1,156
Views
53
CrossRef citations to date
0
Altmetric
Review Article

Nucleic Acid i-Motif Structures in Analytical Chemistry

, &
Pages 443-454 | Published online: 09 Jun 2016

References

  • Amato, J.; Iaccarino, N.; Randazzo, A.; Novellino, E.; Pagano, B. Noncanonical DNA Secondary Structures as Drug Targets: The Prospect of the i-Motif. Chem. Med. Chem. 2014, 9, 2026–2030.
  • Benabou, S.; Avino, A.; Eritja, R.; Gonzalez, C.; Gargallo, R. Fundamental Aspects of the Nucleic Acid i-motif Structures. RSC Adv. 2014, 4, 26956–26980.
  • Bielecka, P.; Juskowiak, B. Fluorescent Sensor for pH Monitoring Based on an i-Motif – Switching Aptamer Containing a Tricyclic Cytosine Analogue (tC). Molecules 2015, 20, 18511–18525.
  • Brazier, J. A.; Shah, A.; Brown, G. D. I-Motif Formation in Gene Promoters: Unusually Stable Formation in Sequences Complementary to Known G-quadruplexes. Chem. Commun. 2012, 48, 10739–10741.
  • Brooks, T. A.; Kendrick, S.; Hurley, L. Making Sense of G-quadruplex and i-motif Functions in Oncogene Promoters. FEBS J. 2010, 277, 3459–3469.
  • Bucek, P.; Gargallo, R.; Kudrev, A. Spectrometric Study of the Folding Process of i-motif-forming DNA Sequences Upstream of the c-kit Transcription Initiation Site. Anal. Chim. Acta 2010, 683, 69–77.
  • Canalia, M.; Leroy, J. L. Structure, Internal Motions and Association-dissociation Kinetics of the i-motif dimer of d(5mCCTCACTCC). Nucleic Acids Res. 2005, 33, 5471–5481.
  • Canalia, M.; Leroy, J. L. [5mCCTCTCTCC]4: An i-motif Tetramer with Intercalated T·T Pairs. J. Am. Chem. Soc. 2009, 131, 12870–12871.
  • Cao, Y.; Qian, R.-C.; Li, D.-W.; Long, Y.-T. Raman/Fluorescence Dual-sensing and Imaging of Intracellular pH Distribution. Chem. Commun. 2015a, 51, 17584–17587.
  • Cao, Y.; Qin, Y.; Bruist, M.; Gao, S.; Wang, B.; Wang, H.; Guo, X. Formation and Dissociation of the Interstrand i-Motif by the Sequences d(XnC4Ym) Monitored with Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 2015b, 26, 994–1003.
  • Collin, D.; Gehring, K. Stability of Chimeric DNA/RNA Cytosine Tetrads: Implications for i-motif Formation by RNA. J. Am. Chem. Soc. 1998, 120, 4069–4072.
  • Chen, C.; Song, G.; Ren, J.; Qu, X. A Simple and Sensitive Colorimetric pH Meter Based on DNA Conformational Switch and Gold Nanoparticle Aggregation. Chem. Commun. 2008, 46, 6149–6151.
  • Day, H. A.; Pavlou, P.; Waller, Z. A. E. i-Motif DNA: Structure, Stability and Targeting with Ligands. Biorg. Med. Chem. 2014, 22, 4407–4418.
  • Dembska, A.; Juskowiak, B. Pyrene Functionalized Molecular Beacon with pH-sensitive i-motif in a Loop. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 150, 928–933.
  • Dexheimer, T. S.; Carey, S. S.; Zuohe, S.; Gokhale, V. M.; Hu, X.; Murata, L. B.; Maes, E. M.; Weichsel, A.; Sun, D.; Meuillet, E. J.; Montfort, W. R.; Hurley, L. H. NM23-H2 may Play an Indirect Role in Transcriptional Activation of c-myc Gene Expression but does not Cleave the Nuclease Hypersensitive Element III 1. Mol. Cancer Ther. 2009, 8, 1363–1377.
  • Dong, Y.; Yang, Z.; Liu, D. DNA Nanotechnology Based on i-motif Structures. Acc. Chem. Res. 2014, 47, 1853–1860.
  • Fenn, S.; Du, Z.; Lee, J. K.; Tjhen, R.; Stroud, R. M.; James, T. L. Crystal Structure of the Third KH Domain of Human poly(C)-binding Protein-2 in Complex with a C-rich Strand of Human Telomeric DNA at 1.6 A Resolution. Nucleic Acids Res. 2007, 35, 2651–2660.
  • Fernandez, S.; Eritja, R.; Aviño, A.; Jaumot, J.; Gargallo, R. Influence of pH, Temperature and the Cationic Porphyrin TMPyP4 on the Stability of the i-motif Formed by the 5’-(C3TA2)4-3’ Sequence of the Human Telomere. Int. J. Biol. Macromol. 2011, 49, 729–736.
  • Fu, B.; Huang, J.; Bai, D.; Xie, Y.; Wang, Y.; Wang, S.; Zhou, X. Label-free Detection of pH based on the i-motif Using an Aggregation-caused Quenching Strategy. Chem. Commun. 2015, 51, 16960–16963.
  • Fujii, T.; Sugimoto, N. Loop Nucleotides Impact the Stability of Intrastrand i-motif Structures at Neutral pH. PCCP 2015, 17, 16719–16722.
  • Gallego, J.; Chou, S. H.; Reid, B. R. Centromeric Pyrimidine Strands Fold into an Intercalated Motif by Forming a Double Hairpin with a Novel T:G:G:T Tetrad: Solution Structure of the d(TCCCGTTTCCA) Dimer. J. Mol. Biol. 1997, 273, 840–856.
  • Gao, X.; Li, X.; Xiong, W.; Huang, H.; Lin, Z.; Qiu, B.; Chen, G. i-Motif based pH Induced Electrochemical Switches. Electrochem. Commun. 2012, 24, 9–12.
  • Gao, Z. F.; Chen, D. M.; Lei, J. L.; Luo, H. Q.; Li, N. B. A Regenerated Electrochemical Biosensor for Label-free Detection of Glucose and Urea Based on Conformational Switch of i-motif Oligonucleotide Probe. Anal. Chim. Acta 2015, 897, 10–16.
  • Garlick, P. B.; Radda, G. K.; Seeley, P. J. Studies of Acidosis in the Ischaemic Heart by Phosphorus Nuclear Magnetic Resonance. Biochem. J. 1979, 184, 547–554.
  • Gurung, S. P.; Schwarz, C.; Hall, J. P.; Cardin, C. J.; Brazier, J. A. The Importance of Loop Length on the Stability of i-motif Structures. Chem. Commun. 2015, 51, 5630–5632.
  • Huang, J.; He, Y.; Yang, X.; Wang, K.; Ying, L.; Quan, K.; Yang, Y.; Yin, B. I-motif-based Nano-flares for Sensing pH Changes in Live Cells. Chem. Commun. 2014, 50, 15768–15771.
  • Huang, H.; Hong, X.; Liu, F.; Li, N. A Simple Approach to Study the Conformational Switching of i-motif DNA by Fluorescence Anisotropy. Analyst 2015a, 140, 5987–5991.
  • Huang, J.; Ying, L.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Xie, N.; Ou, M.; Zhou, Q.; Wang, K. Ratiometric Fluorescent Sensing of pH Values in Living Cells by Dual-Fluorophore-Labeled i-Motif Nanoprobes. Anal. Chem. 2015b, 87, 8724–8731.
  • Izumi, H.; Torigoe, T.; Ishiguchi, H.; Uramoto, H.; Yoshida, Y.; Tanabe, M.; Ise, T.; Murakami, T.; Yoshida, T.; Nomoto, M.; Kohno, K. Cellular pH Regulators: Potentially Promising Molecular Targets for Cancer Chemotherapy. Cancer Treat. Rev. 2003, 29, 541–549.
  • Ke, Q.; Zheng, Y.; Yang, F.; Zhang, H.; Yang, X. A Fluorescence Glucose Sensor based on pH Induced Conformational Switch of i-motif DNA. Talanta 2014, 129, 539–544.
  • Kendrick, S.; Akiyama, Y.; Hecht, S. M.; Hurley, L. H. The i-motif in the bcl-2 P1 Promoter forms an Unexpectedly Stable Structure with a Unique 8:5:7 Loop Folding Pattern. J. Am. Chem. Soc. 2009, 131, 17667–17676.
  • Kendrick, S.; Kang, H.-J.; Alam, M. P.; Madathil, M. M.; Agrawal, P.; Gokhale, V.; Yang, D.; Hecht, S. M.; Hurley, L. H. The Dynamic Character of the BCL2 Promoter i-Motif Provides a Mechanism for Modulation of Gene Expression by Compounds that Bind Selectively to the Alternative DNA Hairpin Structure. J. Am. Chem. Soc. 2014, 136, 4161–4171.
  • Khan, N.; Aviño, A.; Tauler, R.; Gonzalez, C.; Eritja, R.; Gargallo, R. Solution Equilibria of the i-Motif-forming Region Upstream of the B-cell Lymphoma-2 P1 Promoter. Biochimie 2007, 89, 1562–1572.
  • Kolpashchikov, D. M. Binary Probes for Nucleic Acid Analysis. Chem. Rev. 2010, 110, 4709–4723.
  • Kumar, N.; Petersen, M.; Maiti, S. Tunable c-MYC LNA i-motif. Chem. Commun. 2009, 1532–1534.
  • Lacroix, L.; Lienard, H.; Labourier, E.; Djavaheri-Mergny, M.; Lacoste, J.; Leffers, H.; Tazi, J.; Helene, C.; Mergny, J. L. Identification of Two Human Nuclear Proteins that Recognise the Cytosine-rich Strand of Human Telomeres in vitro. Nucleic Acids Res. 2000, 28, 1564–1575.
  • Lacroix, L.; Mergny, J. L.; Leroy, J. L.; Helene, C. Inability of RNA to Form the i-motif: Implications for Triplex Formation. Biochemistry 1996, 35, 8715–8722.
  • Lannes, L.; Halder, S.; Krishnan, Y.; Schwalbe, H. Tuning the pH Response of i-Motif DNA Oligonucleotides. Chem. Bio. Chem. 2015, 16, 1647–1656.
  • Largy, E.; Mergny, J.-L. Shape Matters: Size-exclusion HPLC for the Study of Nucleic Acid Structural Polymorphism. Nucleic Acids Res. 2014, 42, e149.
  • Lee, J.; Park, J.; Hee Lee, H.; Park, H.; Kim, H. I.; Kim, W. J. Fluorescence Switch for Silver Ion Detection Utilizing Dimerization of DNA-Ag Nanoclusters. Biosens. Bioelectron. 2015b, 68, 642–647.
  • Lee, I. J.; Park, M.; Joo, T.; Kim, B. H. Using Fluorescence Changes of F1U Units at Terminal and Mid-loop Positions to Probe i-motif Structures. Mol. Bio. Syst. 2012, 8, 486–490.
  • Lee, I. J.; Patil, S.; Fhayli, K.; Alsaiari, S.; Khashab, N. M. Probing Structural Changes of Self Assembled i-motif DNA. Chem. Commun. 2015a, 51, 3747–3749.
  • Lee, I. J.; Yi, J. W.; Kim, B. H. Probe for i-motif Structure and G-rich Strands Using end-stacking Ability. Chem. Commun. 2009, 36, 5383–5385.
  • Leroy, J. L. The Formation Pathway of i-motif Tetramers. Nucleic Acids Res. 2009, 37, 4127–4134.
  • Leroy, J. L.; Gueron, M.; Mergny, J. L.; Helene, C. Intramolecular Folding of a Fragment of the Cytosine-Rich Strand of Telomeric DNA into an I-Motif. Nucleic Acids Res. 1994, 22, 1600–1606.
  • Li, W.; Feng, L.; Ren, J.; Wu, L.; Qu, X. Visual Detection of Glucose Using Conformational Switch of i-motif DNA and Non-crosslinking Gold Nanoparticles. Chem. - A Eur. J. 2012, 18, 12637–12642.
  • Li, J.; Huang, Y. Q.; Qin, W. S.; Liu, X. F.; Huang, W. An Optical-logic System based on Cationic Conjugated Polymer/DNA/Intercalating Dyes Assembly for Label-free Detection of Conformational Conversion of DNA i-motif Structure. Polym. Chem. 2011, 2, 1341–1346.
  • Li, W.; Pan, C.; Hou, T.; Wang, X.; Li, F. Selective and Colorimetric Detection of Pyruvic Acid Using Conformational Switch of i-motif DNA and Unmodified Gold Nanoparticles. Anal. Methods 2014, 6, 1645–1649.
  • Lieblein, A. L.; Fürtig, B.; Schwalbe, H. Optimizing the Kinetics and Thermodynamics of DNA i-Motif Folding. Chem. Bio. Chem. 2013, 14, 1226–1230.
  • Liu, D.; Balasubramanian, S. A Proton-Fuelled DNA Nanomachine. Angew. Chem. – Int. Ed. 2003, 42, 5734–5736.
  • Loweth, C. J.; Brett Caldwell, W.; Peng, X.; Alivisatos, A. P.; Schultz, P. G. DNA-based Assembly of Gold Nanocrystals. Angew. Chem. – Int. Ed. 1999, 38, 1808–1812.
  • Lu, L.; Wang, M.; Liu, L.-J.; Wong, C.-Y.; Leung, C.-H.; Ma, D.-L. A luminescence Switch-on Probe for Terminal Deoxynucleotidyl Transferase (TdT) Activity Detection by Using an Iridium(iii)-based i-Motif Probe. Chem. Commun. 2015, 51, 9953–9956.
  • Ma, D. L.; Kwan, M. H. T.; Chan, D. S. H.; Lee, P.; Yang, H.; Ma, V. P. Y.; Bai, L. P.; Jiang, Z. H.; Leung, C. H. Crystal Violet as a Fluorescent Switch-on Probe for i-motif: Label-free DNA-based Logic Gate. Analyst 2011, 136, 2692–2696.
  • Mata, G.; Luedtke, N. W. A Fluorescent Probe for Proton-Coupled Folding Reveals Slow Exchange of i-Motif and Duplex DNA. J. Am. Chem. Soc. 2015, 137, 699–707.
  • Mergny, J. L.; Lacroix, L.; Han, X.; Leroy, J. L.; Helene, C. Intramolecular Folding of Pyrimidine Oligodeoxynucleotides into a i-DNA Motif. J. Am. Chem. Soc. 1995, 117, 8887–8898.
  • Modi, S.; Nizak, C.; Surana, S.; Halder, S.; Krishnan, Y. Two DNA Nanomachines Map pH Changes Along Intersecting Endocytic Pathways Inside the Same Cell. Nat. Nano 2013, 8, 459–467.
  • Modi, S.; Swetha, M. G.; Goswami, D.; Gupta, G. D.; Mayor, S.; Krishnan, Y. A DNA Nanomachine That Maps Spatial and Temporal pH Changes Inside Living Cells. Nat. Nano 2009, 4, 325–330.
  • Nesterova, I. V.; Elsiddieg, S. O.; Nesterov, E. E. Design and Evaluation of an i-motif-based Allosteric Control Mechanism in DNA-hairpin Molecular Devices. J. Phys. Chem. B, 2013, 117, 10115–10121.
  • Nesterova, I. V.; Nesterov, E. E. Rational Design of Highly Responsive pH Sensors Based on DNA i-Motif. J. Am. Chem. Soc. 2014, 136, 8843–8846.
  • Peng, Y.; Wang, X.; Xiao, Y.; Feng, L.; Zhao, C.; Ren, J.; Qu, X. i-Motif Quadruplex DNA-Based Biosensor for Distinguishing Single- and Multiwalled Carbon Nanotubes. J. Am. Chem. Soc. 2009, 131, 13813–13818.
  • Perez-Rentero, S.; Gargallo, R.; Gonzalez, C.; Eritja, R. Modulation of the Stability of i-motif Structures Using an Acyclic Threoninol Cytidine Derivative. RSC Adv. 2015, 5, 63278–63281.
  • Reilly, S. M.; Morgan, R. K.; Brooks, T. A.; Wadkins, R. M. Effect of Interior Loop Length on the Thermal Stability and pKa of i-Motif DNA. Biochemistry 2015, 54, 1364–1370.
  • Ren, X.; He, F.; Xu, Q. H. Direct Visualization of Conformational Switch of i-motif DNA with a Cationic Conjugated Polymer. Chem. - an Asian J. 2010, 5, 1094–1098.
  • Rosu, F.; Gabelica, V.; Joly, L.; Gregoire, G.; De Pauw, E. Zwitterionic i-motif Structures are Preserved in DNA Negatively Charged Ions Produced by Electrospray Mass Spectrometry. PCCP 2010, 12, 13448–13454.
  • Ruedas-Rama, M. J.; Orte, A.; Martin-Domingo, M. C.; Castello, F.; Talavera, E. M.; Alvarez-Pez, J. M. Interaction of YOYO-3 with Different DNA Templates to form H-aggregates. J. Phys. Chem. B 2014, 118, 6098–6106.
  • Sharma, J.; Chhabra, R.; Yan, H.; Liu, Y. pH-driven Conformational Switch of “i-motif” DNA for the Reversible Assembly of Gold Nanoparticles. Chem. Commun. 2007, 477–479.
  • Shi, Y.; Sun, H.; Xiang, J.; Yu, L.; Yang, Q.; Li, Q.; Guan, A.; Tang, Y. i-Motif-modulated Fluorescence Detection of Silver(I) with an Ultrahigh Specificity. Anal. Chim. Acta, 2015, 857, 79–84.
  • Simonsson, T.; Pribylova, M.; Vorlickova, M. A Nuclease Hypersensitive Element in the Human c-myc Promoter Adopts Several Distinct i-tetraplex Structures. Biochem. Biophys. Res. Commun. 2000, 278, 158–166.
  • Song, M. J.; Lee, S. K.; Lee, J. Y.; Kim, J. H.; Lim, D. S. Electrochemical Sensor based on Au Nanoparticles Decorated Boron-doped Diamond Electrode Using Ferrocene-tagged Aptamer for Proton Detection. J. Electroanal. Chem. 2012, 677-680, 139–144.
  • Surana, S.; Bhat, J. M.; Koushika, S. P.; Krishnan, Y. An Autonomous DNA Nanomachine Maps Spatiotemporal pH Changes in a Multicellular Living Organism. Nat Commun, 2011, 2, 340.
  • Teller, C.; Willner, I. Functional Nucleic Acid Nanostructures and DNA Machines. Curr. Opin. Biotechnol. 2010, 21, 376–391.
  • Wang, C.; Du, Y.; Wu, Q.; Xuan, S.; Zhou, J.; Song, J.; Shao, F.; Duan, H. Stimuli-responsive Plasmonic Core-satellite Assemblies: I-motif DNA Linker Enabled Intracellular pH Sensing. Chem. Commun. 2013, 49, 5739–5741.
  • Wang, L.; Liu, X.; Yang, Q.; Fan, Q.; Song, S.; Fan, C.; Huang, W. A Colorimetric Strategy based on a Water-soluble Conjugated Polymer for Sensing pH-driven Conformational Conversion of DNA i-motif Structure. Biosens. Bioelectron. 2010, 25, 1838–1842.
  • Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L. Dysregulated pH: A Perfect Storm for Cancer Progression. Nat. Rev. Cancer 2011, 11, 671–677.
  • Xu, X.; Li, B.; Xie, X.; Li, X.; Shen, L.; Shao, Y. An i-DNA Based Electrochemical Sensor for Proton Detection. Talanta 2010, 82, 1122–1125.
  • Xu, B.; Wu, X.; Yeow, E. K. L.; Shao, F. A Single Thiazole Orange Molecule forms an Exciplex in a DNA i-motif. Chem. Commun. 2014, 50, 6402–6405.
  • Zhang, X. Y.; Luo, H. Q.; Li, N. B. Crystal Violet as an i-motif Structure Probe for Reversible and Label-Free pH-driven Electrochemical Switch. Anal. Biochem. 2014, 455, 55–59.
  • Zhao, Y.; Cao, L.; Ouyang, J.; Wang, M.; Wang, K.; Xia, X. H. Reversible Plasmonic Probe Sensitive for pH in Micro/Nanospaces Based on i-motif-modulated Morpholino-gold Nanoparticle Assembly. Anal. Chem. 2013, 85, 1053–1057.
  • Zhou, T.; Chen, P.; Niu, L.; Jin, J.; Liang, D.; Li, Z.; Yang, Z.; Liu, D. pH-responsive Size-tunable Self-assembled DNA Dendrimers. Angew. Chem. – Int. Ed. 2012, 51, 11271–11274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.