809
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Methods and Techniques for Measuring Gas Emissions from Agricultural and Animal Feeding Operations

, , , &
Pages 200-219 | Received 01 Jun 2013, Accepted 06 Sep 2013, Published online: 01 Apr 2014

REFERENCES

  • Aguerre, M.J.; Wattiaux, M.A.; Hunt, T.; Lobos, N.E. Effect of Nitrogen Content and Additional Straw on Changes in Chemical Composition, Volatile Losses, and Ammonia Emissions from Dairy Manure during Long-Term Storage. J. Dairy Sci. 2012, 95, 3454–3466.
  • Akbar, S.; Dutta, P.; Lee, C. High-Temperature Ceramic Gas Sensors: A Review. Int. J. Appl. Ceram. Technol. 2006, 3, 302–311.
  • Ambus, P.; Skiba, U.; Drewer, J.; Jones, S.K.; Carter, M.S.; Albert, K.R.; Sutton, M.A. Development of an Accumulation-Based System for Cost-Effective Chamber Measurements of Inert Trace Gas Fluxes. Eur. J. Soil Sci. 2010, 61, 785–792.
  • Amon, B.; Amon, T.; Boxberger, J.; Alt, C. Emissions of NH3, N2O and CH4 from Dairy Cows Housed in a Farmyard Manure Tying Stall (Housing, Manure Storage, Manure Spreading). Nutr. Cycl. Agroecosys. 2001, 60, 103–113.
  • Aneja, V.P.; Stahel, E.P.; Rogers, H.H.; Witherspoon, A.M.; Heck, W.W. Calibration and Performance of a Thermal Converter in the Continuous Atmospheric Monitoring of Ammonia. Anal. Chem. 1978, 50, 1705–1708.
  • Apel, E.C.; Calvert, J.G.; Zika, R.; Rodgers, M.O.; Aneja, V.P.; Meagher, J.F.; Lonneman, W.A. Hydrocarbon Measurements during the 1992 Southern Oxidants Study Atlanta Intensive: Protocol and Quality Assurance. J. Air Waste Manage. Assoc. 1995, 45, 521–528.
  • Berges, M.G. M.; Crutzen, P.J. Estimates of Global N2O Emissions from Cattle, Pig and Chicken Manure, Including a Discussion of CH4 Emissions. J. Atmos. Chem. 1996, 24, 241–269.
  • Bertram, H.; Flesch, T.; McGinn, S.; Coates, S.; Dzikowski, T.; Llewellyn, P.; Cheng, L. Measurement of Ammonia Emissions from Intensive Livestock Facilities by Open Path Tunable Diode Laser; Report to Alberta Environment. Alberta Research Council, Lethbridge, Canada, 2000; p 62.
  • Bialkowski, S.E. Photothermal Spectroscopy Methods for Chemical Analysis; John Wiley & Sons: New York, 2006.
  • Biermann, H.W. Time-Resolved Air Monitoring Using Fourier Transform Infrared Spectroscopy. In Fumigants: Environmental Fate, Exposure, and Analysis; American Chemical Society: Washington, DC, 1996; Vol. 652; pp 202–211.
  • Bjorneberg, D.; Leytem, A.; Westermann, D.; Griffiths, P.; Shao, L.; Pollard, M. Measurement of Atmospheric Ammonia, Methane, and Nitrous Oxide at a Concentrated Dairy Production Facility in Southern Idaho Using Open-Path FTIR Spectrometry. Trans. ASABE 2009, 52, 1749–1756.
  • Blunden, J.; Aneja, V.P.; Lonneman, W.A. Characterization of Non-methane Volatile Organic Compounds at Swine Facilities in Eastern North Carolina. Atmos. Environ. 2005, 39, 6707–6718.
  • Boadi, D.A.; Wittenberg, K.M.; Kennedy, A.D. Validation of the Sulphur Hexafluoride (SF6) Tracer Gas Technique for Measurement of Methane and Carbon Dioxide Production by Cattle. Can. J. Anim. Sci. 2002, 82, 125–131.
  • Bowen, I.S. The Ratio of Heat Losses by Conduction and by Evaporation from Any Water Surface. Phys. Rev. 1926, 27, 779–787.
  • Brown, H.A.; Wagner-Riddle, C.; Thurtell, G.W. Nitrous Oxide Flux from a Solid Dairy Manure Pile Measured Using a Micrometeorological Mass Balance Method. Nutr. Cycl. Agroecosys. 2002, 62, 53–60.
  • Businger, J.A.; Oncley, S.P. Flux Measurement with Conditional Sampling. J. Atmos. Ocean. Technol. 1990, 7, 349–352.
  • Cabrerizo, A.; Dachs, J.; Barceló,D. Development of a Soil Fugacity Sampler for Determination of Air−Soil Partitioning of Persistent Organic Pollutants under Field Controlled Conditions. Environ. Sci. Technol. 2009, 43, 8257–8263.
  • Capone, S.; Forleo, A.; Francioso, L.; Rella, R.; Siciliano, P.; Spadavecchia, J.; Presicce, D.; Taurino, A. Solid State Gas Sensors: State of the Art and Future Activities. J. Optoelectron. Adv. M 2003, 5, 1335–1348.
  • Childers, J.W.; Thompson, Jr., E.L.; Harris, D.B.; Kirchgessner, D.A.; Clayton, M.; Natschke, D.F.; Phillips, W.J. Multi-pollutant Concentration Measurements around a Concentrated Swine Production Facility Using Open-Path FTIR Spectrometry. Atmos. Environ. 2001, 35, 1923–1936.
  • Crosson, P.; Shalloo, L.; O’Brien, D.; Lanigan, G.J.; Foley, P.A.; Boland, T.M.; Kenny, D.A. A Review of Whole Farm Systems Models of Greenhouse Gas Emissions from Beef and Dairy Cattle Production Systems. Anim. Feed Sci. Technol. 2011, 166–167, 29–45.
  • Demmers, T.G. M.; Burgess, L.R.; Short, J.L.; Phillips, V.R.; Clark, J.A.; Wathes, C.M. Ammonia Emissions from Two Mechanically Ventilated UK Livestock Buildings. Atmos. Environ. 1999, 33, 217–227.
  • Demmers, T.G. M.; Burgess, L.R.; Phillips, V.R.; Clark, J.A.; Wathes, C.M. Assessment of Techniques for Measuring the Ventilation Rate, Using an Experimental Building Section. J. Agric. Eng. Res. 2000, 76, 71–81.
  • Denmead, O.T.; Harper, L.A.; Freney, J.R.; Griffith, D.W. T.; Leuning, R.; Sharpe, R.R. A Mass Balance Method for Non-intrusive Measurements of Surface-Air Trace Gas Exchange. Atmos. Environ. 1998, 32, 3679–3688.
  • Desjardins, R.L.; Denmead, O.T.; Harper, L.; McBain, M.; Massé, D.; Kaharabata, S. Evaluation of a Micrometeorological Mass Balance Method Employing an Open-Path Laser for Measuring Methane Emissions. Atmos. Environ. 2004, 38, 6855–6866.
  • DeSutter, T.M.; Ham, J.M. Lagoon-Biogas Emissions and Carbon Balance Estimates of a Swine Production Facility. J. Environ. Qual. 2005, 34, 198–206.
  • Dingman, S.L. Physical Hydrology, 2nd ed.; Prentice Hall: Upper Saddle River, N.J., 2002.
  • Elwinger, K.; Svensson, L. Effect of Dietary Protein Content, Litter and Drinker Type on Ammonia Emission from Broiler Houses. J. Agric. Eng. Res. 1996, 64, 197–208.
  • Fang, X.; Hu, X.; Janssens-Maenhout, G.; Wu, J.; Han, J.; Su, S.; Zhang, J.; Hu, J. Sulfur Hexafluoride (SF6) Emission Estimates for China: An Inventory for 1990–2010 and a Projection to 2020. Environ. Sci. Technol. 2013, 47, 3848–3855.
  • Ferrara, R.M.; Loubet, B.; Di Tommasi, P.; Bertolini, T.; Magliulo, V.; Cellier, P.; Eugster, W.; Rana, G. Eddy Covariance Measurement of Ammonia Fluxes: Comparison of High Frequency Correction Methodologies. Agric. For. Meteorol. 2012, 158–159, 30–42.
  • Flesch, T.K.; Wilson, J.D.; Yee, E. Backward-Time Lagran- gian Stochastic Dispersion Models and Their Application to Estimate Gaseous Emissions. J. Appl. Meteorol. 1995, 34, 1320–1332.
  • Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Crenna, B.P.; Sharpe, R.R. Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial. J. Appl. Meteorol. 2004, 43, 487–502.
  • Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Crenna, B.P. Estimating Gas Emissions from a Farm with an Inverse-Dispersion Technique. Atmos. Environ. 2005, 39, 4863–4874.
  • Flesch, T.; Wilson, J.; Harper, L.; Todd, R.; Cole, N. Determining Ammonia Emissions from a Cattle Feedlot with an Inverse Dispersion Technique. Agric. For. Meteorol. 2007, 144, 139–155.
  • Foken, T.; Aubinet, M.; Leuning, R. The Eddy Covariance Method. In Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Aubinet, M.; Vesala, T.; Papale, D., Eds.; Springer: New York, 2012; pp 1–19.
  • Fowler, D.; Duyzer, J.; Andreae, M.; Schimel, D. Micrometeorological Techniques for the Measurement of Trace Gas Exchange; John Wiley & Sons: New York, 1989.
  • Galle, B.; Klemedtsson, L.; Bergqvist, B.; Ferm, M.; Törnqvist, K.; Griffith, D.W.; Jensen, N.-O.; Hansen, F. Measurements of Ammonia Emissions from Spreading of Manure Using Gradient FTIR techniques. Atmos. Environ. 2000, 34, 4907–4915.
  • Griffith, D.W.; Galle, B. Flux Measurements of NH3, N2O and CO2 Using Dual Beam FTIR Spectroscopy and the Flux–Gradient Technique. Atmos. Environ. 2000, 34, 1087–1098.
  • Hafner, S.D.; Montes, F.; Rotz, C.A. The Role of Carbon Dioxide in Emission of Ammonia from Manure. Atmos. Environ. 2013, 66, 63–71.
  • Hanks, R.J. Applied Soil Physics, 2nd ed.; Springer Verlag: New York, 1992.
  • Hansen, M.N.; Henriksen, K.; Sommer, S.G. Observations of Production and Emission of Greenhouse Gases and Ammonia during Storage of Solids Separated from Pig Slurry: Effects of Covering. Atmos. Environ. 2006, 40, 4172–4181.
  • Harper, L.A. Ammonia: Measurement Issues. In Micrometeorology in Agricultural Systems; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, Wisc., 2005; pp 345–379.
  • Harper, L.A.; Denmead, O.T.; Freney, J.R.; Byers, F.M. Direct Measurements of Methane Emissions from Grazing and Feedlot Cattle. J. Anim. Sci. 1999, 77, 1392–401.
  • Harper, L.A.; Sharpe, R.R.; Parkin, T.B. Gaseous Nitrogen Emissions from Anaerobic Swine Lagoons: Ammonia, Nitrous Oxide, and Dinitrogen Gas. J. Environ. Qual. 2000, 29, 1356–1365.
  • Harper, L.; Sharpe, R.R.; Parkin, T.B.; De Visscher, A.; van Cleemput, O.; Byers, F.M. Nitrogen Cycling through Swine Production Systems: Ammonia, Dinitrogen, and Nitrous Oxide Emissions. J. Environ. Qual. 2004, 33, 1189–1201.
  • Harper, L.A.; Flesch, T.K.; Weaver, K.H.; Wilson, J.D. The Effect of Biofuel Production on Swine Farm Methane and Ammonia Emissions. J. Environ. Qual. 2010, 39, 1984–1992.
  • Harper, L.A.; Denmead, O.T.; Flesch, T.K. Micrometeorological Techniques for Measurement of Enteric Greenhouse Gas Emissions. Anim. Feed Sci. Technol. 2011, 166–167, 227–239.
  • Hatala, J.A.; Detto, M.; Sonnentag, O.; Deverel, S.J.; Verfaillie, J.; Baldocchi, D.D. Greenhouse Gas (CO2, CH4, H2O) Fluxes from Drained and Flooded Agricultural Peatlands in the Sacramento-San Joaquin Delta. Agric. Ecosyst. Environ. 2012, 150, 1–18.
  • Hellebrand, H.J.; Kalk, W.-D. Emission of Methane, Nitrous Oxide, and Ammonia from Dung Windrows. Nutr. Cycl. Agroecosys. 2001, 60, 83–87.
  • Hutchinson, G.L.; Mosier, A.R. Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes 1. Soil Sci. Soc. Am. J. 1981, 45, 311–316.
  • Hutchinson, G.L.; Mosier, A.R.; Andre, C.E. Ammonia and Amine Emissions from a Large Cattle Feedlot. J. Environ. Qual. 1982, 11, 288–293.
  • International Atomic Energy Agency. IAEA Manual on Measurement of Methane and Nitrous Oxide Emisssions from Agriculture; IAEA-TECDOC-674; International Atomic Energy Agency: Vienna, 1992.
  • Johnson, K.; Huyler, M.; Westberg, H.; Lamb, B.; Zimmerman, P. Measurement of Methane Emissions from Ruminant Livestock Using a Sulfur Hexafluoride Tracer Technique. Environ. Sci. Technol. 1994, 28, 359–362.
  • Johnson, K.A.; Johnson, D.E. Methane Emissions from Cattle. J. Anim. Sci. 1995, 73, 2483–2492.
  • Jungbluth, T.; Hartung, E.; Brose, G. Greenhouse Gas Emissions from Animal Houses and Manure Stores. Nutr. Cycl. Agroecosys. 2001, 60, 133–145.
  • Kaharabata, S.K.; Schuepp, P.H.; Desjardins, R.L. Estimating Methane Emissions from Dairy Cattle Housed in a Barn and Feedlot Using an Atmospheric Tracer. Environ. Sci. Technol. 2000, 34, 3296–3302.
  • Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: New York, 1994.
  • Kauppinen, J.; Wilcken, K.; Kauppinen, I.; Koskinen, V. High Sensitivity in Gas Analysis with Photoacoustic Detection. Microchem. J. 2004, 76, 151–159.
  • Kebreab, E.; Clark, K.; Wagner-Riddle, C.; France, J. Methane and Nitrous Oxide Emissions from Canadian Animal Agriculture: A Review. Can. J. Anim. Sci. 2006, 86, 135–157.
  • Khan, R.; Müller, C.; Sommer, S.G. Micrometeorological Mass Balance Technique for Measuring CH4 Emission from Stored Cattle Slurry. Biol. Fert. Soils 1997, 24, 442–444.
  • Koenig, K.M.; McGinn, S.M.; Beauchemin, K.A. Ammonia Emissions and Performance of Backgrounding and Finishing Beef Feedlot Cattle Fed Barley-Based Diets Varying in Dietary Crude Protein Concentration and Rumen Degradability. J. Anim. Sci. 2013, 91, 2278–2294.
  • Kosterev, A.; Wysocki, G.; Bakhirkin, Y.; So, S.; Lewicki, R.; Fraser, M.; Tittel, F.; Curl, R. Application of Quantum Cascade Lasers to Trace Gas Analysis. Appl. Phys. B: Lasers Opt. 2008, 90, 165–176.
  • Krahl, J.; Hinz, T.; Schroder, O.; Luther, W.; Munack, A.; Hopf, H. High Performance Selective Measurement of Ammonia and Greenhouse Gases by FTIR Spectroscopy. In Atmospheric Ammonia: Emission, Deposition and Environmental Impacts. Poster Proceedings, Poster Papers and Abstracts from the International Conference on Atmospheric Ammonia. Culham, Oxford 2–4 October 1995; Sutton, M. A.; Lee, D. S.; Dollard, G. J., Eds.; Institute of Terrestrial Ecology, Midlothian, UK, 1996; pp 30–32.
  • Krost, K.J.; Pellizzari, E.D.; Walburn, S.G.; Hubbard, S.A. Collection and Analysis of Hazardous Organic Emissions. Anal. Chem. 1982, 54, 810–817.
  • Lancaster, D.G.; Weidner, R.; Richter, D.; Tittel, F.; Limpert, J. Compact CH4 Sensor Based on Difference Frequency Mixing of Diode Lasers in Quasi-Phasematched LiNbO3. Opt. Commun. 2000, 175, 461–468.
  • Lassey, K.R. Livestock Methane Emission: From the Individual Grazing Animal through National Inventories to the Global Methane Cycle. Agric. For. Meteorol. 2007, 142, 120–132.
  • Lassey, K.R. On the Importance of Background Sampling in Applications of the SF6 Tracer Technique to Determine Ruminant Methane Emissions. Anim. Feed Sci. Technol. 2013, 180, 115–120.
  • Lassey, K.R.; Pinares-Patiño, C.S.; Martin, R.J.; Molano, G.; McMillan, A.M. S. Enteric Methane Emission Rates Determined by the SF6 Tracer Technique: Temporal Patterns and Averaging Periods. Anim. Feed Sci. Technol. 2011, 166–167, 183–191.
  • Laubach, J.; Kelliher, F.M. Measuring Methane Emission Rates of a Dairy Cow Herd by Two Micrometeorological Techniques. Agric. For. Meteorol. 2004, 125, 279–303.
  • Laville, P.; Jambert, C.; Cellier, P.; Delmas, R. Nitrous Oxide Fluxes from a Fertilised Maize Crop Using Micrometeorological and Chamber Methods. Agric. For. Meteorol. 1999, 96, 19–38.
  • Lee, C.; Akbar, S.; Park, C. Potentiometric CO2 Gas Sensor with Lithium Phosphorous Oxynitride Electrolyte. Sens. Actuators B: Chem. 2001, 80, 234–242.
  • Lee, C.; Hristov, A.N.; Dell, C.J.; Feyereisen, G.W.; Kaye, J.; Beegle, D. Effect of Dietary Protein Concentration on Ammonia and Greenhouse Gas Emitting Potential of Dairy Manure. J. Dairy Sci. 2012, 95, 1930–1941.
  • Leuning, R.; Freney, J.; Denmead, O.; Simpson, J. A Sampler for Measuring Atmospheric Ammonia Flux. Atmos. Environ. 1985, 19, 1117–1124.
  • Levy, P.; Gray, A.; Leeson, S.; Gaiawyn, J.; Kelly, M.; Cooper, M.; Dinsmore, K.; Jones, S.; Sheppard, L. Quantification of Uncertainty in Trace Gas Fluxes Measured by the Static Chamber Method. Eur. J. Soil Sci. 2011, 62, 811–821.
  • Li, H.; Xin, H.; Burns, R.T. Reduction of Ammonia Emission from Stored Poultry Manure Using Additives: Zeolite, Al+Clear, Ferix-3 and PLT; Presented at ASABE Annual International Meeting, 2006; Paper number: 064188.
  • Limón-Sánchez, M.T.; Arriaga-Colina, J.L.; Escalona-Segura, S.; Ruíz-Suárez, L.G. Observations of Formic and Acetic Acids at Three Sites of Mexico City. Sci. Total Environ. 2002, 287, 203–212.
  • Livingston, G.; Hutchinson, G. Enclosure-Based Measurement of Trace Gas Exchange: Applications and Sources of Error. In Biogenic Trace Gases: Measuring Emissions from Soil and Water; Matson, P.A.; Harriss, R.C., Eds.; Blackwell Science Ltd.: Oxford, UK, 1995; pp 14–51.
  • Livingston, G.P.; Hutchinson, G.L.; Spartalian, K. Trace Gas Emission in Chambers. Soil Sci. Soc. Am. J. 2006, 70, 1459–1469.
  • Louhelainen, K.; Kangas, J.; Veijanen, A.; Rajamaki, T.; Maittala, J. Offensive Odors and Volatile Organic Compounds in Swineries. In International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Denmark, . Aarhus University, Aarhus, Denmark, 2003; pp 180–183.
  • Luebs, R.; Davis, K.; Laag, A. Diurnal Fluctuation and Movement of Atmospheric Ammonia and Related Gases from Dairies. J. Environ. Qual. 1974, 3, 265–269.
  • Mandelis, A.; Christofides, C. Physics, Chemistry and Technology of Solid State Gas Sensor Devices; Wiley: New York, 1993.
  • Massman, W.; Lee, X. Eddy Covariance Flux Corrections and Uncertainties in Long-Term Studies of Carbon and Energy Exchanges. Agric. For. Meteorol. 2002, 113, 121–144.
  • McCulloch, R.B.; Shendrikar, A.D. Concurrent Atmospheric Ammonia Measurements Using Citric-Acid-Coated Diffusion Denuders and a Chemiluminescence Analyzer. Atmos. Environ. 2000, 34, 4957–4958.
  • McGinn, S. Measuring Greenhouse Gas Emissions from Point Sources in Agriculture. Can. J. Soil Sci. 2006, 86, 355–371.
  • McGinn, S.; Flesch, T.; Harper, L.; Beauchemin, K. An Approach for Measuring Methane Emissions from Whole Farms. J. Environ. Qual. 2006, 35, 14–20.
  • Meixner, F.X. Surface Exchange of Odd Nitrogen Oxides. Nova Acta Leopoldina NF 1994, 70, 299–348.
  • Meixner, H.; Gerblinger, J.; Lampe, U.; Fleischer, M. Thin-Film Gas Sensors Based on Semiconducting Metal Oxides. Sens. Actuators B: Chem. 1995, 23, 119–125.
  • Meyers, T.P.; Baldocchi, D.D. Current Micrometeorological Flux Methodologies with Applications in Agriculture. In Micrometeorology in Agricultural Systems; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, Wisc., 2005; pp 381–396.
  • Minato, K.; Kouda, Y.; Yamakawa, M.; Hara, S.; Tamura, T.; Osada, T. Determination of GHG and Ammonia Emissions from Stored Dairy Cattle Slurry by Using a Floating Dynamic Chamber. Anim. Sci. J. 2013, 84, 165–177.
  • Misselbrook, T.; Webb, J.; Chadwick, D.; Ellis, S.; Pain, B. Gaseous Emissions from Outdoor Concrete Yards Used by Livestock. Atmos. Environ. 2001, 35, 5331–5338.
  • Misselbrook, T.H.; Powell, J.M.; Broderick, G.A.; Grabber, J.H. Dietary Manipulation in Dairy Cattle: Laboratory Experiments to Assess the Influence on Ammonia Emissions. J. Dairy Sci. 2005, 88, 1765–1777.
  • Miura, N. Development of Solid-State Electrochemical Gas Sensors Aiming at On-board Diagnosis and Environmental Monitoring. Novel Carbon Resour. Sci. Newsl. 2010, 2, 10–16.
  • Miyata, A.; Leuning, R.; Denmead, O.T.; Kim, J.; Harazono, Y. Carbon Dioxide and Methane Fluxes from an Intermittently Flooded Paddy Field. Agric. For. Meteorol. 2000, 102, 287–303.
  • Moe, P.; Tyrrell, H. Methane Production in Dairy Cows. J. Dairy Sci. 1979, 62, 1583–1586.
  • Moral, R.; Bustamante, M.A.; Chadwick, D.R.; Camp, V.; Misselbrook, T.H. N and C Transformations in Stored Cattle Farmyard Manure, Including Direct Estimates of N2 Emission. Resour. Conserv. Recycl. 2012, 63, 35–42.
  • Mosier, A. Nitrous Oxide Emissions from Agricultural Soils. Nutr. Cycl. Agroecosys. 1994, 37, 191–200.
  • Mosquera, J.; Monteny, G.J.; Erisman, J.W. Overview and Assessment of Techniques to Measure Ammonia Emissions from Animal Houses: The Case of the Netherlands. Environ. Pollut. 2005, 135, 381–388.
  • Mount, G.H.; Rumburg, B.; Havig, J.; Lamb, B.; Westberg, H.; Yonge, D.; Johnson, K.; Kincaid, R. Measurement of Atmospheric Ammonia at a Dairy Using Differential Optical Absorption Spectroscopy in the Mid-Ultraviolet. Atmos. Environ. 2002, 36, 1799–1810.
  • Nay, S.M.; Mattson, K.G.; Bormann, B.T. Biases of Chamber Methods for Measuring Soil CO2 Efflux Demonstrated with a Laboratory Apparatus. Ecology 1994, 75, 2460–2463.
  • Neftel, A.; Fischer, C.; Flechard, C. Measurements of Greenhouse Gas Fluxes from Agriculture. In Greenhouse Gases and Animal Agriculture: An Update, Proceedings of the 2nd International Conference on Greenhouse Gases and Animal Agriculture; Elsevier, San Diego, Calif., 2006; pp 3–12.
  • Olesen, J.E.; Schelde, K.; Weiske, A.; Weisbjerg, M.R.; Asman, W.A. H.; Djurhuus, J. Modelling Greenhouse Gas Emissions from European Conventional and Organic Dairy Farms. Agric. Ecosyst. Environ. 2006, 112, 207–220.
  • Ong, K.G.; Zeng, K.; Grimes, C.A. A Wireless, Passive Carbon Nanotube-Based Gas Sensor. IEEE Sens. J. 2002, 2, 82–88.
  • Pape, L.; Ammann, C.; Nyfeler-Brunner, A.; Spirig, C.; Hens, K.; Meixner, F. An Automated Dynamic Chamber System for Surface Exchange Measurement of Non-reactive and Reactive Trace Gases of Grassland Ecosystems. Biogeosciences 2009, 6, 405–429.
  • Park, K.-H.; Thompson, A.G.; Marinier, M.; Clark, K.; Wagner-Riddle, C. Greenhouse Gas Emissions from Stored Liquid Swine Manure in a Cold Climate. Atmos. Environ. 2006, 40, 618–627.
  • Parkin, T.B.; Venterea, R.T.; Hargreaves, S.K. Calculating the Detection Limits of Chamber-Based Soil Greenhouse Gas Flux Measurements. J. Environ. Qual. 2012, 41, 705–715.
  • Pedersen, A.R.; Petersen, S.O.; Schelde, K. A Comprehensive Approach to Soil-Atmosphere Trace-Gas Flux Estimation with Static Chambers. Eur. J. Soil Sci. 2010, 61, 888–902.
  • Penman, J.; Gytarsky, M.; Hiraishi, T.; Krug, T.; Kruger, D.; Pipatti, R.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Institute for Global Environmental Strategies (IGES) for the IPCC: Geneva, Switzerland, 2003.
  • Perrino, C.; Gherardi, M. Optimization of the Coating Layer for the Measurement of Ammonia by Diffusion Denuders. Atmos. Environ. 1999, 33, 4579–4587.
  • Phillips, V.; Scholtens, R.; Lee, D.; Garland, J.; Sneath, R. SE—Structures and Environment: A Review of Methods for Measuring Emission Rates of Ammonia from Livestock Buildings and Slurry or Manure Stores, Part 1: Assessment of Basic Approaches. J. Agric. Eng. Res. 2000, 77, 355–364.
  • Phillips, V.; Lee, D.; Scholtens, R.; Garland, J.; Sneath, R. SE—Structures and Environment: A Review of Methods for Measuring Emission Rates of Ammonia from Livestock Buildings and Slurry or Manure Stores, Part 2: Monitoring Flux Rates, Concentrations and Airflow Rates. J. Agric. Eng. Res. 2001, 78, 1–14.
  • Place, S.E.; Pan, Y.; Zhao, Y.; Mitloehner, F.M. Construction and Operation of a Ventilated Hood System for Measuring Greenhouse Gas and Volatile Organic Compound Emissions from Cattle. Animals 2011, 1, 433–446.
  • Powell, J.M.; Broderick, G.A.; Misselbrook, T.H. Seasonal Diet Affects Ammonia Emissions from Tie-Stall Dairy Barns. J. Dairy Sci. 2008, 91, 857–69.
  • Powers, W. Characterization of Air in and around Poultry and Livestock Facilities. In International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Denmark, . Aarhus University, Aarhus, Denmark, 2003; pp 340–343.
  • Pumpanen, J.; Kolari, P.; Ilvesniemi, H.; Minkkinen, K.; Vesala, T.; Niinistö, S.; Lohila, A.; Larmola, T.; Morero, M.; Pihlatie, M.; Janssens, I.; Yuste, J.C.; Grünzweig, J.M.; Reth, S.; Subke, J.-A.; Savage, K.; Kutsch, W.; Østreng, G.; Ziegler, W.; Anthoni, P.; Lindroth, A.; Hari, P. Comparison of Different Chamber Techniques for Measuring Soil CO2 Efflux. Agric. For. Meteorol. 2004, 123, 159–176.
  • Ro, K.S.; Johnson, M.H.; Stone, K.C.; Hunt, P.G.; Flesch, T.; Todd, R.W. Measuring Gas Emissions from Animal Waste Lagoons with an Inverse-Dispersion Technique. Atmos. Environ. 2013, 66, 101–106.
  • Robarge, W.P.; Walker, J.T.; McCulloch, R.B.; Murray, G. Atmospheric Concentrations of Ammonia and Ammonium at an Agricultural Site in the Southeast United States. Atmos. Environ. 2002, 36, 1661–1674.
  • Rochette, P.; Gregorich, E.; Desjardins, R. Comparison of Static and Dynamic Closed Chambers for Measurement of Soil Respiration under Field Conditions. Can. J. Soil Sci. 1992, 72, 605–609.
  • Rochette, P.; Hutchinson, G.; Hatfield, J.; Baker, J.; Viney, M. Measurement of Soil Respiration In Situ: Chamber Techniques. In Micrometeorology in Agricultural Systems; Hatfield, J.L.; Baker, J.M.; Viney, M.K., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, Wisc., 2005; pp 247–286.
  • Rochette, P.; Eriksen-Hamel, N.S. Chamber Measurements of Soil Nitrous Oxide Flux: Are Absolute Values Reliable? Soil Sci. Soc. Am. J. 2008, 72, 331–342.
  • Rotz, C.A.; Montes, F.; Chianese, D.S. The Carbon Footprint of Dairy Production Systems through Partial Life Cycle Assessment. J. Dairy Sci. 2010, 93, 1266–1282.
  • Rumburg, B.; Mount, G.H.; Filipy, J.; Lamb, B.; Westberg, H.; Yonge, D.; Kincaid, R.; Johnson, K. Measurement and Modeling of Atmospheric Flux of Ammonia from Dairy Milking Cow Housing. Atmos. Environ. 2008, 42, 3364–3379.
  • Russwurm, G.M.; Phillips, B. Effects of a Nonlinear Response of the Fourier-Transform Infrared Open-Path Instrument on the Measurements of Some Atmospheric Gases. Appl. Opt. 1999, 38, 6398–6407.
  • Ryden, J.C.; McNeill, J.E. Application of the Micrometeorological Mass Balance Method to the Determination of Ammonia Loss from a Grazed Sward. J. Sci. Food Agric. 1984, 35, 1297–1310.
  • Sanz, A.; Misselbrook, T.; Sanz, M.J.; Vallejo, A. Use of an Inverse Dispersion Technique for Estimating Ammonia Emission from Surface-Applied Slurry. Atmos. Environ. 2010, 44, 999–1002.
  • Saugier, B.; Ripley, E. Evaluation of the Aerodynamic Method of Determining Fluxes over Natural Grassland. Q. J. Roy. Meteorol. Soc. 1978, 104, 257–270.
  • Schiffman, S.S.; Bennett, J.L.; Raymer, J.H. Quantification of Odors and Odorants from Swine Operations in North Carolina. Agric. For. Meteorol. 2001, 108, 213–240.
  • Scholtens, R.; Dore, C.J.; Jones, B.M. R.; Lee, D.S.; Phillips, V.R. Measuring Ammonia Emission Rates from Livestock Buildings and Manure Stores—Part 1: Development and Validation of External Tracer Ratio, Internal Tracer Ratio and Passive Flux Sampling Methods. Atmos. Environ. 2004, 38, 3003–3015.
  • Snell, H.; Seipelt, F.; Weghe, H. Ventilation Rates and Gaseous Emissions from Naturally Ventilated Dairy Houses. Biosyst. Eng. 2003, 86, 67–73.
  • Sommer, S.G.; McGinn, S.; Hao, X.; Larney, F. Techniques for Measuring Gas Emissions from a Composting Stockpile of Cattle Manure. Atmos. Environ. 2004, 38, 4643–4652.
  • Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; De Haan, C. Livestock's Long Shadow: Environmental Issues and Options; FAO: Rome, 2006.
  • Stout, V.; Richard, T.L.; Singh, A.; Hoff, S.J.; Dixon, P.; Harmon, J.; Bundy, D.S. Variability in Greenhouse Gas Emission Measurements Using the Tracer Gas Technique. In International Symposium on Gaseous and Odor Emissions from Animal Production Facilities, Horsens, Denmark, . Aarhus University, Aarhus, Denmark, 2003; pp 96–103.
  • Sutton, M.A.; Nemitz, E.; Milford, C.; Fowler, D.; Moreno, J.; San José, R.; Wyers, G.P.; Otjes, R.P.; Harrison, R.; Husted, S.; Schjoerring, J.K. Micrometeorological Measurements of Net Ammonia Fluxes over Oilseed Rape during Two Vegetation Periods. Agric. For. Meteorol. 2000, 105, 351–369.
  • Svensson, L. A New Dynamic Chamber Technique for Measuring Ammonia Emissions from Land-Spread Manure and Fertilizers. Acta Agric. Scand. Sect. B Soil Plant Sci. 1994, 44, 35–46.
  • Svensson, L.; Ferm, M. Mass Transfer Coefficient and Equilibrium Concentration as Key Factors in a New Approach to Estimate Ammonia Emission from Livestock Manure. J. Agric. Eng. Res. 1993, 56, 1–11.
  • U.S. Environmental Protection Agency. National Pollutant Discharge Elimination System Permit Regulation and Effluent Limitation Guidelines and Standards for Concentrated Animal Feeding Operations (CAFOs); final rule. February 12. Fed. Register 2003, 68, 7176–7274.
  • Venterea, R.T. Simplified Method for Quantifying Theoretical Underestimation of Chamber-Based Trace Gas Fluxes. J. Environ. Qual. 2010, 39, 126–135.
  • Venterea, R.T.; Baker, J.M. Effects of Soil Physical Nonuniformity on Chamber-Based Gas Flux Estimates. Soil Sci. Soc. Am. J. 2008, 72, 1410–1417.
  • Venterea, R.T.; Spokas, K.A.; Baker, J.M. Accuracy and Precision Analysis of Chamber-Based Nitrous Oxide Gas Flux Estimates. Soil Sci. Soc. Am. J. 2009, 73, 1087–1093.
  • Wagner, S.W.; Reicosky, D.C.; Alessi, R.S. Regression Models for Calculating Gas Fluxes Measured with a Closed Chamber. Agron. J. 1997, 89, 279–284.
  • Wagner-Riddle, C.; Thurtell, G.; King, K.; Kidd, G.; Beauchamp, E. Nitrous Oxide and Carbon Dioxide Fluxes from a Bare Soil Using a Micrometeorological Approach. J. Environ. Qual. 1996, 25, 898–907.
  • Wilson, J.D.; Flesch, T.K.; Harper, L.A. Micro-meteorological Methods for Estimating Surface Exchange with a Disturbed Windflow. Agric. For. Meteorol. 2001, 107, 207–225.
  • Wyers, G.; Otjes, R.; Slanina, J. A Continuous-Flow Denuder for the Measurement of Ambient Concentrations and Surface-Exchange Fluxes of Ammonia. Atmos. Environ. A Gen. Topics 1993, 27, 2085–2090.
  • Xue, S.; Chen, S.; Hermanson, R. Measuring Ammonia and Hydrogen Sulfide Emitted from Manure Storage Facilities. Trans. ASAE. 1998, 41, 1125–1130.
  • Yamamoto, N.; Nishiura, H.; Honjo, T.; Ishikawa, Y.; Suzuki, K. Continuous Determination of Atmospheric Ammonia by an Automated Gas Chromatographic System. Anal. Chem. 1994, 66, 756–760.
  • Yang, W.; Zhu, A.; Zhang, J.; Zhang, Y.; Chen, X.; He, Y.; Wang, L. An Inverse Dispersion Technique for the Determination of Ammonia Emissions from Urea-Applied Farmland. Atmos. Environ. 2013, 79, 217–224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.