15
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of squeezing Cu–water Casson nanofluid flow with an internal heat source through the Bernoulli wavelet method

, , ORCID Icon &
Received 31 Oct 2023, Accepted 04 Jun 2024, Published online: 01 Jul 2024

References

  • Z. Hussain, A. S. Alshomrani, T. Muhammad and M. S. Anwar, “Entropy analysis in mixed convective flow of hybrid nanofluid subject to melting heat and chemical reactions,” Case Stud. Therm. Eng., vol. 34, pp. 101972, 2022. DOI: 10.1016/j.csite.2022.101972.
  • F. Garoosi and M. M. Rashidi, “Conjugate-mixed convection heat transfer in a two-sided lid-driven cavity filled with nanofluid using Manninen’s two phase model,” Int. J. Mech. Sci., vol. 131, pp. 1026–1048, 2017. DOI: 10.1016/j.ijmecsci.2017.08.030.
  • I. Ahmad, H. Zahid, F. Ahmad, M. A. Z. Raja and D. Baleanu, “Design of computational intelligent procedure for thermal analysis of porous fin model,” Chin. J. Phys., vol. 59, pp. 641–655, 2019. DOI: 10.1016/j.cjph.2019.04.015.
  • A. Baïri, “Using nanofluid saturated porous media to enhance free convective heat transfer around a spherical electronic device,” Chin. J. Phys., vol. 70, pp. 106–116, 2021. DOI: 10.1016/j.cjph.2020.03.023.
  • U. Kashyap, K. Das, B. K. Debnath, U. Kashyap and S. K. Saha, “Numerical study on effect of secondary surface on rectangular vortex generator,” J. Therm. Sci. Eng. Appl., vol. 13, no. 1, pp. 011005, 2021. DOI: 10.1115/1.4047008.
  • A. Peddu, S. Chakraborty and P. K. Das, “Visualization and flow regime identification of downward air–water flow through a 12 mm diameter vertical tube using image analysis,” Int. J. Multiphas. Flow, vol. 100, pp. 1–15, 2018. DOI: 10.1016/j.ijmultiphaseflow.2017.11.016.
  • J. Akram, N. S. Akbar and D. Tripathi, “Numerical simulation of electrokinetically driven peristaltic pumping of silver-water nanofluids in an asymmetric microchannel,” Chin. J. Phys., vol. 68, pp. 745–763, 2020. DOI: 10.1016/j.cjph.2020.10.015.
  • A. Abdulkadhim, I. M. Abed and N. M. Said, “An exhaustive review on natural convection within complex enclosures: influence of various parameters,” Chin. J. Phys., vol. 74, pp. 365–388, 2021. DOI: 10.1016/j.cjph.2021.10.012.
  • S. U. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne, IL: Argonne National Lab, 1995.
  • S. Dinarvand, H. Berrehal, H. Tamim, G. Sowmya, S. Noeiaghdam and M. Abdollahzadeh, “Squeezing flow of aqueous CNTs-Fe3O4 hybrid nanofluid through mass-based approach: effect of heat source/sink, nanoparticle shape, and an oblique magnetic field,” Results Eng., vol. 17, pp. 100976, 2023. DOI: 10.1016/j.rineng.2023.100976.
  • D. Yadav, J. Wang, R. Bhargava, J. Lee and H. H. Cho, “Numerical investigation of the effect of magnetic field on the onset of nanofluid convection,” Appl. Therm. Eng., vol. 103, pp. 1441–1449, 2016. DOI: 10.1016/j.applthermaleng.2016.05.039.
  • D. Yadav, R. A. Mohamed, J. Lee and H. H. Cho, “Thermal convection in a Kuvshiniski viscoelastic nanofluid saturated porous layer,” Ain Shams Eng. J., vol. 8, no. 4, pp. 613–621, 2017. DOI: 10.1016/j.asej.2015.11.023.
  • D. Yadav and J. Wang, “Convective heat transport in a heat generating porous layer saturated by a non-Newtonian nanofluid,” Heat Transf. Eng., 2018. DOI: 10.1080/01457632.2018.1470298.
  • D. Yadav, “Impact of chemical reaction on the convective heat transport in nanofluid occupying in porous enclosures: a realistic approach,” Int. J. Mech. Sci., vol. 157–158, pp. 357–373, 2019. DOI: 10.1016/j.ijmecsci.2019.04.034.
  • Q. Xiong et al., “A comprehensive review on the application of hybrid nanofluids in solar energy collectors,” Sustain. Energy Technol. Assess., vol. 47, pp. 101341, 2021. DOI: 10.1016/j.seta.2021.101341.
  • W. Ajeeb and S. M. Murshed, “Nanofluids in compact heat exchangers for thermal applications: a State-of-the-art review,” Therm. Sci. Eng. Prog., vol. 30, pp. 101276, 2022. DOI: 10.1016/j.tsep.2022.101276.
  • A. M. Nejad, “Enhancement of drying of paper with phase change material: a numerical study,” Int. J. Heat Mass Transf., vol. 149, pp. 119169, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119169.
  • M. Ghalambaz, M. A. Shermet, I. Pop and X. D. Wang, “Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model,” PLoS One, vol. 10, no. 5, pp. e0126486, 2015. DOI: 10.1371/journal.pone.0126486.
  • Z. A. Alrowaili, M. Ezzeldien, N. M. Shaaalan, E. Hussein and M. A. Sharafeldin, “Investigation of the effect of hybrid CuO-Cu/water nanofluid on the solar thermal energy storage system,” J. Energy Storage, vol. 50, pp. 104675, 2022. DOI: 10.1016/j.est.2022.104675.
  • E. M. C. Contreras and E. P. B. Filho, “Heat transfer performance of an automotive radiator with MWCNT nanofluid cooling in a high operating temperature range,” Appl. Therm. Eng., vol. 207, pp. 118149, 2022. DOI: 10.1016/j.applthermaleng.2022.118149.
  • Z. X. Li et al., “Nanofluids as secondary fluid in the refrigeration system: experimental data, regression, ANFIS, and NN modeling,” Int. J. Heat Mass Transf., vol. 144, pp. 118635, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118635.
  • F. Hoseininejad, S. Dinarvand and M. E. Yazdi, “Manninen’s mixture model for conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure,” HFF, vol. 31, no. 5, pp. 1662–1694, 2021. DOI: 10.1108/HFF-05-2020-0301.
  • W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transf., vol. 53, no. 11–12, pp. 2477–2483, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.032.
  • M. Turkyilmazoglu, “A note on the correspondence between certain nanofluid flows and standard fluid flows,” J. Heat Transf., vol. 137, no. 2, pp. 024501, 2015. DOI: 10.1115/1.4028807.
  • G. Huminic and A. Huminic, “Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review,” J. Mol. Liq., vol. 302, pp. 112533, 2020. DOI: 10.1016/j.molliq.2020.112533.
  • S. Manjunatha, V. Puneeth, B. J. Gireesha and A. Chamkha, “Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet,” J. Appl. Comput. Mech., vol. 8, no. 4, pp. 1279–1286, 2022. DOI: 10.22055/JACM.2021.37698.3067.
  • N. Acharya, F. Mabood, S. A. Shahzad and I. A. Badruddin, “Hydrothermal variations of radiative nanofluid flow by the influence of nanoparticles diameter and nanolayer,” Int. Commun. Heat Mass Transf., vol. 130, pp. 105781, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105781.
  • K. H. Almitani, N. H. Abu-Hamdeh, A. M. Abusorrah, H. A. Al-Bonsrulah and R. H. Egami, “Nanofluid flow in presence of disturber for solar application utilizing numerical method,” Case,” Stud. Therm. Eng., vol. 53, pp. 103834, 2024. DOI: 10.1016/j.csite.2023.103834.
  • M. Imtiaz, M. I. Khan, M. Akermi and H. A. Hejazi, “Understanding the impact of magnetic dipole and variable viscosity on nanofluid flow characteristics over a stretching surface,” J. Magn. Magn. Mater., vol. 589, pp. 171613, 2024. DOI: 10.1016/j.jmmm.2023.171613.
  • E. Abu-Nada and H. F. Oztop, “Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid,” Int. J. Heat Fluid Flow, vol. 30, no. 4, pp. 669–678, 2009. DOI: 10.1016/j.ijheatfluidflow.2009.02.001.
  • M. Sheikholeslami and D. D. Ganji, “Heat transfer of Cu-water nanofluid flow between parallel plates,” Powder Technol., vol. 235, pp. 873–879, 2013. DOI: 10.1016/j.powtec.2012.11.030.
  • H. Khorasanizadeh, M. Nikfar and J. Amani, “Entropy generation of Cu–water nanofluid mixed convection in a cavity,” Eur. J. Mech.-B/Fluids, vol. 37, pp. 143–152, 2013. DOI: 10.1016/j.euromechflu.2012.09.002.
  • H. Waqas, M. J. Hasan, A. H. Majeed, D. Liu and T. Muhammad, “Hydrothermal characteristics, entropy and kinetic energy investigation in a sinusoidal cavity for variable wavelengths and solid volume fraction using Cu-water nanofluid,” J. Mol. Liq., vol. 389, pp. 122911, 2023. DOI: 10.1016/j.molliq.2023.122911.
  • D. Yadav, S. B. Nair, M. K. Awasthi, R. Ragoju and K. Bhattacharyya, “Linear and nonlinear investigations of the impact of chemical reaction on the thermohaline convection in a permeable layer saturated with Casson fluid,” Phys. Fluids, vol. 36, no. 1, 2024. DOI: 10.1063/5.0187286.
  • A. M. Mohamad, D. Yadav, S. Bharatharajan Nair, M. K. Awasthi, R. Ravi and K. Bhattacharyya, “The effect of Péclet number on the onset of Casson fluid convective motion in a porous layer: analytical and numerical investigations,” Numer. Heat Transf. B Fundamental., pp. 1–13, 2024. DOI: 10.1080/10407790.2024.2320720.
  • S. Mukhopadhyay, P. R. De, K. Bhattacharyya and G. C. Layek, “Casson fluid flow over an unsteady stretching surface,” Ain Shams Eng. J., vol. 4, no. 4, pp. 933–938, 2013. DOI: 10.1016/j.asej.2013.04.004.
  • M. Shuaib, M. Anas, H. U. Rehman, A. Khan, I. Khan and S. M. Eldin, “Volumetric thermo-convective Casson fluid flow over a nonlinear inclined extended surface,” Sci. Rep., vol. 13, no. 1, pp. 2023, 6324. DOI: 10.1038/s41598-023-33259-z.
  • T. Hayat, S. Asad and A. Alsaedi, “Flow of Casson fluid with nanoparticles,” Appl. Math. Mech.-Engl. Ed., vol. 37, no. 4, pp. 459–470, 2016. DOI: 10.1007/s10483-016-2047-9.
  • S. Nadeem et al., “Reynolds nano fluid model for Casson fluid flow conveying exponential nanoparticles through a slandering sheet,” Sci. Rep., vol. 13, no. 1, pp. 1953, 2023. DOI: 10.1038/s41598-023-28515-1.
  • U. Khan, N. Ahmed, S. I. Khan, Z. A. Zaidi, Y. Xiao-Jun and S. T. Mohyud-Din, “On unsteady two-dimensional and axisymmetric squeezing flow between parallel plates,” Alex. Eng. J., vol. 53, no. 2, pp. 463–468, 2014. DOI: 10.1016/j.aej.2014.02.002.
  • Y. M. Li, I. Ullah, N. Ameer Ahammad, I. Ullah, T. Muhammad and S. A. Asiri, “Approximation of unsteady squeezing flow through porous space with slip effect: DJM approach,” Waves Rand. Comp. Med., pp. 1–15, 2022. DOI: 10.1080/17455030.2022.2046298.
  • G. Sobamowo, L. Jayesimi, D. Oke, D. Yinusa and O. Adedibu, “Unsteady Casson nanofluid squeezing flow between two parallel plates embedded in a porous medium under the influence of magnetic field,” Open J. Math. Sci., vol. 3, no. 1, pp. 59–73, 2019. DOI: 10.30538/oms2019.0049.
  • U. Khan, S. I. Khan, N. Ahmed, S. Bano and S. T. Mohyud-Din, “Heat transfer analysis for squeezing flow of a Casson fluid between parallel plates,” Ain Shams Eng. J., vol. 7, no. 1, pp. 497–504, 2016. DOI: 10.1016/j.asej.2015.02.009.
  • J. C. Umavathi, H. Thameem Basha, N. F. M. Noor, F. Kamalov, H. H. Leung and R. Sivaraj, “Semi-analytic solutions and sensitivity analysis for an unsteady squeezing MHD Casson nanoliquid flow between two parallel disks,” Int. J. Mod. Phys. B, pp. 2450396, 2023. DOI: 10.1142/S021797922450396X.
  • D. Yadav, “The onset of convective activity in an anisotropic porous medium layer with internal heating and inconsistent gravity effects,” Rev. Cubana Físic., vol. 37, no. 1, pp. 24–33, 2020.
  • D. Yadav and M. Maqhusi, “Influence of temperature dependent viscosity and internal heating on the onset of convection in porous enclosures saturated with viscoelastic fluid,” Asia-Pacific J. Chem. Eng., vol. 15, no. 6, pp. e2514, 2020. DOI: 10.1002/apj.2514.
  • D. Yadav, “Effect of electric field on the onset of Jeffery fluid convection in a heat-generating porous medium layer,” Pramana – J. Phys., vol. 96, no. 1, pp. 19, 2022. DOI: 10.1007/s12043-021-02242-6.
  • Y. Tasaka and Y. Takeda, “Effects of heat source distribution on natural convection induced by internal heating,” Int.J. Heat Mass Transf., vol. 48, no. 6, pp. 1164–1174, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.09.044.
  • P. Rana, R. Bhargava, O. A. Bég and A. Kadir, “Finite element analysis of viscoelastic nanofluid flow with energy dissipation and internal heat source/sink effects,” Int. J. Appl Comput. Math., vol. 3, pp. 1421–1447, 2017. DOI: 10.1007/s40819-016-0184-5.
  • A. K. Hussein and A. W. Mustafa, “Natural convection in a parabolic enclosure with an internal vertical heat source filled with Cu–water nanofluid,” Heat Trans. Asian Res., vol. 47, no. 2, pp. 320–336, 2018. DOI: 10.1002/htj.21305.
  • A. S. Dogonchi, A. J. Chamkha, S. M. Seyyedi, M. Hashemi-Tilehnoee and D. D. Ganji, “Viscous dissipation impact on free convection flow of Cu-water nanofluid in a circular enclosure with porosity considering internal heat source,” J. Appl. Comput. Mech., vol. 5, no. 4, pp. 717–726, 2019. DOI: 10.22055/JACM.2019.27465.1402.
  • M. Devi, J. Sharma and U. Gupta, “Effect of internal heat source on Darcy-Brinkman convection in a non-Newtonian Casson nanofluid layer,” J. Por. Media, vol. 25, no. 4, pp. 17–35, 2022. DOI: 10.1615/JPorMedia.2022039506.
  • S. Kumbinarasaiah, K. R. Raghunatha, M. Rezazadeh and M. Inc, “A solution of coupled nonlinear differential equations arising in a rotating micropolar nanofluid flow system by Hermite wavelet technique,” Eng. Comput., vol. 38, no. S4, pp. 3351–3372, 2022. DOI: 10.1007/s00366-021-01462-z.
  • C. K. Chui, “Wavelets: a mathematical tool for signal analysis,” Soc. Ind. Appl. Math., 1997.
  • M. Shamsi and M. Razzaghi, “Solution of Hallen’s integral equation singmultiwavelets,” Comput. Phys. Commun., vol. 168, no. 3, pp. 187–197, 2005. DOI: 10.1016/j.cpc.2005.01.016.
  • M. Lakestani, M. Razzaghi and M. Dehghan, “Semiorthogonal spline wavelets approximationforFredholmintegrodifferentialequations,” Math. Probl. Eng., 2006. DOI: 10.1155/MPE/2006/96184.
  • G. Beylkin, R. Coifman and V. Rokhlin, “Fast wavelet transforms and numerical algorithms,” Commun. Pure. Appl. Math., vol. 44, no. 2, pp. 141–183, 1991. DOI: 10.1002/cpa.3160440202.
  • V. Chaurasiya, K. N. Rai, J., Singh, and Jitendra, “Legendre wavelet residual approach for moving boundary problem with variable thermal physical properties,” Int J. Nonlinear Sci and Num Simulation, vol. 23, no. 7–8, pp. 957–970, 2022. DOI: 10.1515/ijnsns-2019-0076.
  • V. Chaurasiya, A. Jain and J. Singh, “Numerical study of a non-linear porous sublimation problem with temperature-dependent thermal conductivity and concentration-dependent mass diffusivity,” ASME J. Heat Mass Transf., vol. 145, no. 7, pp. 072701, 2023. DOI: 10.1115/1.4057024.
  • V. Chaurasiya, K. N. Rai, J. Singh, and Jitendra, “Numerical simulation of a non-classical moving boundary problem with control function and generalized latent heat as a function of moving interface,” Zeitschrif. Naturforschung A, vol. 78, no. 12, pp. 1091–1105, 2023. DOI: 10.1515/zna-2023-0226.
  • V. Chaurasiya, S. Upadhyay, K. N. Rai and J. Singh, “Taylor–Galerkin–Legendre-wavelet approach to the analysis of a moving fin with size-dependent thermal conductivity and temperature-dependent internal heat generation,” J. Therm. Anal. Calorim., vol. 148, no. 22, pp. 12565–12581, 2023. DOI: 10.1007/s10973-023-12613-3.
  • K. R., Raghunatha, Y., Vinod, S. N., Nagappanavar, and Sangamesh, “Unsteady Casson fluid flow on MHD with an internal heat source,” J. Taibah Univ. Sci., vol. 17, no. 1, pp. 2271691, 2023. DOI: 10.1080/16583655.2023.2271691.
  • Y. Vinod, S. N. Nagappanavar, K. R. and Raghunatha, Sangamesh, “Dufour and Soret effects on double diffusive Casson fluid flow with the influence of internal heat source,” J. UmmAl-QuraUniv Appl. Sci., pp. 1–11, 2024. DOI: 10.1007/s43994-024-00133-1.
  • P. Rahimkhani, Y. Ordokhani and E. Babolian, “A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations,” Numer. Algor., vol. 74, no. 1, pp. 223–245, 2017. DOI: 10.1007/s11075-016-0146-3.
  • K. R. Raghunatha and Y. Vinod, “Effects of heat transfer on MHD suction–injection model of viscous fluid flow through differential transformation and Bernoulli wavelet techniques,” Heat Trans., vol. 52, no. 7, pp. 4914–4945, 2023. DOI: 10.1002/htj.22911.
  • K. R. Raghunatha, Y. Vinod and B. V. Manjunatha, “Application of Bernoulli wavelet method on triple‐diffusive convection in Jeffery–Hamel flow,” Heat Trans., vol. 52, no. 8, pp. 5269–5301, 2023. DOI: 10.1002/htj.22928.
  • G. Domairry and M. Hatami, “Squeezing Cu–water nanofluid flow analysis between parallel plates by DTM-Padé Method,” J. Mol. Liq., vol. 193, pp. 37–44, 2014. DOI: 10.1016/j.molliq.2013.12.034.
  • S. Mousavisani, J. Khalesi, H. Golbaharan, M. Sepehrand and D. D. Ganji, “Influence of inclined Lorentz forces through a porous media on squeezing Cu-H2o nanofluid in the presence of heat source/sink,” HFF, vol. 30, no. 5, pp. 2563–2581, 2020. DOI: 10.1108/HFF-03-2019-0186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.