27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Precise integration boundary element method for solving nonlinear transient heat conduction problems with temperature dependent thermal conductivity and heat capacity

, , &
Received 10 Jan 2024, Accepted 07 Jun 2024, Published online: 24 Jun 2024

References

  • A. A. Delouei, A. Emamian, S. Karimnejad, H. Sajjadi and A. Tarokh, “On 2D asymmetric heat conduction in functionally graded cylindrical segments: a general exact solution,” Int. J. Heat Mass Transfer., vol. 143, pp. 118515, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118515.
  • A. A. Delouei, A. Emamian, S. Karimnejad, H. Sajjadi and D. Jing, “Two-dimensional analytical solution for temperature distribution in FG hollow spheres: general thermal boundary conditions,” Int. Commun. Heat Mass Transfer., vol. 113, pp. 104531, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104531.
  • A. A. Delouei, A. Emamian, S. Karimnejad, H. Sajjadi and D. Jing, “Two-dimensional temperature distribution in FGM sectors with the power-law variation in radial and circumferential directions,” J. Therm. Anal. Calorim., vol. 144, no. 3, pp. 611–621, 2021. DOI: 10.1007/s10973-020-09482-5.
  • H. K. Versteeg and W. Malalasekera, “An introduction to computational fluid dynamics: the finite volume method,” Pearson education, 2007.
  • W. Li, B. Yu, X. Wang, P. Wang and S. Sun, “A finite volume method for cylindrical heat conduction problems based on local analytical solution,” Int. J. Heat Mass Transfer., vol. 55, no. 21–22, pp. 5570–5582, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.05.043.
  • S. Han, “Finite volume solution of two-step hyperbolic conduction in casting sand,” Int. J. Heat Mass Transfer., vol. 93, pp. 1116–1123, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.10.061.
  • D. G. Comini, S. Del Guidice, R. W. Lewis and O. Zienkiewicz, “Finite element solution of non‐linear heat conduction problems with special reference to phase change,” Numer. Methods Eng., vol. 8, no. 3, pp. 613–624, 1974. DOI: 10.1002/nme.1620080314.
  • M. Malek, N. Izem, S. Mohamed M and M. Seaid, “A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials,” Int. J. Heat Mass Transfer., vol. 155, pp. 119804, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119804.
  • A. R. Khoei and B. Bahmani, “Application of an enriched FEM technique in thermo-mechanical contact problems,” Comput. Mech., vol. 62, no. 5, pp. 1127–1154, 2018. DOI: 10.1007/s00466-018-1555-z.
  • B. Shen, A. J. Shih and G. Xiao, “A heat transfer model based on finite difference method for grinding,” J. Manuf. Sci. Eng., vol. 133, no. 3, pp. 031001, 2011.
  • J. Lei, Q. Wang, X. Liu, Y. Gu and C. M. Fan, “A novel space-time generalized FDM for transient heat conduction problems,” Eng. Anal. Boundary Elem., vol. 119, pp. 1–12, 2020. DOI: 10.1016/j.enganabound.2020.07.003.
  • K. M. Abualnaja, “Finite difference method for solving a physical problem in fluid flow,” Int. J. Mod. Phys. C, vol. 32, no. 02, pp. 2150025, 2021. DOI: 10.1142/S012918312150025X.
  • W. Z. Xu, Z. J. Fu and Q. Xi, “A novel localized collocation solver based on a radial Trefftz basis for thermal conduction analysis in FGMs with exponential variations,” Comput. Math. Appl., vol. 117, pp. 24–38, 2022. DOI: 10.1016/j.camwa.2022.04.007.
  • Z. J. Fu, L. W. Yang, Q. Xi and C. S. Liu, “A boundary collocation method for anomalous heat conduction analysis in functionally graded materials,” Comput. Math. Appl., vol. 88, pp. 91–109, 2021. DOI: 10.1016/j.camwa.2020.02.023.
  • Q. Xi, Z. Fu, C. Zhang and D. Yin, “An efficient localized Trefftz-based collocation scheme for heat conduction analysis in two kinds of heterogeneous materials under temperature loading,” Comput. Struct., vol. 255, pp. 106619, 2021. DOI: 10.1016/j.compstruc.2021.106619.
  • C. A. Brebbia, Boundary Element Methods in Heat Transfer. Cham: Springer Science & Business Media, 2012.
  • H. Y. Li, G. H. Jiang, K. Yang and X. W. Gao, “A new approach to solve multi-medium nonlinear transient heat conduction problems using interface integration BEM,” Eng. Anal. Boundary Elem., vol. 119, pp. 269–279, 2020. DOI: 10.1016/j.enganabound.2020.07.026.
  • R. Ye, A. J. Kassab and H. Li, “FVM/BEM Approach for the Solution of Non-linear Conjugate Heat Transfer Problems,” WIT Trans. Model. Simul., vol. 21, 1998.
  • H. Hosseinzadeh, M. Dehghan and Z. Sedaghatjoo, “The stability study of numerical solution of Fredholm integral equations of the first kind with emphasis on its application in boundary elements method,” Appl. Numer. Math., vol. 158, pp. 134–151, 2020. DOI: 10.1016/j.apnum.2020.07.011.
  • H. Hosseinzadeh, M. Dehghan and D. Mirzaei, “The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers,” Appl. Math. Model., vol. 37, no. 4, pp. 2337–2351, 2013. DOI: 10.1016/j.apm.2012.05.020.
  • Z. Sedaghatjoo, M. Dehghan and H. Hosseinzadeh, “Numerical solution of 2D Navier–Stokes equation discretized via boundary elements method and finite difference approximation,” Eng. Anal. Boundary Elem., vol. 96, pp. 64–77, 2018. DOI: 10.1016/j.enganabound.2018.08.004.
  • D. Mirzaei and M. Dehghan, “Boundary element solution of the two-dimensional sine-Gordon equation using continuous linear elements,” Eng. Anal. Boundary Elem., vol. 33, no. 1, pp. 12–24, 2009. DOI: 10.1016/j.enganabound.2008.03.011.
  • A. Emamian, A. Amiri Delouei, S. Karimnejad and D. Jing, “Analytical solution for temperature distribution in functionally graded cylindrical shells under convective cooling,” Math. Methods App. Sci., vol. 46, no. 10, pp. 11442–11461, 2023. DOI: 10.1002/mma.7819.
  • A. M. Dehrouyeh-Semnani, “On the thermally induced non-linear response of functionally graded beams,” Int. J. Eng. Sci., vol. 125, pp. 53–74, 2018. DOI: 10.1016/j.ijengsci.2017.12.001.
  • J. Liu and J. Li, “Dynamic analysis of 2D FG porous thick cylindrical shells under thermal shock,” Int. J. Str. Stab. Dyn., 2024. DOI: 10.1142/S0219455425500075.
  • W. Jiammeepreecha, K. Chaidachatorn, B. Phungpaingam, K. Klaycham and S. Chucheepsakul, “Free vibration analysis of FGM spherical and elliptical shells under nonlinear thermal environments,” Thin-Walled Struct., vol. 196, pp. 111497, 2024. DOI: 10.1016/j.tws.2023.111497.
  • S. Karimnejad, et al., “A review on contact and collision methods for multi-body hydrodynamic problems in complex flows,” Arxiv Preprint Arxiv:2211, pp. 11728, 2022.
  • D. Nardini and C. A. Brebbia, “A new approach to free vibration analysis using boundary elements,” Appl. Math. Model., vol. 7, no. 3, pp. 157–162, 1983. DOI: 10.1016/0307-904X(83)90003-3.
  • M. Dehghan and M. Shirzadi, “The modified dual reciprocity boundary elements method and its application for solving stochastic partial differential equations,” Eng. Anal. Boundary Elem., vol. 58, pp. 99–111, 2015. DOI: 10.1016/j.enganabound.2015.03.013.
  • M. Dehghan and M. Safarpoor, “The dual reciprocity boundary elements method for the linear and nonlinear two‐dimensional time‐fractional partial differential equations,” Math. Methods App. Sci., vol. 39, no. 14, pp. 3979–3995, 2016. DOI: 10.1002/mma.3839.
  • M. Dehghan and D. Mirzaei, “The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation,” Comput. Methods Appl. Mech. Eng., vol. 197, no. 6-8, pp. 476–486, 2008. DOI: 10.1016/j.cma.2007.08.016.
  • W. Q. Lu, J. Liu and Y. Zeng, “Simulation of the thermal wave propagation in biological tissues by the dual reciprocity boundary element method,” Eng. Anal. Boundary Elem., vol. 22, no. 3, pp. 167–174, 1998. DOI: 10.1016/S0955-7997(98)00039-3.
  • B. Šarler and G. Kuhn, “Dual reciprocity boundary element method for convective-diffusive solid-liquid phase change problems, Part 1. Formulation,” Eng. Anal. Boundary Elem., vol. 21, no. 1, pp. 53–63, 1998. DOI: 10.1016/S0955-7997(97)00112-4.
  • X. W. Gao, “The radial integration method for evaluation of domain integrals with boundary-only discretization,” Eng. Anal. Boundary Elem., vol. 26, no. 10, pp. 905–916, 2002. DOI: 10.1016/S0955-7997(02)00039-5.
  • X. W. Gao, “A boundary element method without internal cells for two-dimensional and three-dimensional elastoplastic problems,” J. Appl. Mech., vol. 69, no. 2, pp. 154–160, 2002. DOI: 10.1115/1.1433478.
  • X. W. Gao, “Evaluation of regular and singular domain integrals with boundary-only discretization—theory and Fortran code,” J. Comput. Appl. Math., vol. 175, no. 2, pp. 265–290, 2005. DOI: 10.1016/j.cam.2004.05.012.
  • X. W. Gao, “Boundary element analysis in thermoelasticity with and without internal cells,” Numer. Methods Eng., vol. 57, no. 7, pp. 975–990, 2003. 2003. DOI: 10.1002/nme.715.
  • C. H. Zhang, M. Cui, J. Wang, X. W. Gao, J. Sladek and V. Sladek, “3D crack analysis in functionally graded materials,” Eng. Fract. Mech., vol. 78, no. 3, pp. 585–604, 2011. DOI: 10.1016/j.engfracmech.2010.05.017.
  • X. W. Gao, “A meshless BEM for isotropic heat conduction problems with heat generation and spatially varying conductivity,” Int. J. Numer. Methods Eng., vol. 66, no. 9, pp. 1411–1431, 2006. DOI: 10.1002/nme.1602.
  • H. F. Peng, K. Yang, K and X. W. Gao, “Element nodal computation-based radial integration BEM for non-homogeneous problems,” Acta Mech. Sin., vol. 29, no. 3, pp. 429–436, 2013. DOI: 10.1007/s10409-013-0031-4.
  • X. W. Gao, C. Zhang and L. Guo, “Boundary-only element solutions of 2D and 3D nonlinear and nonhomogeneous elastic problems,” Eng. Anal. Boundary Elem., vol. 31, no. 12, pp. 974–982, 2007. DOI: 10.1016/j.enganabound.2007.05.002.
  • K. Yang, J. Wang, J. M. Du, H. F. Peng and X. W. Gao, “Radial integration boundary element method for nonlinear heat conduction problems with temperature-dependent conductivity,” Int. J. Heat Mass Transfer., vol. 104, pp. 1145–1151, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.015.
  • K. Yang, H. F. Peng, J. Wang, C. H. Xing and X. W. Gao, “Radial integration BEM for solving transient nonlinear heat conduction with temperature-dependent conductivity,” Int. J. Heat Mass Transfer., vol. 108, pp. 1551–1559, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.030.
  • K. Yang and X. W. Gao, “Radial integration BEM for transient heat conduction problems,” Eng. Anal. Boundary Elem., vol. 34, no. 6, pp. 557–563, 2010. DOI: 10.1016/j.enganabound.2010.01.008.
  • M. N. Özişik, H. R. Orlande, M. J. Colaço and R. M. Cotta, Finite Difference Methods in Heat Transfer, Boca Raton, FL: CRC Press, 2017.
  • W. X. Zhong and F. W. Williams, “A precise time step integration method,” Proc. Institution Mech. Eng. C J. Mech. Eng. Sci., vol. 208, no. 6, pp. 427–430, 1994. DOI: 10.1243/PIME_PROC_1994_208_148_02.
  • B. S. Chen, Y. Gu, Z. Guan and H. W. Zhang, “Nonlinear transient heat conduction analysis with precise time integration method,” Numer. Heat Transfer B Fundam, vol. 40, pp. 325–341, 2001.
  • B. S. Chen, L. Tong, Y. Gu, H. W. Zhang and O. Ochoa, “Transient heat transfer analysis of functionally graded materials using adaptive precise time integration and graded finite elements,” Numer. Heat Transfer B Fundam, vol. 45, no. 2, pp. 181–200, 2004. DOI: 10.1080/1040779049025384.
  • B. Tang, “Combined dynamic stiffness matrix and precise time integration method for transient forced vibration response analysis of beams,” J. Sound Vib., vol. 309, no. 3-5, pp. 868–876, 2008. DOI: 10.1016/j.jsv.2007.07.075.
  • X. F. Hu, X. Ding, T. Q. Bui and W. A. Yao, “Precise integration symplectic analytical singular element for cracks analysis under transient thermal conduction,” Int. J. Appl. Mech., vol. 12, no. 01, pp. 2050005, 2020. DOI: 10.1142/S1758825120500052.
  • X. F. Hu, X. Y. Huang, W. A. Yao and P. Zhang, “Precise integration explicit phase field method for dynamic brittle fracture,” Mech. Res. Commun., vol. 113, pp. 103698, 2021. DOI: 10.1016/j.mechrescom.2021.103698.
  • Q. H. Li, S. S. Chen and G. X. Kou, “Transient heat conduction analysis using the MLPG method and modified precise time step integration method,” J. Comput. Phys., vol. 230, no. 7, pp. 2736–2750, 2011. DOI: 10.1016/j.jcp.2011.01.019.
  • W. A. Yao, B. Yu, X. W. Gao and Q. Gao, “A precise integration boundary element method for solving transient heat conduction problems,” Int. J. Heat Mass Transfer, vol. 78, pp. 883–891, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.029.
  • B. Yu, W. A. Yao and Q. Gao, “A precise integration boundary-element method for solving transient heat conduction problems with variable thermal conductivity,” Numer. Heat Transfer B Fundam, vol. 65, no. 5, pp. 472–493, 2014. DOI: 10.1080/10407790.2013.873311.
  • L. C. Wrobel and C. A. Brebbia, “Boundary elements for non‐linear heat conduction problems,” Commun. Appl. Numer. Methods, vol. 4, no. 5, pp. 617–622, 1988. DOI: 10.1002/cnm.1630040504.
  • S. J. Liao, “General boundary element method for non-linear heat transfer problems governed by hyperbolic heat conduction equation,” Comput. Mech., vol. 20, no. 5, pp. 397–406, 1997. DOI: 10.1007/s004660050260.
  • S. J. Liao and A. T. Chwang, “General boundary element method for non‐linear problems,” Int. J. Numer. Methods Fluids, vol. 23, no. 5, pp. 467–483, 1996. DOI: 10.1002/(SICI)1097-0363(19960915)23:5<467::AID-FLD436>3.3.CO;2-0.
  • E. Majchrzak and L. Turchan, “Modeling of laser heating of bi-layered microdomain using the general boundary element method,” Eng. Anal. Boundary Elem., vol. 108, pp. 438–446, 2019. DOI: 10.1016/j.enganabound.2019.09.005.
  • W. X. Zhong, “On precise integration method,” J. Comput. Appl. Math., vol. 163, no. 1, pp. 59–78, 2004.
  • M. Cui, X. W. Gao and J. Zhang, “A new approach for the estimation of temperature-dependent thermal properties by solving transient inverse heat conduction problems,” Int. J. Thermal Sci., vol. 58, pp. 113–119, 2012. DOI: 10.1016/j.ijthermalsci.2012.02.024.
  • X. Xu, G. Chen and K. H. Song, “Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel,” Int. J. Heat Mass Transfer, vol. 42, no. 8, pp. 1371–1382, 1999. DOI: 10.1016/S0017-9310(98)00272-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.