0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stability analysis of Reiner–Philippoff nanofluid flow due to sinusoidal waves past a nonuniform channel with Brownian and thermophoretic diffusions

, , ORCID Icon, , &
Received 01 Apr 2024, Accepted 03 Jul 2024, Published online: 16 Jul 2024

References

  • G. B. Thurston, N. M. Henderson and M. Jeng, “Effects of erythrocytapheresis transfusion on the viscoelasticity of sickle cell blood,” Clin. Hemorheol. Microcirc., vol. 30, no. 2, pp. 83–97, 2004.
  • H. A. Baieth and S. Hamza, “Comparative examination of constitutive equations for apparent viscosity of human blood,” Egypt. J. Biophys. Biomed. Eng., vol. 7, pp. 85–96, 2006.
  • G. Pedrizzetti, F. Domenichini, A. Tortoriello and L. Zovatto, “Pulstile flow inside moderately elastic arteries, its modeling and effects of elasticity,” Comput. Methods Biomech. Biomed. Eng., vol. 5, no. 3, pp. 219–231, 2002. DOI: 10.1080/10255840212874.
  • G. Pontrelli, “Nonlinear problems in arterial flows,” Nonlinear Anal., vol. 47, no. 7, pp. 4905–4915, 2001. DOI: 10.1016/S0362-546X(01)00603-4.
  • F. J. Walburn and D. J. Scnech, “A constitutive equation for whole human blood,” Biorheology, vol. 13, no. 3, pp. 201–210, 1976. DOI: 10.3233/bir-1976-13307.
  • T. W. Latham, “Fluid motion in a peristaltic pump,” in Massachusetts Institute of Technology, Cambridge, MA: Massachusetts Institute of Technology, 1966.
  • A. H. Shapiro, M. Y. Jaffrin and S. L. Weinberg, “Peristaltic pumping with long wavelengths at low Reynolds number,” J. Fluid Mech., vol. 37, no. 4, pp. 799–825, 1969. DOI: 10.1017/S0022112069000899.
  • D. Tripathi, “Study of transient peristaltic heat flow through a finite porous channel,” Math. Comput. Model, vol. 57, no. 5–6, pp. 1270–1283, 2013. DOI: 10.1016/j.mcm.2012.10.030.
  • T. Hayat, N. Ali and S. Asghar, “Hall effects on peristaltic flow of a Maxwell fluid in a porous medium,” Phys. Lett. A, vol. 363, no. 5–6, pp. 397–403, 2007. DOI: 10.1016/j.physleta.2006.
  • S. A. Hussein, S. E. Ahmed and A. A. Arafa, “Electrokinetic peristaltic bioconvective Jeffrey nanofluid flow with activation energy for binary chemical reaction, radiation and variable fluid properties, ZAMM‐Z,” Angew. Math. Mech., vol. 103, pp. e202200284, 2022. DOI: 10.1002/zamm.202200284.
  • M. G. Reddy, K. V. Reddy and O. D. Makinde, “Hydromagnetic peristaltic motion of a reacting and radiating couple stress fluid in an inclined asymmetric channel filled with a porous medium,” Alex. Eng. J., vol. 55, no. 2, pp. 1841–1853, 2016. DOI: 10.1016/j.aej.2016.04.010.
  • A. A. Arafa, S. E. Ahmed and M. M. Allan, “Peristaltic flow of non-homogeneous nanofluids through variable porosity and heat generating porous media with viscous dissipation: entropy analyses,” Case Stud. Therm. Eng., vol. 32, pp. 101882, 2022. DOI: 10.1016/j.csite.2022.101882.
  • T. Anwar, M. Tahir, P. Kumam, S. Ahmed and P. Thounthong, “Magnetohydrodynamic mixed convective peristaltic slip transport of carbon nanotubes dispersed in water through an inclined channel with Joule heating,” Heat Trans., vol. 50, no. 3, pp. 2064–2089, 2020. DOI: 10.1002/htj.21969.
  • B. B. Divya, G. Manjunatha, C. Rajashekhar, H. Vaidya and K. V. Prasad, “The hemodynamics of variable liquid properties on the MHD peristaltic mechanism of Jeffery fluid with heat and mass transfer, Alex,” Eng. J., vol. 59, pp. 693–706, 2020. DOI: 10.1016/j.aej.2020.01.038.
  • T. Y. Na, “Boundary layer flow of Reiner-Philippoff fluids,” Int. J. Non-Lin. Mech., vol. 29, no. 6, pp. 871–877, 1994. DOI: 10.1016/0020-7462(94)90059-0.
  • K. S. Yam, S. D. Herris, D. B. Ingham and I. Pop, “Boundary-layer flow of Reiner-Philippoff fluids past a stretching wedge,” Int. J. Non-Lin. Mech., vol. 44, no. 10, pp. 1056–1062, 2009. DOI: 10.1016/j.ijnonlinmec.2009.08.006.
  • A. Ahmad, “Flow of Reiner-Philippoff based nano-fluid past a stretching sheet,” J. Mol. Liq., vol. 219, pp. 643–646, 2016. DOI: 10.1016/j.molliq.2016.03.068.
  • A. Ullah, E. O. Alzahrani, Z. Shah, M. Ayaz and S. Islam, “Nanofluid’s thin film flow of Reiner-Philippoff fluid over an unstable stretching surface with Brownian motion and thermophoresis effects,” Coatings, vol. 9, no. 1, pp. 21, 2018. DOI: 10.3390/coatings9010021.
  • T. Sajid et al., “Insightful into dynamics of magneto Reiner-Philippoff nanofluid flow induced by triple-diffusive convection with zero nanoparticle mass flux,” Ain Shams Eng. J., vol. 14, no. 4, pp. 101946, 2022. DOI: 10.1016/j.asej.2022.101946.
  • T. Sajid et al., “Impact of Maxwell velocity slip and Smoluchowski temperature slip on CNTs with modified Fourier theory: Reiner-Philippoff model,” PLoS One, vol. 16, no. 10, pp. e0258367, 2021. DOI: 10.1371/journal.pone.0258367.
  • M. Tahir and A. Ahmad, “Impact of pseudoplaticity and dilatancy of fluid on peristaltic flow and heat transfer: Reiner-Philippoff fluid model,” Adv. Mech. Eng., vol. 12, no. 12, pp. 168781402098118, 2020. DOI: 10.1177/1687814020981184.
  • S. U. S. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, San Francisco, CA: ASME International Mechanical Engineering Congress and Exposition, 1995, pp. 12–17.
  • S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluid with nanofluids, SME International Mechanical Engineering Congress & Exposition, 1995, San Francisco, CA, pp. 1–8.
  • Y. M. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid, vol. 21, no. 1, pp. 58–64, 2000. DOI: 10.1016/S0142-727X(99)00067-3.
  • J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Mass Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • G. Rasool, N. A. Shah, E. R. El-Zahar and A. Wakif, “Numerical investigation of EMHD nanofluid flows over a convectively heated RIGA pattern positioned horizontally in a Darcy-Forchheimer porous medium: application of passive control strategy and generalized transfer laws,” Waves Random Complex Media, vol. 2022, pp. 1–20, 2022. DOI: 10.1080/17455030.2022.2074571.
  • A. Shahzad, F. Liaqat, Z. Ellahi, M. Sohail, M. Ayub and M. R. Ali, “Thin film flow and heat transfer of Cu-nanofluids with slip and convective boundary condition over a stretching sheet,” Sci. Rep., vol. 12, no. 1, pp. 14254, 2022. DOI: 10.1038/s41598-022-18049-3.
  • A. A. Memon, S. Murtaza, M. A. Memon, K. Bhatti, M. Haque and M. R. Ali, “Simulation of thermal decomposition of Calcium Oxide in water with different activation energy and the high Reynolds number,” Complexity, vol. 2022, pp. 1–21, 2022. DOI: 10.1155/2022/3877475.
  • A. F. Abu-Bakr, T. Kanagawa and A. K. Abu-Nab, “Analysis of doublet bubble dynamics near a rigid wall in ferroparticle nanofluids”, Case Stud. Therm. Eng., vol. 34, pp. 102060, 2022. DOI: 10.1016/j.csite.2022.102060.
  • K. Sajjan, N. A. Shah, N. A. Ahammad, S. S. K. Raju, M. D. Kumar and W. Weera, “Nonlinear Boussinesq and Rosseland approximations on 3D flow in an interruption of Ternary nanoparticles with various shapes of densities and conductivity properties,” Mathematics, vol. 7, no. 10, pp. 18416–18449, 2022. DOI: 10.3934/math.20221014.
  • M. Sheikholeslami and D. D. Ganji, “Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM,” Comput. Methods Appl. Mech. Eng., vol. 283, pp. 651–663, 2015. DOI: 10.1016/j.cma.2014.09.038.
  • A. K. Abu-Nab and A. F. Abu-Bakr, “Effect of bubble-bubble interaction in Cu-Al2O3/H2O hybrid nanofluids during multibubble growth process”, Case Stud. Therm. Eng., vol. 33, pp. 101973, 2022. DOI: 10.1016/j.csite.2022.101973.
  • A. Rauf, N. A. Shah, A. Mushtaq and T. Botmart, “Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet,” Mathematics, vol. 8, no. 1, pp. 164–193, 2023. DOI: 10.3934/math.2023008.
  • S. Hina, T. Hayat, S. Asghar and A. A. Hendi, “Influence of compliant walls on peristaltic motion with heat/mass transfer and chemical reaction,” Int. J. Heat Mass Transf., vol. 55, no. 13–14, pp. 3386–3394, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.02.074.
  • N. Iftikhar and A. Rehman, “Peristaltic flow of an Eyring Prandtl fluid in a diverging tube with heat and mass transfer,” Int. J. Heat Mass Transf., vol. 111, pp. 667–676, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.013.
  • S. Sun, S. Li, S. Shaheen, M. B. Arain, K. A. Usman and K. A. Khan. A numerical investigation of bio-convective electrically conducting water-based nanofluid flow on the porous plate with variable wall temperature. Numer. Heat Transf. A Appl., vol. 2023, pp.1–15, 2023. DOI: 10.1080/10407782.2023.2242579.
  • H. Huang, S. Shaheen, K. S. Nisar and M. B. Arain, “Thermal and concentration analysis of two immiscible fluids flowing due to ciliary beating,” Ain Shams Eng. J., vol. 15, no. 1, pp. 102278, 2024. DOI: 10.1016/j.asej.2023.102278.
  • S. Shaheen, H. Huang, M. B. Arain, A. Al-Zubaidi and E. M. Tag-Eldin, “Concentration and thermal analysis of immiscible tangent hyperbolic fluid with distinct viscosity through horizontal asymmetric channel: theoretical and Observational study,” Case Stud. Thermal Eng., vol. 50, pp. 103386, 2023. DOI: 10.1016/j.csite.2023.103386.
  • Z. He, M. B. Arain, W.A., Khan, A. Rashash R Alzahrani, T. Muhammad, A.S., Hendy, and M. R., Ali, Theoretical exploration of heat transport in a stagnant power-law fluid flow over a stretching spinning porous disk filled with homogeneous-heterogeneous chemical reactions. Case Stud. Thermal Eng., vol. 50, pp. 103406, 2023. DOI: 10.1016/j.csite.2023.103406.
  • N. Fatima, K. S. Nisar, S. Shaheen, M. B. Arain, N. Ijaz and T. Muhammad, “A case study for heat and mass transfer of viscous fluid flow in double layer due to ciliated channel,” Case Stud. Thermal Eng., vol. 45, pp. 102943, 2023. DOI: 10.1016/j.csite.2023.102943.
  • G. C. Shit and N. K. Ranjit, “Role of slip velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: Application to digestive system,” J. Mol. Liq., vol. 221, pp. 305–315, 2016. DOI: 10.1016/j.molliq.2016.06.002.
  • M. Awais, S. Farooq, T. Hayat and B. Ahmad, “Comparative study of silver and copper water magneto nanoparticles with homogeneous-heterogeneous reactions in a tapered channel,” Int. J. Heat Mass Transf., vol. 115, pp. 108–114, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.129.
  • T. Hayat, H. Zahir, A. Alsaedi and B. Ahmad, “Heat transfer analysis on peristaltic transport of ReeEyring fluid in rotating frame,” Chin. J. Phys., vol. 55, no. 5, pp. 1894–1907, 2017. DOI: 10.1016/j.cjph.2017.08.016.
  • S. Dero, A. M. Rohni and A. Saaban, “Stability analysis of Cu − C6H9NaO7 and Ag − C6H9NaO7 nanofluids with effect of viscous dissipation over stretching and shrinking surfaces using a single-phase model,” Heliyon, vol. 6, no. 3, pp. e03510, 2020. DOI: 10.1016/j.heliyon.2020.e03510.
  • L. A. Lund, Z. Omar, I. Khan, J. Raza, E.-S. M. Sherif and A. H. Seikh, “Magnetohydrodynamic (MHD) flow of micropolar fluid with effects of viscous dissipation and joule heating over an exponential shrinking sheet: triple solutions and stability analysis,” Symmetry, vol. 12, no. 1, pp. 142, 2020. DOI: 10.3390/sym12010142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.