20
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Radiative squeezed flow of magnetized Prandtl-Eyring fluid over a sensor surface under Soret effect

, , &
Received 26 Dec 2023, Accepted 19 Jun 2024, Published online: 07 Jul 2024

References

  • X. Zhang, H. Ju and J. Wang, Electrochemical Sensors, Biosensors and Their Biomedical Applications,” New York, USA: Academic Press, 1994,
  • N. V. Lavrik, C. A. Tipple, M. J. Sepaniak and D. Datskos, “Gold-nano structures for transduction of Biomolecular interactions into micrometre scale movements,” Biomed. Microdevices, vol. 3, no. 1, pp. 35–44, Mar. 2001. DOI: 10.1023/A:1011473203133.
  • C. Xu, L. Yuan, Y. Xu and W. Hang, “Squeeze flow of interstitial Herschel-Bulkley fluid between two rigid spheres,” Particuology, vol. 8, no. 4, pp. 360–364, Aug. 2010. DOI: 10.1016/j.partic.2009.07.008.
  • A. Lawal and D. M. Kalyon, “Squeezing flow of viscoplastic fluids subject to wall slip,” Polym. Eng. Sci., vol. 38, no. 11, pp. 1793–1804, Nov. 1998. DOI: 10.1002/pen.10349.
  • M. J. Stefan, “Versuch Über die scheinbare Adhäsion, Sitzungsber, Abt. II, Österr,” Akad. Wiss. Math.-Naturwiss. Kl, vol. 69, pp. 713–721, 1874.
  • P. S. Gupta and A. S. Gupta, “Squeezing flow between parallel plates,” Wear, vol. 45, no. 2, pp. 177–185, Nov. 1977. DOI: 10.1016/0043-1648(77)90072-2.
  • P. Singh, V. Radhakrishnan and K. A. Narayan, “Squeezing flow between parallel plates,” Ing. Arch. vol. 60, no. 4, pp. 274–281, Jan. 1990. DOI: 10.1007/BF00577864.
  • S. Islam, H. Khan, I. A. Shah and G. Zaman, “An axisymmetric squeezing fluid flow between the two infinite parallel plates in a porous medium channel,” Math. Probl. Eng., vol. 2011, no. 1, pp. 1–10, Apr. 2011. DOI: 10.1155/2011/349803.
  • M. M. Rashidi, A. M. Siddiqui and M. T. Rastegari, “Analytical solution of squeezing flow between two circular plates,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 13, no. 5, pp. 342–349, Oct. 2012. DOI: 10.1080/15502287.2012.698698.
  • M. Mustafa, T. Hayat and S. Obaidat, “On heat and mass transfer in the unsteady squeezing flow between parallel plates,” Meccanica, vol. 47, no. 7, pp. 1581–1589, Jan. 2012. DOI: 10.1007/s11012-012-9536-3.
  • A. G. Petrov and I. S. Kharlamova, “The solutions of Navier-Stokes equations in squeezing flow between parallel plates,” Eur. J. Mech. B/Fluids., vol. 48, pp. 40–48, Nov. 2014. DOI: 10.1016/j.euromechflu.2014.04.004.
  • S. Usha and N. B. Naduvinamani, “Magnetized squeezed flow of time-dependent Prandtl-Eyring fluid past a sensor,” Heat Transf., vol. 48, no. 6, pp. 2237–2261, Sep. 2019. DOI: 10.1002/htj.21482.
  • K. G. Kumar, B. J. Gireesha, M. R. Krishanamurthy and N. G. Rudraswamy, “An unsteady squeezed flow of a tangent hyperbolic fluid over a sensor surface in the presence of variable thermal conductivity,” Results Phys., vol. 7, pp. 3031–3036, Aug. 2017. DOI: 10.1016/j.rinp.2017.08.021.
  • J. Akram, N. S. Akbar and E. Maraj, “Chemical reaction and heat source/sink effect on magneto-nano Prandtl-Eyring fluid peristaltic propulsion in an inclined symmetric channel,” Chin. J. Phys., vol. 65, pp. 300–313, Jun. 2020. DOI: 10.1016/j.cjph.2020.03.004.
  • Shabnam, S., Mei, M. S. Khan, O. Mahmoud, A. M. Galal, “Numerical investigation of a squeezing flow between concentric cylinders under the variable magnetic field of intensity,” Sci. Rep., vol. 12, no. 1, pp. 9148, Jun. 2022. DOI: 10.1038/s41598-022-13050-2.
  • A. Jan, M. Mushtaq, U. Farooq and M. Hussain, “Nonsimilar analysis of magnetized Sisko nanofluid flow subjected to heat generation/absorption and viscous dissipation,” J. Magn. Magn. Mater., vol. 564, no. 2, pp. 170153, Dec. 2022. DOI: 10.1016/j.jmmm.2022.170153.
  • J. Cui, A. Jan, U. Farooq, M. Hussain and W. A. Khan, “Thermal analysis of radiative Darcy–Forchheimer nanofluid flow across an inclined stretching surface,” Nanomaterials, vol. 12, no. 23, pp. 4291, Dec. 2022. DOI: 10.3390/nano12234291.
  • J. Cui, et al., “Significance of nonsimilar numerical simulations in forced convection from stretching cylinder subjected to external magnetized flow of Sisko fluid,” J. Math., vol. 2021, pp. 1–11, Nov. 2021. DOI: 10.1155/2021/9540195.
  • U. Farooq, A. Jan and M. Hussain, “Impact of thermal radiations, heat generation/absorption and porosity on MHD nanofluid flow towards an inclined stretching surface: non-similar analysis,” ZAMM, vol. 104, no. 3, pp. e202300306, Mar. 2024. DOI: 10.1002/zamm.202300306.
  • A. Jan, M. Mushtaq and M. Hussain, “Heat transfer enhancement of forced convection magnetized cross model ternary hybrid nanofluid flow over a stretching cylinder: non-similar analysis,” Int. J. Heat Fluid Flow, vol. 106, pp. 109302, Apr. 2024. DOI: 10.1016/j.ijheatfluidflow.2024.109302.
  • U. Farooq, A. Bibi, J. N. Abbasi, A. Jan and M. Hussain, “Nonsimilar mixed convection analysis of ternary hybrid nanofluid flow near stagnation point over vertical Riga plate,” MMMS, vol. 20, no. 2, pp. 261–278, Mar. 2024. DOI: 10.1108/MMMS-09-2023-0301.
  • J. Farooq, J. D. Chung, M. Mushtaq, D. Lu, M. Ramazan and U. Farooq, “Influence of slip velocity on the flow of viscous fluid through a porous medium in a permeable tube with a variable bulk flow rate,” Results Phys., vol. 11, no. 2, pp. 861–868, Nov. 2018. DOI: 10.1016/j.rinp.2018.10.049.
  • S. Riaz, M. F. Afzaal, Z. Wang, A. Jan and U. Farooq, “Numerical heat transfer of non-similar ternary hybrid nanofluid flow over linearly stretching surface,” Numer. Heat Transf. A: Appl., vol. 84, pp. 1–15, Sep. 2023. DOI: 10.1080/10407782.2023.2251093.
  • R. Razzaq, U. Farooq, J. Cui and T. Muhammad, “Non-similar solution for magnetized flow of Maxwell nanofluid over an exponentially stretching surface,” Math. Probl. Eng., vol. 2021, pp. 1–10, May. 2021. DOI: 10.1155/2021/5539542.
  • R. Razzaq and U. Farooq, “Non-similar forced convection analysis of Oldroyd-B fluid flow over an exponentially stretching surface,” Adv. Mech. Eng., vol. 13, no. 7, pp. 168781402110346, Jun. 2021. DOI: 10.1177/16878140211034604.
  • F. Rahman, “Analysis of accelerated flow over an insulated wedge surface by using Von Karman-Pohlhausen’s momentum integral method,” J. Mech. Eng., vol. 49, no. 1, pp. 1–12, Mar. 2019.
  • J. Cui, S. Munir, S. F. Raies, U. Farooq and R. Razzaq, “Non-similar aspects of heat generation in bio-convection from flat surface subjected to chemically reactive stagnation point flow of Oldroyd-B fluid,” Alexandria Eng. J., vol. 61, no. 7, pp. 5397–5411, 2021. Nov. DOI: 10.1016/j.aej.2021.10.056.
  • T. Hayat, Z. Nisar, B. Ahmad and H. Yasmin, “Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating,” J. Magn. Magn. Mater., vol. 395, pp. 48–58, Dec. 2015. DOI: 10.1016/j.jmmm.2015.07.027.
  • R. Ali, A. Shahzad, M. Khan and M. Ayub, “Analytic and numerical solutions for axisymmetric flow with partial slip,” Eng. Comp., vol. 32, no. 1, pp. 149–154, Jun. 2016. DOI: 10.1007/s00366-015-0405-2.
  • A. R. A. Khaled and K. Vafai, “Heat transfer and hydromagnetic control of flow exit conditions inside oscillatory squeezed thin films,” Numer. Heat Transf. A: Appl., vol. 43, no. 3, pp. 239–258, Nov. 2003. DOI: 10.1080/10407780307312.
  • A. R. A. Khaled and K. Vafai, “Hydromagnetic squeezed flow and heat transfer over a sensor surface,” Int. J. Eng. Sci., vol. 42, no. 5–6, pp. 509–519, Mar. 2004. DOI: 10.1016/j.ijengsci.2003.08.005.
  • R. U. Haq, S. Nadeem, Z. H. Khan and N. F. M. Noor, “MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface,” Physica E, vol. 73, pp. 45–53, Sep. 2015. DOI: 10.1016/j.physe.2015.05.007.
  • M. Khan, M. Y. Malik, T. Salahuddin and I. Khan, “Heat transfer squeezed flow of Carreau fluid over a sensor surface with variable thermal conductivity: a numerical study,” Results Phys., vol. 6, pp. 940–945, Nov. 2016. DOI: 10.1016/j.rinp.2016.10.024.
  • T. Salahuddin, M. Y. Malik, A. Hussain, S. Bilal, M. Awais and I. Khan, “MHD squeezed flow of Carreau-Yasuda fluid over a sensor surface,” Alex. Eng. J., vol. 56, no. 1, pp. 27–34, Mar. 2017. DOI: 10.1016/j.aej.2016.08.029.
  • K. Bhaskar and K. Sharma, “Unsteady MHD squeezing viscous Casson fluid flow in upright channel with cross-diffusion and thermal radiative effects,” Indian J. Phys., vol. 95, no. 7, pp. 1453–1467, Jul. 2021. DOI: 10.1007/s12648-020-01805-4.
  • K. Qaisar, F. Muhammad and A. Shakeel, “Convective features of squeezing flow in nonlinear stratified fluid with inclined rheology,” Int. Commun. Heat Mass Transf., vol. 120, pp. 104958, Jan. 2021. DOI: 10.1016/j.icheatmasstransfer.2020.104958.
  • M. K. Alam, B. Khadija, K. Aamir and N. Samad, “Dufour and Soret effect on viscous fluid flow between squeezing plates under the influence of variable magnetic field,” Mathematics, vol. 9, no. 19, pp. 2404, Sep. 2021. DOI: 10.3390/math9192404.
  • A. M. Obalalu, “Heat and mass transfer in an unsteady squeezed Casson fluid flow with novel thermophysical properties: analytical and numerical solution,” Heat Transf., vol. 50, no. 8, pp. 7988–8011, Dec. 2021. DOI: 10.1002/htj.22263.
  • R. Fathollahi, A. Asad, K. Parmida, M. A. Azher and P. Pooya, “Analyzing the effect of radiation on the unsteady 2D MHD Al2O3-water flow through parallel squeezing sheets by AGM and HPM,” Alexandria. Eng. J., vol. 69, pp. 207–219, Apr. 2023. DOI: 10.1016/j.aej.2022.11.035.
  • M. Farooq, H. W. Muhammad, A. Shakeel and B. H. H. Siwar, “Assessment of squeezing phenomenon in non-linear stratified fluid flow with slip conditions through Darcy porous material,” Int. Commun. Heat Mass Transf., vol. 146, pp. 106945, Jul. 2023. DOI: 10.1016/j.icheatmasstransfer.2023.106945.
  • S. Usha, N. B. Naduvinamani and H. Basha, “A generalized perspective of Fourier and Fick’s laws: magnetized effects of Cattaneo-Christov models on transient nanofluid flow between two parallel plates with Brownian motion and thermophoresis,” Nonlinear Eng., vol. 9, no. 1, pp. 201–222, Apr. 2020. DOI: 10.1515/nleng-2020-0009.
  • N. B. Naduvinamani, A. S. Guttedar, S. Usha and H. Basha, “Magnetohydrodynamic peristaltic flow of unsteady tangent‐hyperbolic fluid in an asymmetric channel,” Heat Transf., vol. 50, no. 1, pp. 370–395, Jan. 2021. DOI: 10.1002/htj.21881.
  • N. B. Naduvinamani, A. S. Guttedar, S. Usha and H. Basha, “Exploration of the dynamics of hyperbolic tangent fluid through a tapered asymmetric porous channel,” Nonlinear Eng., vol. 11, no. 1, pp. 298–315, Jul. 2022. DOI: 10.1515/nleng-2022-0033.
  • H. Basha, “A generalized perspective of magnetized radiative squeezed flow of viscous fluid between two parallel disks with suction and blowing,” Heat Transf., vol. 49, no. 4, pp. 2248–2281, Jun. 2020. DOI: 10.1002/htj.21719.
  • S. Usha, N. B. Naduvinamani and H. Basha, “Effects of magnetized variable thermal conductivity on flow and heat transfer characteristics of unsteady Williamson fluid,” Nonlinear Eng., vol. 9, no. 1, pp. 338–351, Aug. 2020. DOI: 10.1515/nleng-2020-0020.
  • R. K. V. Muhammed, H. Basha, G. J. Reddy, S. Usha and O. A. Bég, “Influence of variable thermal conductivity and dissipation on magnetic Carreau fluid flow along a micro-cantilever sensor in a squeezing regime,” Waves Random Complex Media, vol. 33, pp. 1–30, Nov. 2022. DOI: 10.1080/17455030.2022.2139013.
  • T. Salahuddin, Z. Mahmood, M. Khan and M. Awais, “A permeable squeezed flow analysis of Maxwell fluid near a sensor surface with radiation and chemical reaction,” Chem. Phys., vol. 562, pp. 111627, Oct. 2022. DOI: 10.1016/j.chemphys.2022.111627.
  • B. J. Gireesha, B. Nagaraja, N. Srikantha, N. G. Rudraswamy and A. Felicita, “Magnetically propelled Carreau fluid flow over penetrable sensor surface influenced by thermal radiation, Joule heating and heat generation,” Commun. Theor. Phys., vol. 74, no. 2, pp. 025002, Feb. 2022. DOI: 10.1088/1572-9494/ac41c7.
  • T. Salahuddin and M. Awais, “A comparative study of cross and Carreau fluid models having variable fluid characteristics,” Int. Commun. Heat Mass Transf., vol. 139, pp. 106431, Dec. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106431.
  • M. Sagheer, S. M. Atif, S. Hussain and H. Rehman, “Squeezed MHD tangent hyperbolic fluid flow across a sensor surface,” Heat Transf., vol. 51, no. 6, pp. 5101–5113, Apr. 2022. DOI: 10.1002/htj.22538.
  • H. Basha, “Magnetized dissipative Soret and Dufour effects on thermally radiative Casson fluid flow over a stretching cylinder with Cattaneo–Christov heat and mass flux models,” Waves Random Complex Media, vol. 33, pp. 1–29, May. 2023. DOI: 10.1080/17455030.2023.2206491.
  • R. Dasari, N. N. Kumar and H. Basha, “Lorentz force influenced entropy generation in couple stress squeezed hybrid-nanofluid flow: application to cardiovascular hemodynamics,” Numer. Heat Transf. B: Fund., vol. 84, pp. 1–33, Oct. 2023. DOI: 10.1080/10407790.2023.2262756.
  • T. Salahuddin and M. Awais, “Cattaneo-Christov flow analysis of unsteady couple stress fluid with variable fluid properties: by using Adam’s method,” Alexandria Eng. J., vol. 81, pp. 64–86, May. 2023. DOI: 10.1016/j.aej.2023.09.021.
  • S. S. Palaiah, G. J. Reddy, H. Basha and R. Ravi, “Transient magnetized Soret effect on dissipative couple stress convection flow past a cylinder,” Numer. Heat Transf. B: Fund., vol. 84, pp. 1–21, Oct. 2023. DOI: 10.1080/10407790.2023.2265551.
  • S. Hussain, S. M. Atif, M. Sagheer and I. Jahangeer, “Analysis of magnetohydrodynamic squeezed viscous fluid flow in a porous medium,” J. Cent. South Univ., vol. 30, no. 3, pp. 844–854, 2023. Apr. DOI: 10.1007/s11771-023-5262-3.
  • B. Jalili, R. Amirhossein, J. Payam, D. D. Ganji and K. Yasir, “Squeezing flow of Casson fluid between two circular plates under the impact of solar radiation,” ZAMM, vol. 103, no. 9, pp. e202200455, Sep. 2023. DOI: 10.1002/zamm.202200455.
  • A. E. Harfouf, R. Herbazi, S. H. Mounir, H. Mes-Adi and A. Wakif, “Unsteady compressed Williamson fluid flow behaviour under the influence of a fixed magnetic field (Numerical Study),” WSEAS Trans. Fluid Mech., vol. 19, pp. 72–82, Feb. 2024. DOI: 10.37394/232013.2024.19.8.
  • M. Riaz, N. Khan, M. S. Hashmi, Z. Salleh and M. Inc, “Chemically reactive squeezed flow of magnetized Al2O3-PAO nanolubricant over a sensor surface with thermophoretic particle deposition,” Case Stud. Therm. Eng., vol. 54, pp. 104040, Jan. 2024. DOI: 10.1016/j.csite.2024.104040.
  • M. Awais, T. Salahuddin and S. Muhammad, “Effects of viscous dissipation and activation energy for the MHD Eyring-Powell fluid flow with Darcy-Forchheimer and variable fluid properties,” Ain Shams Eng. J., vol. 15, no. 2, pp. 102422, Jan. 2024. DOI: 10.1016/j.asej.2023.102422.
  • H. Basha, M. M. Nandeppanavar and G. J. Reddy, “Dissipative Lorentz force influence on mass flow over a micro-cantilever sensor sheet under magnetic Ohmic heating,” ZAMM, vol. 104, no. 1, pp. e202300055, Jan. 2024. DOI: 10.1002/zamm.202300055.
  • H. Basha, “Dynamics of chemically reactive magnetized Casson nanofluid flow over a sensor surface under joule heating and viscous dissipation effects,” BioNanoSci, vol. 14, no. 1, pp. 241–267, Mar. 2024. DOI: 10.1007/s12668-023-01231-w.
  • T. Salahuddin and M. Awais, “Natural convective and Cattaneo–Christov model for couple stress nanofluid at the middle of the squeezed channel with sensor surface,” Int. J. Mod. Phys. B, Jan. 2024. Article in press. DOI: 10.1142/S0217979224504435.
  • H. Basha, N. B. Naduvinamani, A. Angadi and S. Usha, “Numerical heat and mass transfer in magnetized Williamson liquid motion over a sensor wall engulfed in a micro-cantilever system: an application to thin-film fluidic cells,” Numer. Heat Transf. A, vol. 85, pp. 1–27, Apr. 2024. DOI: 10.1080/10407782.2024.2344067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.