476
Views
29
CrossRef citations to date
0
Altmetric
Original Article

Progress in Thermal Lens Spectrometry and Its Applications in Microscale Analytical Devices

&
Pages 328-353 | Published online: 15 May 2014

REFERENCES

  • Baker, C. A.; Duong, C. T.; Grimley, A.; Roper, M. G. Recent Advances in Microfluidic Detection Systems. Bioanalysis 2009, 1, 967–975.
  • Baptista, M.; Tran, C. D. Near‐Infrared Thermal Lens Spectrometer Based on an Erbium‐Doped Fiber Amplifier and an Acousto‐Optic Tunable Filter, and Its Application in the Determination of Nucleotides. Appl. Opt. 1997, 36, 7059–7065.
  • Bendrysheva, S. N.; Proskurnin, M. A.; Pyell, U.; Faubel, W. Sensitivity Improvement in Capillary Electrophoresis Using Organo‐Aqueous Separation Buffers and Thermal Lens Detection. Anal. Bioanal. Chem. 2006, 385, 1492–1503.
  • Bialkowski, S. E. Photothermal Spectroscopy Methods for Chemical Analysis; John Whiley & Sons: New York, 1996.
  • Bialkowski, S. E.; Chartier, A. Photothermal Spectrometry in Small Liquid Channels. Anal. Sci. 2001, 17(Suppl.), i99–i101.
  • Bicanic, D.; Franko, M.; Gibkes, J.; Gerkema, E.; Favier, J. P.; Jalink, H. Applications of Photoacoustic and Photothermal Non‐contact Methods in the Selected Areas of Environmental and Agricultural Sciences. In Progress in Photothermal and Photoacoustic Science and Technology, Vol. 3, Life and Earth Sciences; Mandelis, A., Ed.; SPIE‐Optical Engineering Press: Bellingham, Wash., 1996; p 131.
  • Bicanic, D.; Močnik, G.; Franko, M.; Niederländer, H. A. G.; Bovenkamp, P. V.; Cozijnsen, J.; Klift, E. V. Separation and Direct Detection of Long Chain Fatty Acids and Their Methylesters by the Nonaqueous Reversed Phase HPLC and Silver Ion Chrom-atography, Combined with CO Laser Pumped Thermal Lens Spectrometry. Instrum. Sci. Technol. 2006, 34, 129–150.
  • Bindhu, C. V.; Harilal, S. S.; Nampoori, V. P. N.; Vallabhan, C. P. G. Investigation of Nonlinear Absorption and Aggregation in Aqueous Solutions of Rhodamine B Using Thermal Lens Technique. Pramana 1999, 52, 435–442.
  • Boškin, A. The Application of High Sensitivity Laser Methods for Detection of Organophosphorus Pesticides and Cholinesterase Activity, Ph.D. Thesis, University of Nova Gorica, Nova Gorica, Slovenia, 2008.
  • Boškin, A.; Tran, C. D.; Franko, M. Oxidation of Organophosphorus Pesticides with Chloroperoxidase Enzyme in the Presence of an Ionic Liquid as Co‐solvent. Environ. Chem. Lett. 2009, 7, 267–270.
  • Cabrera, H.; Sira, E.; Rahn, K.; García‐Sucre, M. A Thermal Lens Model Including the Soret Effect. Appl. Phys. Lett. 2009, 94, 051103.
  • Chanlon, S.; Georges, J. Pulsed‐Laser Mode‐Mismatched Crossed‐Beam Thermal Lens Spectrometry within a Small Capillary Tube: Effect of Flow Rate and Beam Offset on the Photothermal Signal. Spectrochim. Acta A 2002, 58, 1607–1613.
  • Chartier, A.; Bialkowski, S. E. Photothermal Lens Spectrometry of Homogeneous Fluids with Incoherent White‐Light Excitation Using a Cylindrical Sample Cell. Opt. Eng. 1997, 36, 303–311.
  • Chen, I. H.; Chu, S. W.; Sun, C. K.; Cheng, P. C.; Lin, B. L. Wavelength Dependent Damage in Biological Multi‐photon Confocal Microscopy: A Micro‐spectroscopic Comparison between Femtosecond Ti:sapphire and Cr:forsterite Laser Sources. Opt. Quantum Electron. 2002, 34, 1251–1266.
  • Connaster, R. M.; Cochran, M.; Harrison, R. J.; Sepaniak, M. J. Analytical Optimization of Nanocomposite Surface‐Enhanced Raman Spectroscopy/Scattering Detection in Microfluidic Separation Devices. Electrophoresis 2008, 29, 1441–1450.
  • Crevillén, A. G.; Avila, M.; Pumera, M.; Gonzalez, M. C.; Escarpa, A. Food Analysis on Microfluidic Devices Using Ultrasensitive Carbon Nanotubes Detectors. Anal. Chem. 2007, 79, 7408–7415.
  • Divjak, B.; Franko, M.; Novič, M. Determination of Iron Complex Matrices by Ion Chromatography with UV‐Vis, Thermal Lens and Amperometric Detection Using Post‐Column Reagents. J. Chromatogr. A 1998, 829, 167–174.
  • Dovichi, N. J. Thermo‐optical Spectrophotometries in Analytical Chemistry. Crit. Rev. Anal. Chem. 1987, 17, 357–423.
  • Dovichi, N. J.; Harris, J. M. Thermal Lens Calorimetry for Flowing Samples. Anal. Chem. 1981, 53, 689–692.
  • Dudkoa, V. S.; Smirnova, A. P.; Proskurnin, M. A.; Hibara, A.; Kitamori, T.;. Thermal Lens Detection in Microfluidic Chips. Russ. J. Gen. Chem. 2012, 82, 2146–2153.
  • Erskine, S. R.; Bobbitt, D. R. Theoretical and Experimental Investigation of the Relationship between Aperture Dimension and Signal‐to‐Noise Optimization in Thermal Lens Spectroscopy. Appl. Spectrosc. 1988, 42, 331–335.
  • Erskine, S. R.; Bobbitt, D. R. Obliquely Crossed, Differential Thermal Lens Measurements under Conditions of High Background Absorbance. Appl. Spectrosc. 1989, 43, 668–674.
  • Fang, H. C.; Swoford, R. L. The Thermal Lens in Absorption Spectroscopy. In Ultrasensitive Laser Spectroscopy; Kliger, D. S., Ed.; Academic Press: New York, 1983; p 175.
  • Faubel, W.; Heissler, S.; Pyell, U.; Ragozina, N. Photothermal Trace Detection in Capillary Electrophoresis for Biomedical Diagnostics and Toxic Materials. Rev. Sci. Instrum. 2003, 74, 491–494.
  • Franko, M. Thermal Lens Spectrometric Detection in Flow Injection Analysis and Separation Techniques. Appl. Spectrosc. Rev. 2008, 43, 358–388.
  • Franko, M. Bioanalytical Applications of Thermal Lens Spectrometry. In Thermal Wave Physics and Related Photothermal Techniques: Basic Principles and Recent Developments; Moares, E. M., Ed.; Transworld Research Network: Kerala, India, 2009; p 309.
  • Franko, M.; Bicanic, D. Differential Thermal Lens Spectroscopy in the Infrared. Israel J. Chem. 1998, 38, 175–179.
  • Franko, M.; Tran, C. D. Water as a Unique Medium for Thermal Lens Measurements. Anal. Chem. 1989, 61, 1660–1666.
  • Franko, M.; Tran, C. D. Thermal Lens Technique for Sensitive Kinetic Determinations of Fast Chemical Reactions. Part I. Theory. Rev. Sci. Instrum. 1991a, 62, 2430–2437.
  • Franko, M.; Tran, C. D. Thermal Lens Technique for Sensitive Kinetic Determinations of Fast Chemical Reactions. Part II. Experiment. Rev. Sci. Instrum. 1991b, 62, 2438–2442.
  • Franko, M.; Tran, C. D. Analytical Thermal Lens Instrumentation. Rev. Sci. Instrum. 1996, 67, 1–18.
  • Franko, M.; Tran, C. D. Thermal Lens Spectroscopy. In Encyclopedia of Analytical Chemistry; Meyers, R. A., Ed.; Wiley: Chichester, 2011; p 1249.
  • Georges, J. Advantages and Limitations of Thermal Lens Spectrometry over Conventional Spectrophotometry for Absorbance Measurements. Talanta 1999, 48, 501–509.
  • Georges, J. Matrix Effects in Thermal Lens Spectrometry: Influence of Salts, Surfactants, Polymers and Solvent Mixtures. Spectrochim. Acta A 2008, 69, 1063–1072.
  • Georges, J.; Arnaud, N.; Parise, L. Limitations Arising from Optical Saturation in Fluorescence and Thermal Lens Spectrometries Using Pulsed Laser Excitation: Application to the Determination of the Fluorescence Quantum Yield of Rhodamine 6G. Appl. Spectrosc. 1996, 50, 1505–1511.
  • Ghaleb, K. A.; Georges, J. Photothermal Spectrometry for Detection in Miniaturized Systems: Relevant Features, Strategies and Recent Applications. Spectrochim. Acta A 2004, 60, 2793–2801.
  • Goto, M.; Sato, K.; Murakami, A.; Tokeshi, M.; Kitamori, T. Development of a Microchip‐Based Bioassay System Using Cultured Cells. Anal. Chem. 2005, 77, 2125–2131.
  • Grishko, V. I.; Tran, C. D.; Duley, W. W. Enhancement of the Thermal Lens Signal Induced by Sample Matrix Absorption of the Probe Laser Beam. Appl. Opt. 2002, 41, 5814–5822.
  • Guo, M. T.; Rotem, A.; Heyman, J. A.; Weitz, D. A. Droplet Microfluidics for High‐Throughput Biological Assays. Lab Chip 2012, 12, 2146–2155.
  • Gupta, R. Theory of Photothermal Effect in Fluids. In Photothermal Investigations of Solids and Fluids; Sell, J. A., Ed.; Academic Press: New York, 1988; p 81.
  • Guzsvány, V.; Madžgalj, A.; Trebše, P.; Gaál, F.; Franko, M. Determination of Selected Neonicotinoid Insecticides by Liquid Chromatography with Thermal Lens Spectrometric Detection. Environ. Chem. Lett. 2007, 5, 203–208.
  • Harada, M.; Iwamoto, K.; Kitamori, T.; Sawada, T. Photothermal Microscopy with Excitation and Probe Beams Coaxial under the Microscope and Its Application to Microparticle Analysis. Anal. Chem. 1993, 65, 2938–2940.
  • Harada, M.; Shibata, M.; Kitamori, T.; Sawada, T. Sub‐Attomole Molecule Detection in a Single Biological Cell In‐Vitro by Thermal Lens Microscopy. Anal. Sci. 1999, 15, 647–650.
  • Harata, A. Enhanced Photothermal Spectroscopy for Observing Chemical Reactions in Biological Cells. In Handai Nanophotonics; Masuhara, H.; Kawata S.; Tokunaga F., Eds.; Elsevier: Amsterdam, 2007; Vol. 3; p 73.
  • Harata, A.; Yamaguchi, N. Photothermal Lensing Signal Enhancement by the Transient Absorption of Photoexcited States in Liquid Solutions. Anal. Sci. 2000, 16, 743–749.
  • Harata, A.; Fukushima, K.; Harano, Y. Magnification in Excess of 100‐Times of the Microscopic Photothermal Lensing Signal from Solute Molecules by Two‐Color Excitation with Continuous‐Wave Lasers. Anal. Sci. 2002, 18, 1367–1373.
  • Harata, A.; Matuda, T.; Hirashima, S. Ultraviolet‐Laser Excitation Microscopic Photothermal Lens Imaging for Observing Biological Cells. Jpn. J. Appl. Phys. 2007, 46, 4561–4563.
  • Harris, J. Thermal Lens Effect. In Analytical Applications of Lasers; Piepmeier, E. H., Ed.; Wiley Interscience: New York, 1986; p 451.
  • Hiki, S.; Mawatari, K.; Hibara, A.; Tokeshi, M.; Kitamori, T. UV Excitation Thermal Lens Microscope for Sensitive and Nonlabeled Detection of Nonfluorescent Molecules. Anal. Chem. 2006, 78, 2859–2863.
  • Hisamoto, H.; Horiuchi, T.; Tokeshi, M.; Hibara, A.; Kitamori, T. On‐Chip Integration of Neutral Ionophore‐Based Ion Pair Extraction Reaction. Anal. Chem. 2001a, 73, 1382–1386.
  • Hisamoto, H.; Horiuchi, T.; Uchiyama, K.; Tokeshi, M.; Hibara, A.; Kitamori, T. On‐Chip Integration of Sequential Ion Sensing System Based on Intermittent Reagent Pumping and Formation of Two‐Layer Flow. Anal. Chem. 2001b, 73, 5551–5556.
  • Hisamoto, H.; Shimizu, Y.; Uchiyama, K.; Tokeshi, M.; Kikutani, Y.; Hibara, A.; Kitamori, T. Chemicofunctional Membrane for Integrated Chemical Processes on a Microchip. Anal. Chem. 2003, 75, 350–354.
  • Jang, K.; Sato, K.; Igawa, K.; Chung, U.; Kitamori, T. Development of an Osteoblast‐Based 3D Continuous‐Perfusion Microfluidic System for Drug Screening. Anal. Bioanal. Chem. 2008, 390, 825–832.
  • Kachanov, A. Thermal Lens Spectroscopy for Ultra‐Sensitive Absorption Measurement. U.S. Patent Application, US2008/0144007A1, 2008.
  • Katae, H.; Hirashima, S.; Harata, A. Direct Detection of Gradient‐Eluted Non‐labeled Amino Acids Using Micro‐HPLC with Ultraviolet Thermal Lensing. J. Phys. Conf. Ser. 2010, 214, 012122.
  • Kikutani, Y.; Hisamoto, H.; Tokeshi, M.; Kitamori, T. Micro Wet Analysis System Using Multi‐phase Laminar Flows in Three‐Dimensional Microchannel Network. Lab Chip 2004, 4, 328–332.
  • Kikutani, Y.; Ueno, M.; Hisamoto, H.; Tokeshi, M.; Kitamori, T. Continuous‐Flow Chemical Processing in Three‐Dimensional Microchannel Network for On‐Chip Integration of Multiple Reactions in a Combinatorial Mode. QSAR Comb. Sci. 2005, 24, 742–757.
  • Kikutani, Y.; Mawatari, K.; Katayama, K.; Tokeshi, M.; Fukuzawa, T.; Kitaoka, M.; Kitamori, T. Flowing Thermal Lens Micro‐flow Velocimeter. Sens. Actuators B 2008, 133, 91–96.
  • Kim, H.‐B.; Hagino, T.; Sasaki, N.; Kitamori, T. Ultrasensitive Detection of Electrochemical Reactions by Thermal Lens Microscopy for Microchip Chemistry. In Proceedings of μTAS 2003 Seventh International Conference on Micro Total Analysis Systems; Northrup M. A.; Jensen K. F.; Harrison D. J., Eds.; Transducers Research Foundation: Cleveland, 2003; Vol. 1; p 817.
  • Kim, H.‐B.; Hagino, T.; Sasaki, N.; Watanabe, N.; Kitamori, T. Spectroelectrochemical Detection Using Thermal Lens Microscopy with a Glass‐Substrate Microelectrode‐Microchannel Chip. J. Electroanal. Chem. 2005, 577, 47–53.
  • Kimura, H.; Kojima, H.; Mukaida, M.; Kitamori, T.; Sawada, T. Analysis of Serum Proteins Adsorbed to a Hemodialysis Membrane of Hollowfiber Type by Thermal Lens Microscopy. Anal. Sci. 1999, 15, 1101–1107.
  • Kitagawa, F.; Tsuneka, T.; Akimoto, Y.; Sueyoshi, K.; Uchiyama, K.; Hattori, A.; Otsuka, K. Toward Million‐Fold Sensitivity Enhancement by Sweeping in Capillary Electrophoresis Combined with Thermal Lens Microscopic Detection Using an Interface Chip. J. Chromatogr. A 2006, 1106, 36–42.
  • Kitamori, T. Micro and Nano Chemical System on Chip. Paper presented at 14th International Conference on Solid‐State Sensors, Actuators and Microsystems, Lyon, France, June 10–14, 2007.
  • Kitamori, T.; Tokeshi, M.; Hibara, A.; Sato, K. Thermal Lens Microscopy and Microchip Chemistry. Anal. Chem. 2004, 76, 52A–60A.
  • Kuo, J. S.; Kuyper, C. L.; Allen, P. B.; Fiorini, G. S.; Chiu, D. T. High‐Power Blue/UV Light‐Emitting Diodes as Excitation Sources for Sensitive Detection. Electrophoresis 2004, 25, 3796–3804.
  • Lazar, I. M.; Grym, J.; Foret, F. Microfabricated Devices: A New Sample Introduction Approach to Mass Spectrometry. Mass Spectrom. Rev. 2006, 25, 573–594.
  • Li, B.; Xiong, S.; Zhang, Y. Fresnel Diffraction Model for Mode‐Mismatched Thermal Lens with Top‐Hat Beam Excitation. Appl. Phys. B 2005, 80, 527–534.
  • Li, F.; Kachanov, A. A.; Zare, R. N. Detection of Separated Analytes in Subnanoliter Volumes Using Coaxial Thermal Lensing. Anal. Chem. 2007, 79, 5264–5271.
  • Liu, M.; Franko, M. An Incoherent Light Source Excited Thermal Lens Microscope. Appl. Phys. Lett. 2012, 100, 121110.
  • Liu, M.; Franko, M. A Flexible Thermal Lens Microscope for Detection in a Microfluidic Chip. Appl. Phys. Lett. 2014a.
  • Liu, M.; Franko, M. Combined μFIA and TLM Device for Rapid Determination of Hexavalent Chromium. Anal. Chim. Acta 2014b.
  • Liu, M.; Franko, M. Thermal Lens Spectrometry under Excitation of a Divergent Pump Beam. Appl. Phys. B 2013. Advance online publication. DOI: 10.1007/s00340‐013‐5601‐4.
  • Liu, M.; Korte, D.; Franko, M. Theoretical Description of Thermal Lens Spectrometry in Micro Space. J. Appl. Phys. 2012, 111, 033109.
  • Liu, M.; Novak, U.; Plazl, I.; Franko, M. Optimization of a Thermal Lens Microscope for Detection in a Microfluidic Chip. Int. J. Thermophys. 2013. Advance online publication. DOI: 10.1007/s10765‐013‐1515‐y.
  • Livak‐Dahl, E.; Sinn, I.; Burns, M. Microfluidic Chemical Analysis Systems. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 325–353.
  • Luo, Y.; Yu, F.; Zare, R. N. Microfluidic Device for Immunossays Based on Surface Plasmon Resonance Imaging. Lab Chip 2008, 8, 694–700.
  • Madžgalj, A.; Baesso, M. L.; Franko, M. Flow Injection–Thermal Lens Spectrometric Determination of Hexavalent Chromium. Eur. Phys. J. Spec. Topics 2008, 153, 503–506.
  • Malacarne, L. C.; Astrath, N. G. C.; Medina, A. N.; Herculano, L. S.; Baesso, M. L.; Pedreira, P. R. B.; Shen, J.; Wen, Q.; Michaelian, K. H.; Fairbridge, C. Soret Effect and Photochemical Reaction in Liquids with Laser‐Induced Local Heating. Opt. Express 2011, 19, 4047–4058.
  • Marcano O. A.; Ojeda, J.; Melikechi, N. Absorption Spectra of Dye Solutions Measured Using a White Light Thermal Lens Spectrophotometer. Appl. Spectrosc. 2006, 60, 560–563.
  • Marcano O. A.; Delima, F.; Markushin, Y.; Melikechi, N. Determination of Linear and Nonlinear Absorption of Metallic Colloids Using Photothermal Lens Spectrometry. J. Opt. Soc. Am. B 2011, 28, 281–287.
  • Mawatari, K.; Shimoide, K. Reflective Thermal Lens Detection Device. Lab Chip 2006, 6, 127–130.
  • Mawatari, K.; Kitamori, T.; Sawada, T. Individual Detection of Single‐Nanometer‐Sized Particles in Liquid by Photothermal Microscope. Anal. Chem. 1998, 70, 5037–5041.
  • Mawatari, K.; Naganuma, Y.; Shimoide, K. Portable Thermal Lens Spectrometer with Focusing System. Anal. Chem. 2005, 77, 687–692.
  • Mawatari, K.; Tokeshi, M.; Kitamori, T. Quantitative Detection and Fixation of Single and Multiple Gold Nanoparticles on a Microfluidic Chip by Thermal Lens Microscope. Anal. Sci. 2006, 22, 781–784.
  • Mawatari, K.; Kubota, S.; Kitamori, T. Circular Dichroism Thermal Lens Microscope in the UV Wavelength Region (UV‐CD‐TLM) for Chiral Analysis on a Microchip. Anal. Bioanal. Chem. 2008, 391, 2521–2526.
  • Mawatari, K.; Tsukahara, T.; Sugii, Y.; Kitamori, T. Extended‐Nano Fluidic Systems for Analytical and Chemical Technologies. Nanoscale 2010, 2, 1588–1595.
  • Mawatari, K.; Kazoe, Y.; Aota, A.; Tsukahara, T.; Sato, K.; Kitamori, T. Microflow Systems for Chemical Synthesis and Analysis: Approaches to Full Integration of Chemical Process. J. Flow Chem. 2011a, 1, 3–12.
  • Mawatari, K.; Ohashi, T.; Ebata, T.; Tokeshi, M.; Kitamori, T. Thermal Lens Detection Device. Lab Chip 2011b, 11, 2990–2993.
  • Nakanishi, K.; Imasaka, T.; Ishibashi, N. Thermal Lens Spectrophotometry of Phosphorus Using a Near‐Infrared Semiconductor Laser. Anal. Chem. 1985, 57, 1219–1223.
  • Navas, M. J.; Jiménez, A. M. Thermal Lens Spectrometry as Analytical Tool. Crit. Rev. Anal. Chem. 2003, 33, 77–88.
  • Nedosekin, D. A.; Bendrysheva, S. N.; Faubel, W.; Proskurnin, M. A.; Pyell, U. Indirect Thermal Lens Detection for Capillary Electrophoresis. Talanta 2007, 71, 1788–1794.
  • Nedosekin, D. A.; Faubel, W.; Proskurnin, M. A.; Pyell, U. Sensitivity Enhancement of Thermal‐Lens Spectrometry Using Laser‐Induced Precipitation. Anal. Sci. 2009, 25, 611–616.
  • Nickolaisen, S. L.; Bialkowski, S. E. Pulsed Laser Thermal Lens Spectrophotometry for Flowing Liquid Detection. Anal. Chem. 1986, 58, 215–220.
  • Okabare, P. I.; Soper, S. A. High Throughput Single Molecule Detection for Monitoring Biochemical Reactions. Analyst 2009, 134, 97–106.
  • Otsuka, K. Chiral Separations Using Avidin as a Chiral Selector and Highly Sensitive Detection Using Thermal Lens Microscopy in Capillary Electrophoresis. Chromatography 2007, 28, 1–7.
  • Pedreira, P. R. B.; Hirsch, L. R.; Pereira, J. R. D.; Medina, A. N.; Bento, A. C.; Baesso, M. L.; Rollemberg, M. C.; Franko, M.; Shen, J. Real‐Time Quantitative Investigation of Photochemical Reaction Using Thermal Lens Measurements: Theory and Experiment. J. Appl. Phys. 2006, 100, 044906.
  • Plumb, D. M.; Harris, J. M. Absorbance Measurements in Optically Inhomogeneous Samples Using Phase‐Conjugate Thermal Lens Spectroscopy. Appl. Spectrosc. 1992, 46, 1346–1353.
  • Pogačnik, L.; Franko, M. Optimisation of FIA System for Detection of Organophosphorus and Carbamate Pesticides Based on Cholinesterase Inhibition. Talanta 2001, 54, 631–641.
  • Proskurnin, M. A.; Kononets, M. Y. Modern Analytical Thermooptical Spectroscopy. Russ. Chem. Rev. 2004, 73, 1143–1172.
  • Proskurnin, M. A.; Volkov, M. E. Mode‐Mismatched Dual‐Beam Differential Thermal Lensing with Optical Scheme Design Optimized Using Expert Estimation for Analytical Measurements. Appl. Spectrosc. 2008, 62, 439–449.
  • Proskurnin, M. A.; Slyadnev, M. N.; Tokeshi, M.; Kitamori, T. Optimisation of Thermal Lens Microscopic Measurements in a Microchip. Anal. Chim. Acta 2003, 480, 79–95.
  • Proskurnin, M. A.; Chernysh, V. V.; Filichkina, V. A. Some Metrological Aspects of the Optimization of Thermal‐Lens Procedures. J. Anal. Chem. 2004, 59, 818–827.
  • Proskurnin, M. A.; Bendrysheva, S. N.; Ragozina, N.; Heissler, S.; Faubel, W.; Pyell, U. Optimization of Instrumental Parameters of a Near‐Field Thermal‐Lens Detector for Capillary Electrophoresis. Appl. Spectrosc. 2005a, 59, 1470–1479.
  • Proskurnin, M. A.; Chernysh, V. V.; Kononets, M. Y.; Pakhomova, S. V. Thermal Lens Spectrometry as a Tool for Determination of Stability Constants of Complex Compounds. Russ. Chem. Bull. (Int. Ed.) 2005b, 54, 124–134.
  • Proskurnin, M. A.; Ryndina, E. S.; Tsarkov, D. S.; Shkinev, V. M.; Smirnova, A.; Hibara, A. Comparison of Performance Parameters of Photothermal Procedures in Homogeneous and Heterogeneous Systems. Anal. Sci. 2011, 27, 381–387.
  • Qi, M.; Li, X. F.; Stathakis, C.; Dovichi, N. J. Capillary Electrochromatography with Thermo‐Optical Absorbance Detection for the Analysis of Phenylthiohydantoin‐Amino Acids. J. Chromatogr. A 1999, 853, 131–140.
  • Ragozina, N.; Heissler, S.; Faubel, W.; Pyell, U. Near‐Field Thermal Lens Detection at 257 nm as an Alternative to Absorption Spectrometric Detection in Combination with Electromigrative Separation Techniques. Anal. Chem. 2002, 74, 4480–4487.
  • Ramis‐Ramos, G.; Baeza Baeza, J. J.; Simó Alfonso, E. F. A Model for Optical Saturation Thermal Lens Spectrometry. Anal. Chim. Acta 1994, 296, 107–113.
  • Sato, K.; Kawanishi, H.; Tokeshi, M.; Kitamori, T.; Sawada, T. Sub‐zeptomole Detection in a Microfabricated Glass Channel by Thermal‐Lens Microscopy. Anal. Sci. 1999, 15, 525–529.
  • Sato, K.; Tokeshi, M.; Odake, T.; Kimura, H.; Ooi, T.; Nakao, M.; Kitamori, T. Integration of an Immunosorbent Assay System: Analysis of Secretory Human Immunoglobulin A on Polystyrene Beads in a Microchip. Anal. Chem. 2000, 72, 1144–1147.
  • Sato, K.; Tokeshi, M.; Kimura, H.; Kitamori, T. Determination of Carcinoembryonic Antigen in Human Sera by Integrated Bead‐Bed Immunoassay in a Microchip for Cancer Diagnosis. Anal. Chem. 2001, 73, 1213–1218.
  • Sato, K.; Hibara, A.; Tokeshi, M.; Hisamoto, H.; Kitamori, T. Microchip‐Based Chemical and Biochemical Analysis Systems. Adv. Drug Deliv. Rev. 2003a, 55, 379–391.
  • Sato, K.; Yamanaka, M.; Tokeshi, M.; Morishima, K.; Kitamori, T. Multichannel Micro ELISA System. In Proceedings of μTAS 2003 Seventh International Conference on Micro Total Analysis Systems; Northrup M. A.; Jensen K. F.; Harrison D. J., Eds.; Transducers Research Foundation: Cleveland, 2003; Vol. 1; p 781.
  • Sato, K.; Yamanaka, M.; Hagino, T.; Tokeshi, M.; Kimura, H.; Kitamori, T. Microchip‐Based Enzyme‐Linked Immunosorbent Assay (MicroELISA) System with Thermal Lens Detection. Lab Chip 2004, 4, 570–575.
  • Sato, K.; Egami, A.; Odake, T.; Tokeshi, M.; Aihara, M.; Kitamori, T. Monitoring of Intercellular Messengers Released from Neuron Networks Cultured in a Microchip. J. Chromatogr. A 2006, 1111, 228–232.
  • Sato, K.; Mawatari, K.; Kitamori, T. Microchip‐Based Cell Analysis and Clinical Diagnosis System. Lab Chip 2008, 8, 1992–1998.
  • Seidel, B. S.; Faubel, W. Fiber Optic Modified Thermal Lens Detector System for the Determination of Amino Acids. J. Chromatogr. A 1998, 817, 223–226.
  • Seta, N.; Mawatari, K.; Kitamori, T. Individual Nanoparticle Detection in Liquid by Thermal Lens Microscope and Improvement of Detection Efficiency Utilizing 1μm Microfluidic Channel. Anal. Sci. 2009, 25, 275–278.
  • Sheldon, S. J.; Knight, L. V.; Thorne, J. M. Laser‐Induced Thermal Lens Effect: A New Theoretical Model. Appl. Opt. 1982, 21, 1663–1669.
  • Shimizu, H.; Mawatari, K.; Kitamori, T. Development of a Differential Interference Contrast Thermal Lens Microscope for Sensitive Individual Nanoparticle Detection in Liquid. Anal. Chem. 2009, 81, 9802–9806.
  • Shimizu, H.; Mawatari, K.; Kitamori, T. Sensitive Determination of Concentration of Nonfluorescent Species in an Extended‐Nanochannel by Differential Interference Contrast Thermal Lens Microscope. Anal. Chem. 2010, 82, 7479–7484.
  • Shimizu, H.; Mawatari, K.; Kitamori, T. Detection of Nonfluorescent Molecules Using Differential Interference Contrast Thermal Lens Microscope for Extended Nanochannel Chromatography. J. Sep. Sci. 2011, 34, 2920–2924.
  • Šikovec, M.; Novič, M.; Hudnik, V.; Franko, M. On‐Line Thermal Lens Spectrometric Detection of Cr(III) and Cr(VI) after Separation by Ion Chromatography. J. Chromatogr. A 1995, 706, 121–126.
  • Šikovec, M.; Novič, M.; Franko, M. Application of Thermal Lens Spectrometric Detection to the Determination of Heavy Metals by Ion Chromatography. J. Chromatogr. A 1996, 739, 111–117.
  • Šikovec, M.; Franko, M.; Novič, M.; Veber, M. Effect of Organic Solvents in the On‐Line Thermal Lens Spectrometric Detection of Chromium(III) and Chromium(VI) after Ion Chromatographic Separation. J. Chromatogr. A 2001, 920, 119–125.
  • Slyadnev, M. N.; Tanaka, Y.; Tokeshi, M.; Kitamori, T. Photothermal Temperature Control of a Chemical Reaction on a Microchip Using an Infrared Diode Laser. Anal. Chem. 2001, 73, 4037–4044.
  • Smirnova, A.; Mawatari, K.; Hibara, A.; Proskurnin, M. A.; Kitamori, T. Micro‐multiphase Laminar Flows for the Extraction and Detection of Carbaryl Derivative. Anal. Chim. Acta 2006, 558, 69–74.
  • Smirnova, A.; Shimura, K.; Hibara, A.; Proskurnin, M. A.; Kitamori, T. Application of a Micro Multiphase Laminar Flow on a Microchip for Extraction and Determination of Derivatized Carbamate Pesticides. Anal. Sci. 2007, 23, 103–107.
  • Smirnova, A.; Proskurnin, M. A.; Bendrysheva, S. N.; Nedosekin, D. A.; Hibara, A.; Kitamori, T. Thermooptical Detection in Microchips: From Macro‐ to Micro‐scale with Enhanced Analytical Parameters. Electrophoresis 2008, 29, 2741–2753.
  • Smirnova, A.; Proskurnin, M. A.; Mawatari, K.; Kitamori, T. Desktop Near‐Field Thermal‐Lens Microscope for Thermo‐Optical Detection in Microfluidics. Electrophoresis 2012, 33, 2748–2751.
  • Sorouraddin, H. M.; Hibara, A.; Proskurnin, M. A.; Kitamori, T. Integrated FIA for the Determination of Ascorbic Acid and Dehydroascorbic Acid in a Microfabricated Glass‐Channel by Thermal Lens Microscopy. Anal. Sci. 2000, 16, 1033–1037.
  • Sorouraddin, H. M.; Hibara, A.; Kitamori, T. Use of a Thermal Lens Microscope in Integrated Catecholamine Determination on a Microchip. Fresenius’ J. Anal. Chem. 2001, 371, 91–96.
  • Surmeian, M.; Slyadnev, M. N.; Hisamoto, H.; Hibara, A.; Uchiyama, K.; Kitamori, T. Three‐Layer Flow Membrane System on a Microchip for Investigation of Molecular Transport. Anal. Chem. 2002, 74, 2014–2020.
  • Takeshita, K.; Shibato, J.; Sameshima, T.; Fukunaga, S.; Isobe, S.; Arihara, K.; Itoh, M. Damage of Yeast Cells Induced by Pulsed Light Irradiation. Int. J. Food Microbiol. 2003, 85, 151–158.
  • Tamaki, E.; Sato, K.; Tokeshi, M.; Sato, K.; Aihara, M.; Kitamori, T. Single Cell Analysis by a Scanning Thermal Lens Microscope with a Microchip: Direct Monitoring of Cytochrome‐c Distribution during Apoptosis Process. Anal. Chem. 2002, 74, 1560–1564.
  • Tamaki, E.; Hibara, A.; Tokeshi, M.; Kitamori, T. Microchannel‐Assisted Thermal‐Lens Spectrometry for Microchip Analysis. J. Chromatogr. A 2003, 987, 197–204.
  • Tamaki, E.; Hibara, A.; Tokeshi, M.; Kitamori, T. Tunable Thermal Lens Spectrometry Utilizing Microchannel‐Assisted Thermal Lens Spectrometry. Lab Chip 2005, 5, 129–131.
  • Tanaka, Y.; Slyadnev, M. N.; Hibara, A.; Tokeshi, M.; Kitamori, T. Non‐contact Photothermal Control of Enzyme Reactions on a Microchip by Using a Compact Diode Laser. J. Chromatogr. A 2000, 894, 45–51.
  • Tanaka, Y.; Kikukawa, Y.; Sato, K.; Sugii, Y.; Kitamori, T. Culture and Leukocyte Adhesion Assay of Human Arterial Endothelial Cells in a Glass Microchip. Anal. Sci. 2007, 23, 261–266.
  • Taouri, A.; Derbal, H.; Nunzi, J. M.; Mountasser, R.; Sylla, M. Two‐Photon Absorption Cross‐Section Measurement by Thermal Lens and Nonlinear Transmission Methods in Organic Materials at 532 nm and 1064 nm Laser Excitations. J. Optoelectron. Adv. M 2009, 11, 1696–1703.
  • Tian, W.‐C.; Finhout, E. Microfluidics for Biological Applications; Springer Science+Business Media: New York, 2008.
  • Tokeshi, M.; Uchida, M.; Uchiyama, K.; Sawada, T.; Kitamori, T. Single‐ and Countable‐Molecule Detection of Non‐Fluorescent Molecules in Liquid Phase. J. Lumin. 1999, 83–84, 261–264.
  • Tokeshi, M.; Minagawa, T.; Kitamori, T. Integration of a Microextraction System on a Glass Chip: Ion‐Pair Solvent Extraction of Fe(II) with 4,7‐Diphenyl‐1,10‐ Phenanthrolinedisulfonic Acid and Tri‐n‐octylmethylammonium Chloride. Anal. Chem. 2000, 72, 1711–1714.
  • Tokeshi, M.; Sato, K.; Kitamori, T. Integration Chemistry for Bio‐chip: Integration of Immunoassay and Bio‐Chemical Lab on a Chip. RIKEN Rev. 2001a, 36, 24–25.
  • Tokeshi, M.; Uchida, M.; Hibara, A.; Sawada, T.; Kitamori, T. Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle‐Molecule Determination. Anal. Chem. 2001b, 73, 2112–2116.
  • Tokeshi, M.; Minagawa, T.; Uchiyama, K.; Hibara, A.; Sato, K.; Hisamoto, H.; Kitamori, T. Continuous Flow Chemical Processing on a Microchip by Combining Micro Unit Operations and a Multiphase Flow Network. Anal. Chem. 2002, 74, 1565 –1571.
  • Tokeshi, M.; Kikutani, Y.; Hibara, A.; Sato, K.; Hisamoto, H.; Kitamori, T. Chemical Processing on Microchips for Analysis, Synthesis, and Bioassay. Electrophoresis 2003, 24, 3583–3594.
  • Tokeshi, M.; Yamaguchi, J.; Hattori, A.; Kitamori, T. Micro Thermal Lens Optical Systems. Anal. Chem. 2005, 77, 626–630.
  • Tran, C. D. Simultaneous Enhancement of Fluorescence and Thermal Lensing by Reversed Micelles. Anal. Chem. 1988, 60, 182–185.
  • Tran, C. D.; Grishko, V. I. Thermal Lens Technique for Sensitive and Nondestructive Determination of Isotopic Purity. Anal. Biochem. 1994, 218, 197–203.
  • Tran, C. D.; Simianu, V. Multiwavelength Thermal Lens Spectrophotometer Based on an Acousto‐optic Tunable Filter. Anal. Chem. 1992, 64, 1419–1425.
  • Tran, C. D.; Van Fleet, T. A. Micellar Induced Simultaneous Enhancement of Fluorescence and Thermal Lensing. Anal. Chem. 1988, 60, 2478–2482.
  • Tran, C. D.; Zhang, W. Thermal Lensing Detection of Lanthanide Ions by Solvent Extraction Using Crown Ethers. Anal. Chem. 1990, 62, 830–834.
  • Tran, C. D.; Grishko, V. I.; Baptista, M. S. Nondestructive and Nonintrusive Determination of Chemical and Isotopic Purity of Solvents by Near‐Infrared Thermal Lens Spectrometry. Appl. Spectrosc. 1994, 48, 833–842.
  • Tran, C. D.; Challa, S.; Franko, M. Ionic Liquids as an Attractive Alternative Solvent for Thermal Lens Measurements. Anal. Chem. 2005, 77, 7442–7447.
  • Uchiyama, K.; Hibara, A.; Sato, K.; Hisamoto, H.; Tokeshi, M.; Kitamori, T. An Interface Chip Connection between Capillary Electrophoresis and Thermal Lens Microscope. Electrophoresis 2003, 24, 179–184.
  • Uchiyama, K.; Tokeshi, M.; Kikutani, Y.; Hattori, A.; Kitamori, T. Optimization of an Interface Chip for Coupling Capillary Electrophoresis with Thermal Lens Microscopic Detection. Anal. Sci. 2005, 21, 49–52.
  • Váradi, M.; Balla, J.; Pungor, E. Comparison of Electrochemical Detectors with Non‐electrochemical Detectors in Chromatography. Pure Appl. Chem. 1979, 51, 1175–1182.
  • Voelkel, R.; Weible, K. J. Laser Beam Homogenizing: Limitations and Constraints. In Optical Fabrication, Testing and Metrology III; SPIE: Bellingham, WA, 2008.
  • Vyas, R.; Gupta, R. Photothermal Lensing Spectroscopy in a Flowing Medium: Theory. Appl. Opt. 1988, 27, 4701–4711.
  • Weimer, W. A.; Dovichi, N. J. Optimization of Photothermal Refraction for Flowing Liquid Samples. Appl. Spectrosc. 1985, 39, 1009–1013.
  • Wu, J.; Gu, M. Microfluidic Sensing: State of the Art Fabrication and Detection Techniques. J. Biomed. Opt. 2011, 16, 080901.
  • Xu, M.; Tran, C. D. Thermal Lens‐Circular Dichroism Detector for High‐Performance Liquid Chromatography. Anal. Chem. 1990a, 62, 2467–2471.
  • Xu, M.; Tran, C. D. Thermal Lens‐Circular Dichroism Spectropolarimeter. Appl. Spectrosc. 1990b, 44, 962–966.
  • Yamasaki, Y.; Goto, M.; Kariyasaki, A.; Morooka, S.; Yamaguchi, Y.; Miyazaki, M.; Maeda, H. Layered Liquid‐Liquid Flow in Microchannels Having Selectively Modified Hydrophilic and Hydrophobic Walls. Korean J. Chem. Eng. 2009, 26, 1759–1765.
  • Yamauchi, M.; Mawatari, K.; Hibara, A.; Tokeshi, M.; Kitamori, T. Circular Dichroism Thermal Lens Microscope for Sensitive Chiral Analysis on Microchip. Anal. Chem. 2006a, 78, 2646–2650.
  • Yamauchi, M.; Tokeshi, M.; Yamaguchi, J.; Fukuzawa, T.; Hattori, A.; Hibara, A.; Kitamori, T. Miniaturized Thermal Lens and Fluorescence Detection System for Microchemical Chips. J. Chromatogr. A 2006b, 1106, 89–93.
  • Yu, F.; Kachanov, A. A.; Koulikov, S.; Wainright, A.; Zare, R. N. Ultraviolet Thermal Lensing Detection of Amino Acids. J. Chromatogr. A 2009, 1216, 3423–3430.
  • Zhang, J.; Huang, Y.; Chuang, C.‐J.; Bivolarska, M.; See, C. W.; Somekh, M. G.; Pitter, M. C. Polarization Modulation Thermal Lens Microscopy for Imaging the Orientation of Non‐spherical Nanoparticles. Opt. Express 2011, 19, 2643–2648.
  • Zheng, J.; Odake, T.; Kitamori, T.; Sawada, T. Fast Slab Gel Electrophoretic Separation of DNA Fragments with a Short Migration Distance Using Thermal Lens Microscope. Anal. Sci. 1999a, 15, 223–227.
  • Zheng, J.; Odake, T.; Kitamori, T.; Sawada, T. Miniaturized Ultrathin Slab Gel Electrophoresis with Thermal Lens Microscope Detection and Its Application to Fast Genetic Diagnosis. Anal. Chem. 1999b, 71, 5003–5008.
  • Žnidaršič‐Plazl, P.; Plazl, I. Steroid Extraction in a Microchannel System―Mathematical Modeling and Experiments. Lab Chip 2007, 7, 883–889.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.