1,154
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Recent Applications for in Vitro Antioxidant Activity Assay

, , &
Pages 389-399 | Published online: 09 Jun 2016

References

  • Alam, Md. N.; Bristi, N. J.; Rafiquzzaman, Md. Review on in Vivo and in Vitro Methods Evaluation of Antioxidant Activity. Saudi Pharm. J. 2013, 21(2), 143–152.
  • Apak, R.; Guclu, K.; Ozyurek, M.; Karademir, S. E.; Altun, M. Total Antioxidant Capacity Assay of Human Serum Using Copper (II)-Neocuproine as Chromogenic Oxidant: The CUPRAC Method. Free Radic. Res. 2005, 39(9), 949–961.
  • Awatsuhara, R.; Harada, K.; Maeda, T.; Nomura, T.; Nagao, K. Antioxidative Activity of the Buckwheat Polyphenol Rutin in Combination with Ovalbumin. Mol. Med. Rep. 2010, 3(1), 121–125.
  • Ballesteros, L. F.; Teixeira, J. A.; Mussatto, S .I. Selection of the Solvent and Extraction Conditions for Maximum Recovery of Antioxidant Phenolic Compounds from Coffee Silverskin. Food Bioprocess Technol. 2014, 7(5), 1322–1332.
  • Bayram, B.; Esatbeyoglu, T.; Schulze, N.; Ozcelik, B.; Frank, J.; Rimbach, G. Comprehensive Analysis of Polyphenols in 55 Extra Virgin Olive Oils by HPLC-ECD and Their Correlation with Antioxidant Activities. Plant Foods Hum. Nutr. 2012, 67(4), 326–336.
  • Bazylko, A.; Stolarczyk, M.; Derwińska, M.; Kiss, A. K. Determination of Antioxidant Activity of Extracts and Fractions Obtained from Galinsoga parviflora and Galinsoga quadriradiata, and a Qualitative Study of the Most Active Fractions Using TLC and HPLC Methods. Nat. Prod. Res. 2012, 26(17), 1584–1593.
  • Benzie, I. F. F.; Strain, J. J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27.
  • Bertolino, F. A.; Stege, P. W.; Salinas, E.; Messina, G. A.; Raba, J. Electrochemical Study of the Antioxidant Activity and the Synergic Effect of Selenium with Natural and Synthetic Antioxidants. Anal. Lett. 2010, 43(13), 2078–2090.
  • Bonanni, A.; Campanella, L.; Gatta, T.; Gregori, E.; Tomassetti, M. Evaluation of the Antioxidant and Prooxidant Properties of Several Commercial Dry Spices by Different Analytical Methods. Food Chem. 2007, 102(3), 751–758.
  • Brainina, Kh. Z.; Varzakova, D. P.; Gerasimova, E. L. A Chronoamperometric Method for Determining Total Antioxidant Activity. J. Anal. Chem. 2012, 67(4), 364–369.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of Free Radical Method to Evaluate Antioxidant Activity. Lebensm. Wiss. Technol. 1995, 28, 25–30.
  • Brito, R. E.; Mellado, J. M. R.; Palma, A.; Montoya, M. R.; Arteaga, J. F. Mechanism of Mercury Electrooxidation in the Presence of Hydrogen Peroxide and Antioxidants. J. Electrochem. Soc. 2014, 161(12), H854–H859.
  • Bunaciu, A. A.; Aboul-Enein, H. Y.; Fleschin, Ș. FTIR Spectrophotometric Methods Used for Antioxidant Activity Assay in Medicinal Plants. Appl. Spectrosc. Rev. 2012, 47(4), 245–255.
  • Burin, V. M.; Ferreira-Lima, N. E.; Panceri, C. P.; Bordignon-Luiz, M. T. Bioactive Compounds and Antioxidant Activity of Vitis vinifera and Vitis labrusca grapes: Evaluation of Different Extraction Methods. Microchem. J. 2014, 114, 155–163.
  • Bursal, E.; Köksal, E.; Gülçin, İ.; Bilsel, G.; Gören, A. C. Antioxidant Activity and Polyphenol Content of Cherry Stem (Cerasus avium L.) Determined by LC–MS/MS. Food Res. Int. 2013, 51(1), 66–74.
  • Cao, G.; Alessio, H. M.; Cutler, R. G. Oxygen-Radical Absorbance Capacity Assay for Antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311.
  • Carocho, M.; Ferreira, I. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15–25.
  • Çelik, S. E.; Özyürek, M.; Güçlü, K.; Apak, R. Determination of Antioxidants by a Novel On-Line HPLC-Cupric Reducing Antioxidant Capacity (CUPRAC) Assay with Post-Column Detection. Anal. Chim. Acta 2010, 674(1), 79–88.
  • Chen, Q.; Guo, Z.; Zhao, J.; Ouyang, Q. Comparisons of Different Regressions Tools in Measurement of Antioxidant Activity in Green Tea Using Near Infrared Spectroscopy. J. Pharm. Biomed. Anal. 2012, 60, 92–97.
  • Christodouleas, D.; Papadopoulos, K.; Calokerinos, A. C. Determination of Total Antioxidant Activity of Edible Oils as Well as Their Aqueous and Organic Extracts by Chemiluminescence. Food Anal. Methods 2011, 4(4), 475–484.
  • Christodouleas, D.; Fotakis, C.; Papadopoulos, K.; Dimotikali, D.; Calokerinos, A. C. Luminescent Methods in the Analysis of Untreated Edible Oils: A Review. Anal. Lett. 2012, 45(5-6), 625–641.
  • Číž, M.; Čížová, H.; Denev, P.; Kratchanova, M.; Slavov, A.; Lojek, A. Different Methods for Control and Comparison of the Antioxidant Properties of Vegetables. Food Control 2010, 21(4), 518–523.
  • Dumarey, M.; van Nederkassel, A. M.; Deconinck, E.; Heyden, Y. V. Exploration of Linear Multivariate Calibration Techniques to Predict the Total Antioxidant Capacity of Green Tea from Chromatographic Fingerprints. J. Chromatogr. A 2008, 1192(1), 81–88.
  • Estevão, M. S.; Carvalho, L. C.; Ferreira, L. M.; Fernandes, E.; Marques, M. M. B. Analysis of the Antioxidant Activity of an Indole Library: Cyclic Voltammetry versus ROS Scavenging Activity. Tetrahedron Lett. 2011, 52(1), 101–106.
  • Gamiz-Gracia, L.; Garcia-Campana, A.; Huertas-Perez, J.; Lara, F. Chemiluminescence Detection in Liquid Chromatography: Applications to Clinical, Pharmaceutical, Environmental and Food Analysis—A Review. Anal. Chim. Acta 2009, 640(1–2), 7–28.
  • Giokas, D. L.; Christodouleas, D. C.; Vlachou, I.; Vlessidis, A. G.; Calokerinos, A. C. Development of a Generic Assay for the Determination of Total Trihydroxybenzoate Derivatives Based on Gold-Luminol Chemiluminescence. Anal. Chim. Acta 2013, 764, 70–77.
  • Głód, B. K.; Piszcz, P.; Beta, A.; Zarzycki, P. K. RP-HPLC, with Fluorescence Detection, Assay for the Determination of Total Antioxidant Potential (TAP). J. Liq. Chromatogr. Relat. Technol. 2012, 35(9), 1194–1201.
  • Godoy-Navajas, J.; Caballos, M. P. A.; Gomez-Hens, A. Long-Wavelength Fluorimetric Determination of Food Antioxidant Capacity Using Nile Blue as Reagent. J. Agric. Food Chem. 2011, 59(6), 2235–2240.
  • Gülçin, İ. Antioxidant Activity of Food Constituents: An Overview. Arch. Toxicol. 2012, 86(3), 345–391.
  • Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2003.
  • He, J. B.; Yuan, S. J.; Du, J. Q.; Hu, X. R.; Wang, Y. Voltammetric and Spectral Characterization of Two Flavonols for Assay-Dependent Antioxidant Capacity. Bioelectrochemistry 2009, 75(2), 110–116.
  • Hilgemann, M.; Scholz, F.; Kahlert, H.; Machado de Carvalho, L.; Barcellos da Rosa, M.; Lindequist, U.; Wurster, M.; do Nascimento, P.C.; Bohrer, D. Electrochemical Assay to Quantify the Hydroxyl Radical Scavenging Activity of Medicinal Plant Extracts. Electroanalysis 2010, 22(4), 406–412.
  • Hoai, N. N.; Dejaegher, B.; Tistaert, C.; Nguyen, V.; Hong, T.; Rivière, C.; Chataigné, G.; Phan Van, K.; Chau Van, M.; Quetin-Leclercq, J.; Vander Heyden, Y. Development of HPLC Fingerprints for Mallotus Species Extracts and Evaluation of the Peaks Responsible for Their Antioxidant Activity. J. Pharm. Biomed. Anal. 2009, 50(5), 753–763.
  • Huang, H.; Sun, Y.; Lou, S.; Li, H.; Ye, X. In Vitro Digestion Combined with Cellular Assay to Determine the Antioxidant Activity in Chinese Bayberry (Myrica rubra Sieb. et Zucc.) Fruits: A Comparison with Traditional Methods. Food Chem. 2014, 146, 363–370.
  • Jamróz, M. K.; Paradowska, K.; Zawada, K.; Makarova, K.; Kaźmierski, S.; Wawer, I. H and C NMR-Based Sugar Profiling with Chemometric Analysis and Antioxidant Activity of Herbhoneys and Honeys. J. Sci. Food Agric. 2014, 94(2), 246–255.
  • Jantasee, A.; Thumanu, K.; Muangsan, N.; Leeanansaksiri, W.; Maensiri, D. Fourier Transform Infrared Spectroscopy for Antioxidant Capacity Determination in Colored Glutinous Rice. Food Anal. Methods 2014, 7(2), 389–399.
  • Jeon, J. S.; Kim, H. G.; Um, B. H.; Kim, C. Y. Rapid Detection of Antioxidant Flavonoids in Azalea (Rhododendron mucronulatum) Flowers Using On-line HPLC-ABTS+ System and Preparative Isolation of Three Flavonoids by Centrifugal Partition Chromatography. Sep. Sci. Technol. 2011, 46(3), 518–524.
  • Karadag, A.; Ozcelik, B.; Saner, S. Review of Methods to Determine Antioxidant Capacities. Food Anal. Methods 2009, 2(1), 41–60.
  • Karyakina, E. E.; Vokhmyanina, D. V.; Sizova, N. V.; Sabitov, A. N.; Borisova, A. V.; Sazontova, T. G.; Arkhipenko, Y. V.; Tkachuk, V. A.; Zolotov, Y. A.; Karyakin, A. A. Kinetic Approach for Evaluation of Total Antioxidant Activity. Talanta 2009, 80(2), 749–753.
  • Kedare, S. B.; Singh, R. P. Genesis and Development of DPPH Method for Antioxidant Assay. J. Food Sci. Technol. 2011, 48(4), 412–422.
  • Kintzios, S.; Papageorgiou, K.; Yiakoumettis, I.; Baričevič, D.; Kušar, A. Evaluation of the Antioxidants Activities of Four Slovene Medicinal Plant Species by Traditional and Novel Biosensory Assays. J. Pharm. Biomed. Anal. 2010, 53(3), 773–776.
  • Komes, D.; Belščak-Cvitanović, A.; Horžić, D.; Rusak, G.; Likić, S.; Berendika, M. Phenolic Composition and Antioxidant Properties of Some Traditionally Used Medicinal Plants Affected by the Extraction Time and Hydrolysis. Phytochem. Anal. 2011, 22(2), 172–180
  • Konczak, I.; Zabaras, D.; Dunstan, M.; Aguas, P. Antioxidant Capacity and Hydrophilic Phytochemicals in Commercially Grown Native Australian Fruits. Food Chem. 2010, 123(4), 1048–1054.
  • Laguerre, M.; Lecomte, J.; Villeneuve, P. Evaluation of the Ability of Antioxidants to Counteract Lipid Oxidation: Existing Methods, New Trends and Challenges. Prog. Lipid Res. 2007, 46, 244–282.
  • Li, S.; Sun, H.; Wang, D.; Qian, L.; Zhu, Y.; Tao, S. Determination of Gallic Acid by Flow Injection Analysis Based on Luminol-AgNO-Ag NPs Chemiluminescence System. Chin. J. Chem. 2012, 30(4), 837–841.
  • Liu, C. H.; Jia, B. X.; Li, Y. Q.; Qi, Y. X.; Li, K. D.; Guo, Y. R. Antioxidant Effect of Apple Polyphenols by Flow Injection Chemiluminescence. Asian J. Chem. 2013, 25(13), 7401–7404.
  • Liu, R. H. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action. J. Nutr. 2004, 134, 3479S–3485S.
  • Llorent-Martinez, E. J.; Molina-Garcia, L.; Fernandez-de Cordova, M. L.; Santos, J. L. M.; Rodrigues, S. S. M.; Ruiz-Medina, A. A Novel Multi-Commutated Method for the Determination of Hydroxytyrosol in Enriched Foods Using Mercaptopropionic Acid-Capped CdTe Quantum Dots. Food Addit Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30(9), 1485–1492.
  • Loi, D. T., Ed. Glossary of Vietnamese Medicinal Plants; Science & Technics Publication: Hanoi, Vietnam, 2001.
  • Lu, X.; Wang, J.; Al-Qadiri, H. M.; Ross, C. F.; Powers, J. R.; Tang, J.; Rasco, B. A. Determination of Total Phenolic Content and Antioxidant Capacity of Onion (Allium cepa) and Shallot (Allium oschaninii) Using Infrared Spectroscopy. Food Chem. 2011, 129(2), 637–644.
  • Lu, X.; Rasco, B. A. Determination of Antioxidant Content and Antioxidant Activity in Foods Using Infrared Spectroscopy and Chemometrics: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52(10), 853–875.
  • MacDonald-Wicks, K. L.; Wood, L. G.; Garg, M. L. Methodology for the Determination of Biological Antioxidant Capacity in Vitro: A Review. J. Sci. Food. Agric. 2006, 86, 2046–2056.
  • Magalhães, L. M.; Segundo, M. A.; Reis, S.; Lima, J. L. F. C. Methodological Aspects about in Vitro Evaluation of Antioxidant Properties. Anal. Chim. Acta 2008, 613, 1–19.
  • Maia, L. F.; Ferreira, G. R.; Costa, R. C. C.; Lucas, N. C.; Teixeira, R. I.; Fleury, B. G.; Edwards, H. G. M.; de Oliveira, L. F. C. Raman Spectroscopic Study of Antioxidant Pigments from Cup Corals Tubastraea spp. J. Phys. Chem. A 2014, 118, 3429−3437.
  • Malicanin, M.; Rac, V.; Antic, V.; Antic, M.; Palade, L. M.; Kefalas, P.; Rakic, V. Content of Antioxidants, Antioxidant Capacity and Oxidative Stability of Grape Seed Oil Obtained by Ultra Sound Assisted Extraction. J. Am. Oil Chem. Soc. 2014, 91(6), 989–999.
  • Materska, M.; Konopacka, M.; Rogoliński, J.; Ślosarek, K. Antioxidant Activity and Protective Effects against Oxidative Damage of Human Cells Induced by X-radiation of Phenolic Glycosides Isolated from Pepper Fruits Capsicum annuum L. Food Chem. 2015, 168, 546–553.
  • Mello, L. D.; Kisner, A.; Goulart, M. O. F.; Kubota, L.T. Biosensors for Antioxidant Evaluation in Biological Systems. Comb. Chem. High Throughput Screen. 2013, 16(2), 109–120.
  • Miller, N. J.; Rice-Evans, C. A. Factors Influencing the Antioxidant Activity Determined by the ABTS Radical Cation Assay. Free Radic. Res. 1997, 26, 195–199.
  • Milos, M.; Makota, D. Investigation of Antioxidant Synergisms and Antagonisms among Thymol, Carvacrol, Thymoquinone and p-Cymene in a Model System Using the Briggs-Rauscher Oscillating Reaction. Food Chem. 2012, 131(1), 296–299.
  • Moţ, A. C.; Silaghi-Dumitrescu, R.; Sârbu, C. Rapid and Effective Evaluation of the Antioxidant Capacity of Propolis Extracts Using DPPH Bleaching Kinetic Profiles; FT-IR and UV-vis Spectroscopic Data. J. Food Compos. Anal. 2011, 24(4–5), 516–522.
  • Muntean, N.; Szabo, G. The Antioxidant Activity of Tea Infusions Tested by Means of Briggs-Ruascher Oscillatory Reaction. Stud. Univ. Babes-Bolyai Chem. 2013, 58(2), 175–183.
  • Nie, Y. C.; Chen, J. Y.; Yan, Y.; Lv, J. Flow-Sono-Chemiluminescence Method for Antioxidant Capacity Analysis. Food Chem. 2010, 122(1), 360–365.
  • Niki, E.; Shimaski, H.; M. Mino. Antioxidantism – Free Radical and Biological Defence; Gakkai Syuppan Center: Tokyo, 1994.
  • Niki, E. Assessment of Antioxidant Capacity in Vitro and in Vivo. Free Radic. Biol. Med. 2010, 49(4), 503–515.
  • Noipa, T.; Srijaranai, S.; Tuntulani, T.; Ngeontae, W. New Approach for Evaluation of the Antioxidant Capacity Based on Scavenging DPPH Free Radical in Micelle Systems. Food Res. Int. 2011, 44(3), 798–806.
  • Oliveira, R.; Geraldo, D.; Bento, F. Radical Scavenging Activity of Antioxidants Evaluated by Means of Electrogenerated HO radical. Talanta 2014, 129, 320–327.
  • Özyürek, M.; Güçlü, K.; Apak, R. The Main and Modified CUPRAC Methods. TrAC Trends Anal. Chem. 2011a, 30(4), 652–664.
  • Özyürek, M.; Güçlü, K.; Tütem, E.; Başkan, K. S.; Erçağ, E.; Çelik, S. E.; Baki, S.; Yıldız, L.; Karaman, Ş.; Apak, R. A Comprehensive Review of CUPRAC Methodology. Anal. Methods 2011b, 3, 2439–2453.
  • Ozyurt, D.; Demirata, B.; Apak, R. Determination of Total Antioxidant Capacity by a New Spectrophotometric Method Based on Ce(IV) Reducing Capacity Measurements. Talanta 2007, 71(3), 1155–1165.
  • Pogacnik, L.; Ulrih, N. P. Application of Optimized Chemiluminescence Assay for Determination of the Antioxidant Capacity of Herbal Extracts. Luminescence 2012, 27(6), 505–510.
  • Popa, C.-V.; Danet, A. F.; Jipa, S.; Zaharescu, T. Determination of Total Antioxidant Activity of Wines Using a Flow Injection Method with Chemiluminescence Detection. Rev. Chim. 2010, 61(1), 11–16.
  • Popa, C.-V.; Fărcășanu, I.-C.; Jipa, S.; Zaharescu, T.; Danet, A. F. Chemiluminescence Determination of the Total Antioxidant Capacity of Rosemary Extract. Rev. Chim. 2012a, 63(7), 715–719.
  • Popa, C.-V.; Lungu, L.; Săvoiu, M.; Bradu, C.; Dinoiu, V.; Danet, A. F. Total Antioxidant Activity and Phenols and Flavonoids Content of Several Plant Extracts. Int. J. Food Prop. 2012b, 15(3), 691–701.
  • Potkonjak, N. I.; Veselinović, D. S.; Novaković, M. M.; Gorjanović, S. Ž.; Pezo, L. L.; Sužnjević, D. Ž. Antioxidant Activity of Propolis Extracts from Serbia: A Polarographic Approach. Food Chem. Toxicol. 2012, 50(10), 3614–3618.
  • Prasetyo, E. N.; Kudanga, T.; Steiner, W.; Murkovic, M.; Nyanhongo, G. S.; Guebitz, G. M. Antioxidant Activity Assay Based on Laccase-Generated Radicals. Anal. Bioanal. Chem. 2009, 393(2), 679–687.
  • Prior, R. L.; Wu, X. L.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53(10), 4290–4302.
  • Pulgarin, J. A. M.; Bermejo, L. F. G.; Duran, A. C. Evaluation of the Antioxidant Activity of Vegetable Oils Based on Luminol Chemiluminescence in a Microemulsion. Eur. J. Lipid Sci. Technol. 2010, 112(12), 1294–1301.
  • Pulgarin, J. A. M.; Bermejo, L. F. G.; Duran, A. C. Use of the Attenuation of Luminol-Perborate Chemiluminescence with Flow Injection Analysis for the Total Antioxidant Activity in Tea Infusions, Wines, and Grape Seeds. Food Anal. Methods 2012, 5(3), 366–372.
  • Raghavendra, H. L.; Pradeep Kumar, S. V.; Prashith Kekuda, T. R.; Ejeta, E.; Molla, B.; Anilakumar, K. R.; Khanum, F. HPLC Method for Chemical Composition and in Vitro Antioxidant Activity of Camellia sinensis Linn. Anal. Chem. Lett. 2011, 1(5–6), 361–369.
  • Rice-Evans, C. A. Flavonoid Antioxidants. Curr. Med. Chem. 2001, 8, 797–807.
  • Rodriguez-Jasso, R. M.; Mussatto, S. I.; Pastrana, L.; Aguilar, C. N.; Teixeira, J. A. Chemical Composition and Antioxidant Activity of Sulphated Polysaccharides Extracted from Fucus vesiculosus Using Different Hydrothermal Processes. Chem. Pap. 2014, 68(2), 203–209.
  • Rossato, S. B.; Haas, C.; Raseira, M.; Moreira, J. C. F.; Zuanazzi, J. A. S. Antioxidant Potential of Peels and Fleshes of Peaches from Different Cultivars. J. Med. Food 2009, 12(5), 1119–1126.
  • Saleh, L.; Plieth, C. Total Low-Molecular-Weight Antioxidants as a Summary Parameter, Quantified in Biological Samples by a Chemiluminescence Inhibition Assay. Nat. Protoc. 2010, 5(10), 1627–1634.
  • Samra, A. M.; Chedea, V. S.; Economou, A.; Calokerinos, A.; Kefalas, P. Antioxidant/Prooxidant Properties of Model Phenolic Compounds: Part I. Studies on Equimolar Mixtures by Chemiluminescence and Cyclic Voltammetry. Food Chem. 2011, 125(2), 622–629.
  • Schmidt, E. M.; Santos, C. D. S.; Stock, D.; Finger, D.; Baader, W. J.; Caetano, I. K.; Torres, Y. R. Effect of Extraction Solvent on Antiradical Activity of the Obtained Propolis Extracts. J. Apicultural Res. 2014, 53(1), 91–100.
  • Schönbichler, S. A.; Falser, G. F. J.; Hussain, S.; Bittner, L. K.; Abel, G.; Popp, M.; Bonn, G. K.; Huck, C. W. Comparison of NIR and ATR-IR Spectroscopy for the Determination of the Antioxidant Capacity of Primulae flos cum calycibus. Anal. Methods 2014, 6, 6343–6351.
  • Sharif, K. M.; Rahman, M. M.; Azmir, J.; Khatib, A.; Hadijah, S.; Mohamed, A.; Sahena, F.; Zaidul, I. S. M. Orthogonal Partial Least Squares Model for Rapid Prediction of Antioxidant Activity of Pereskia bleo by Fourier Transform Infrared Spectroscopy. Anal. Lett. 2014, 47(12), 2061–2071.
  • Sharma, O. P.; Bhat, T. K. DPPH Antioxidant Assay Revisited. Food Chem. 2009, 113(4), 1202–1205.
  • Silva, A. F.; Marques, K. L.; Santos, J. L.; Lima, J. L. Automatic Multi-Pumping Flow System for the Chemiluminometric Screening of Scavenging Capacity against Singlet Oxygen. Anal. Sci. 2011, 27(8), 827–832.
  • Suvarnakuta, P.; Chaweerungrat, C.; Devahastin, S. Effects of Drying Methods on Assay and Antioxidant Activity of Xanthones in Mangosteen Rind. Food Chem. 2011, 125(1), 240–247.
  • Sužnjević, D. Ž.; Pastor, F. T.; Gorjanović, S. Ž. DC Polarographic Examination of Hg Reduction Applicability to Antioxidant Activity Determination. Electrochim. Acta 2015, 168, 240–245.
  • Szabo, M. R.; Idiţoiu, C.; Chambre, D.; Lupea, A. X. Improved DPPH Determination for Antioxidant Activity Spectrophotometric Assay. Chem. Pap. 2007, 61(3), 214–216.
  • Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19(6–7), 669–675.
  • Vilela, D.; González, M. C.; Escarpa, A. Nanoparticles as Analytical Tools for in-Vitro Antioxidant-Capacity Assessment and Beyond. TrAC Trends Anal. Chem. 2015a, 64, 1–6.
  • Vilela, D.; Castañeda, R.; González, M. C.; Mendoza, S.; Escarpa, A. Fast and Reliable Determination of Antioxidant Capacity Based on the Formation of Gold Nanoparticles. Microchim. Acta 2015b, 182(1–2), 105–111.
  • Wada, M.; Kira, M.; Kido, H.; Ikeda, R.; Kuroda, N.; Nishigaki, T.; Nakashima, K. Semi-micro Flow Injection Analysis Method for Evaluation of Quenching Effect of Health Foods or Food Additive Antioxidants on Peroxynitrite. Luminescence 2011, 26(3), 191–195.
  • Wantusiak, P. M.; Głód, B. K. Application of UV Detection in HPLC in the Total Antioxidant Potential Assay. Cent. Eur. J. Chem. 2012, 10(6), 1786–1790.
  • Weingerl, V.; Strlic, M.; Kocar, D. Evaluation of the Chemiluminometric Method for Determination of Polyphenols in Wine. Anal. Lett. 2011, 44(7), 1310–1322.
  • World Health Organization. WHO Guidelines for the Assessment of Herbal Medicine; World Health Organization: Munich, Germany, 1991. http://www.who.int/en/
  • World Health Organization. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicines; World Health Organization: Geneva, Switzerland, 2000; p. 1. http://apps.who.int/medicinedocs/pdf/whozip57e/whozip57e.pdf
  • Wu, D.; Chen, J.; Lu, B.; Xiong, L.; He, Y.; Zhang, Y. Application of Near Infrared Spectroscopy for the Rapid Determination of Antioxidant Activity of Bamboo Leaf Extract. Food Chem. 2012, 135(4), 2147–2156.
  • Zampini, I. C.; Ordoñez, R. M.; Isla, M. I. Autographic Assay for the Rapid Detection of Antioxidant Capacity of Liquid and Semi-solid Pharmaceutical Formulations Using ABTS Immobilized by Gel Entrapment. AAPS PharmSciTech 2010, 11(3), 1159–1163.
  • Zargoosh, K.; Ghayeb, Y.; Aeineh, N.; Qandalee, M. Evaluation of Antioxidant Capacity of Hydrophilic and Hydrophobic Antioxidants Using Peroxyoxalate Chemiluminescence Reaction of the Novel Furandicarboxylate Derivative. Food Anal. Methods 2014, 7(2), 283–290.
  • Zhang, Y.; Li, Q.; Xing, H.; Lu, X.; Zhao, L.; Qu, K.; Bi, K. Evaluation of Antioxidant Activity of Ten Compounds in Different Tea Samples by Means of an On-line HPLC–DPPH Assay. Food Res. Int. 2013, 53(2), 847–856.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.