101.
  • B. Germain, F. Tovondahiniriko, B. Zeghmati and M. H. Andrianantenaina, “Modeling of heat and masstransfer around a rotating cone of revolution,” JMEST, vol. 10, no. 9, pp. 2458–9403, Sep 2023.
  • S. Nazia, B. Seshaiah, P. Sreedevi and P. Sudarsana Reddy, “Non-Newtonian electrically conducting nano fluid heat and mass transfer analysis over a vertical cone with convective boundary condition,” J. Nanofluid., vol. 12, no. 4, pp. 967–977, May 2023. DOI: 10.1166/jon.2023.1980.
  • P. Priyadharshini and M. Vanitha Archana, “Dynamics of magnetized hybrid solid particles in a rotating cone with gradient descent optimization,” Numer Heat Tr B – Fund., pp. 1–20, Jan 2024. DOI: 10.1080/10407790.2023.2301034.
  • A. Khan et al., “Thermal examination for double diffusive MHD Jeffrey fluid flow through the space of disc and cone apparatus subject to impact of multiple rotations,” Int. J. Heat Fluid Flow, vol. 106, pp. 109295, April 2024. DOI: 10.1016/j.ijheatfluidflow.2024.109295.
  • Z. Jiang, H. Shi, X. Tang and J. Qin, “Recent advances in droplet microfluidics for single-cell analysis,” TrAC Trends Anal. Chem., vol. 159, pp. 116932, Feb 2023. DOI: 10.1016/j.trac.2023.116932.
  • C. Zhu, S. A. O. Abdallah, S. Rezapour and S. Shateyi, “On new diverse variety analytical optical soliton solutions to the perturbed nonlinear Schrödinger equation,” Results Phys., vol. 54, pp. 107046, Nov 2023. DOI: 10.1016/j.rinp.2023.107046.
  • C. Zhu, S. A. Idris, M. E. M. Abdalla, S. Rezapour, S. Shateyi and B. Gunay, “Analytical study of nonlinear models using a modified Schrödinger’s equation and logarithmic transformation,” Results Phys., vol. 55, pp. 107183, Dec 2023. DOI: 10.1016/j.rinp.2023.107183.
  • M. I. Khan, H. Waqas, U. Farooq, S. U. Khan, Y. M. Chu and S. Kadry, “Assessment of bioconvection in magnetized Sutterby nanofluid configured by a rotating disk: a numerical approach,” Mod. Phys. Lett. B, vol. 35, no. 12, pp. 2150202, 2021. DOI: 10.1142/S021798492150202X.
  • M. Waqas, M. I. Khan, Z. Asghar, S. Kadry, Y. M. Chu and W. A. Khan, “Interaction of heat generation in nonlinear mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier’s and Fick’s concept,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 11080–11086, Oct 2020. DOI: 10.1016/j.jmrt.2020.07.068.
  • L. Sun, G. Wang and C. Zhang, “Experimental investigation of a novel high performance multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid damper,” J. Intelligent Mater. Syst. Struct., vol. 35, no. 6, pp. 661–672, Feb 2024. DOI: 10.1177/1045389X231222999.
  • S. Qayyum, M. I. Khan, F. Masood, Y. M. Chu, S. Kadry and M. Nazeer, “Interpretation of entropy generation in Williamson fluid flow with nonlinear thermal radiation and first-order velocity slip,” Math. Methods App. Sci., vol. 44, no. 9, pp. 7756–7765, July 2020. DOI: 10.1002/mma.6735.
  • D. Tang et al., “On the nonlinear time-varying mixed lubrication for coupled spiral microgroove water-lubricated bearings with mass conservation cavitation,” Tribol. Int., vol. 193, pp. 109381, May 2024. DOI: 10.1016/j.triboint.2024.109381.
  • A. Abbasi et al., “Optimized analysis and enhanced thermal efficiency of modified hybrid nanofluid (Al2O3, CuO, Cu) with nonlinear thermal radiation and shape features,” Case Stud. Thermal Eng., vol. 28, pp. 101425, Dec 2021. DOI: 10.1016/j.csite.2021.101425.
  • S. Nadeem and S. Saleem, “Unsteady mixed convection flow of a rotating second‐grade fluid on a rotating cone,” Heat Trans. Asian Res., vol. 43, no. 3, pp. 204–220, 2014. DOI: 10.1002/htj.21072.
  • S. Shaw, G. Mahanta and P. Sibanda, “Non-linear thermal convection in a Casson fluid flow over a horizontal plate with convective boundary condition,” Alexandria Eng. J., vol. 55, no. 2, pp. 1295–1304, June 2016. DOI: 10.1016/j.aej.2016.04.020.
  • G. Mahanta and S. Shaw, “3D Casson fluid flow past a porous linearly stretching sheet with convective boundary condition,” Alexandria Eng. J., vol. 54, no. 3, pp. 653–659, Sep 2015. DOI: 10.1016/j.aej.2015.04.014.
  • F. Mabood and A. Mastroberardino, “Melting heat transfer on MHD convective flow of a nanofluid over a stretching sheet with viscous dissipation and second order slip,” J. Taiwan Inst. Chem. Eng., vol. 57, pp. 62–68, Dec 2015. DOI: 10.1016/j.jtice.2015.05.020.
  • K. Batool, F. Haq, F. Fatima and K. Ali, “Significance of interfacial nanolayer and mixed convection in radiative Casson hybrid nanofluid flow by permeable rotating cone,” BioNanoSci, vol. 13, no. 4, pp. 1741–1752, Dec 2023. DOI: 10.1007/s12668-023-01191-1.
  • Q. Raza et al., “Significance role of dual porosity and interfacial nanolayer mechanisms on hybrid nanofluids flow: A symmetry flow model,” Mod. Phys. Lett. B, vol. 38, no. 08, pp. 2450022, 2024. DOI: 10.1142/S0217984924500222.
  • A. Bejan and J. Kestin, “Entropy generation through heat and fluid flow.” June 1983. Available: DOI: 10.1115/1.3167071.
  • E. M. Sparrow and R. D. Cess, “Magneto hydrodynamic flow and heat transfer about a rotating disk,” J. Appl. Mech., vol. 29, no. 1, pp. 181–187, Mar 1962. DOI: 10.1115/1.3636454.
  • A. J. Chamkha and A. M. Rashad, “Unsteady heat and mass transfer by MHD mixed convection flow from a rotating vertical cone with chemical reaction and Soret and Dufour effects,” Can. J. Chem. Eng., vol. 9999, pp. 1–10, Sep 2013. DOI: 10.1002/cjce.21894.
  • J. Chamkha and A. Al-Mudhaf, “Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects,” Int. J. Thermal Sci., vol. 44, no. 3, pp. 267–276, Mar 2005. DOI: 10.1016/j.ijthermalsci.2004.06.005.
  • P. Sambath, B. Pullepu, T. Hussain and S. A. Shehzad, “Radiated chemical reaction impacts on natural convective mhd mass transfer flow induced by a vertical cone,” Results Phys., vol. 8, no. 8, pp. 304–315,Mar 2018. DOI: 10.1016/j.rinp.2017.12.005.
  • H. Hanif, I. Khan and S. Shafie, “Heat transfer exaggeration and entropy analysis in magneto-hybrid nanofluid flow over a vertical cone: a numerical study,” J. Therm. Anal. Calorim., vol. 141, no. 5, pp. 2001–2017, Feb 2020. DOI: 10.1007/s10973-020-09256-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.