30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lattice Boltzmann simulation of droplets accelerate shedding on an inverted triangular surface with wettability gradient

, ORCID Icon, , &
Received 19 Dec 2023, Accepted 19 Jun 2024, Published online: 01 Jul 2024

References

  • T. Humplik, et al., “Nanostructured materials for water desalination,” Nanotechnology, vol. 22, no. 29, pp. 292001, 2011. DOI: 10.1088/0957-4484/22/29/292001.
  • W. J. N. Turner and H. B. Awbi, “Experimental investigation into the thermal performance of a residential hybrid ventilation system,” Appl. Therm. Eng., vol. 77, pp. 142-152, 2014. DOI: 10.1016/j.applthermaleng.2014.12.026.
  • X. Ma, J. W. Rose, D. Xu, J. Lin and B. Wang, “Advances in dropwise condensation heat transfer: Chinese research,” Chem. Eng. J., vol. 78, no. 2–3, pp. 87–93, 2000. DOI: 10.1016/S1385-8947(00)00155-8.
  • H. P. Greenspan, “On the motion of a small viscous droplet that wets a surface,” J. Fluid Mech., vol. 84, no. 01, pp. 125–143, 1978. DOI: 10.1017/S0022112078000075.
  • F. Brochard, “Motions of droplets on solid surfaces induced by chemical or thermal gradients,” Langmuir, vol. 5, no. 2, pp. 432–438, 1989. DOI: 10.1021/la00086a025.
  • C. Shen, L. Liu, S. Wu, F. Yao and C. Zhang, “Lattice Boltzmann simulation of droplet condensation on a surface with wettability gradient,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., vol. 234, no. 7, pp. 1403–1413, 2020. DOI: 10.1177/0954406219898220.
  • F. Rui, X. Chen, S. Fei, W. Fang, W. XiuLi and W. YuZhong, “A bioinspired slippery surface with stable lubricant impregnation for efficient water harvesting,” ACS Appl. Mater Interf., vol. 12, no. 10, pp. 12373–12381, 2020. DOI: 10.1021/acsami.0c00234.
  • J. Liu, Y. Wang and Z. Yuan, “Numerical study on the nonwetting ability of trapezoid topography,” J. Fluids Struct., vol. 119, pp. 103868–103883, 2023. DOI: 10.1016/j.jfluidstructs.2023.103868.
  • Y. H. Lai, M. H. Hsu and J. T. Yang, “Enhanced mixing of droplets during coalescence on a surface with a wettability gradient,” Lab. Chip., vol. 10, no. 22, pp. 3149–3156, 2010. DOI: 10.1039/c003729j.
  • J. B. Boreyko and C. H. Chen, “Self-propelled dropwise condensate on superhydrophobic surfaces,” Phys. Rev. Lett., vol. 103, no. 18, pp. 184501–184505, 2009. DOI: 10.1103/PhysRevLett.103.184501.
  • E. Ezzatneshan and H. Vaseghnia, “Evaluation of equations of state in multiphase lattice Boltzmann method with considering surface wettability effects,” Phys. A Stat. Mech. Appl., vol. 541, pp. 123258–123282, 2020. DOI: 10.1016/j.physa.2019.123258.
  • L. Chen, M. Gao, J. Liang, D. Wang, L. Hao and L. Zhang, “Lattice Boltzmann simulation of wetting gradient accelerating droplets merging and shedding on a circumferential surface,” Eng. Appl. Comput. Fluid Mech., vol. 16, no. 1, pp. 1796–1812, 2022. DOI: 10.1080/19942060.2022.2116488.
  • S. Ren, S. Gao, Z. Xu, S. Wu and Z. Deng, “Experimental study on the condensation heat transfer on a wettability-interval grooved surface,” Appl. Sci., vol. 13, no. 18, pp. 10518–10530, 2023. DOI: 10.3390/app131810518.
  • S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech, vol. 30, no. 1, pp. 329–364, 1998. DOI: 10.1146/annurev.fluid.30.1.329.
  • S. Zheng, F. Eimann, T. Fieback, G. Xie and U. Gross, “Numerical investigation of convective dropwise condensation flow by a hybrid thermal lattice Boltzmann method,” Appl. Thermal Eng., vol. 145, pp. 590–602, 2018. DOI: 10.1016/j.applthermaleng.2018.09.076.
  • A. Ashrafi-Habibabadi and A. Moosavi, “Droplet condensation and jumping on structured superhydrophobic surfaces,” Int. J. Heat Mass Transfer, vol. 134, pp. 680–693, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.026.
  • A. K. Gunstensen, D. H. Rothman, S. Zaleski and G. Zanetti, “Lattice Boltzmann model of immiscible fluids,” Phys. Rev. A, vol. 43, no. 8, pp. 4320–4327, 1991. DOI: 10.1103/physreva.43.4320.
  • X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev. E Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Topics, vol. 47, no. 3, pp. 1815–1819, 1993. DOI: 10.1103/physreve.47.1815.
  • M. R. Swift, E. Orlandini, W. R. Osborn and J. M. Yeomans, “Lattice Boltzmann simulations of liquid-gas and binary fluid systems,” Phys. Rev. E Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics, vol. 54, no. 5, pp. 5041–5052, 1996. DOI: 10.1103/PhysRevE.54.5041.
  • M. R. Swift, W. R. Osborn and J. M. Yeomans, “Lattice Boltzmann simulation of nonideal fluids,” Phys. Rev. Lett., vol. 75, no. 5, pp. 830–833, 1995. DOI: 10.1103/PhysRevLett.75.830.
  • X. He, X. Shan and G. D. Doolen, “Discrete Boltzmann equation model for nonideal gases,” Phys. Rev. E, vol. 57, no. 1, pp. R13–R16, 1998. DOI: 10.1103/PhysRevE.57.R13.
  • X. He, S. Chen and R. Zhang, “A Lattice Boltzmann Scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability,” J. Comput. Phys., vol. 152, no. 2, pp. 642–663, 1999. DOI: 10.1006/jcph.1999.6257.
  • Z. Deng, C. Zhang, C. Shen, J. Cao and Y. Chen, “Self-propelled dropwise condensation on a gradient surface,” Int. J. Heat Mass Transfer, vol. 114, pp. 419–429, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.065.
  • S. Gong and P. Cheng, “Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows,” Comp. Fluids, vol. 53, pp. 93–104, 2012. DOI: 10.1016/j.compfluid.2011.09.013.
  • S. Channouf, M. Jami and A. Mezrhab, “Numerical hybrid thermal MRT-LBM for condensation and boiling phenomena on horizontal walls of different wettability,” Fluid Dyn. Res., vol. 54, no. 2, pp. 25502–25525, 2022. DOI: 10.1088/1873-7005/ac5d1e.
  • S. Channouf, M. Jami and A. Mezrhab, “Numerical study of the evolution of bubbles during nucleation and droplets during condensation on a surface of variable wettability using the pseudopotential MRT-LBM method,” Numer. Heat Transf. Part B Fund., vol. 85, no. 2, pp. 131–158, 2023. DOI: 10.1080/10407790.2023.2229012.
  • H. Saffari and N. Daur, “Effect of virtual mass force on prediction of pressure changes in condensing tubes,” Therm. Sci., vol. 16, no. 2, pp. 613–622, 2012. DOI: 10.2298/TSCI1202613S.
  • A. A. M. Saleh, S. A. Rasheed and R. B. Smasem, “Convection heat transfer in a channel of different cross section filled with porous media,” Kufa J. Eng., vol. 9, no. 2, pp. 57–73, 2018. DOI: 10.30572/2018/KJE/090205.
  • S. A. Rasheed and J. M. Abood, “Force convection heat transfer from a different cross section cylinder embedded in porous media,” Al-Nahrain J. Eng. Sci., vol. 20, no. 3, pp. 727–736, 2017. DOI:10.13140/RG.2.2.14800.25600.
  • Rajneesh, Kumar, Anoop, Kumar, Varun, “Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: a review,” Renew. Sustain. Energy Rev., vol. 61, pp. 123–140, 2016. DOI: 10.1016/j.rser.2016.03.011.
  • Y. H. Qian, D. D'humieres and P. Lalleman, “Lattice BGK models for Navier–Stokes equation,” Europhys. Lett., vol. 17, no. 6, pp. 479–484, 1992. http://iopscience.iop.org/0295-5075/17/6/001. DOI: 10.1209/0295-5075/17/6/001.
  • D. Nie, X. Guo and J. Lin, “Lattice-Boltzmann method for gas flow in microchannels,” Chin. J. Comput. Phys., vol. 27, no. 3, pp. 389–395, 2010. http://www.cjcp.org.cn/EN/Y2010/V27/I3/389.
  • M. C. Sukop, D. Jr. Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer Publishing Company, 2006.https://link.springer.com/book/10.1007/978-3-540-27982-2
  • E. Raphael, “Spreading of droplets on a patchy surface,” Surf. Interphase Phys., vol. 306, no. 2, pp. 751–754, 1988. https://www.researchgate.net/publication/312164573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.