742
Views
30
CrossRef citations to date
0
Altmetric
Review Article

Recent Development in Sample Preparation and Analytical Techniques for Determination of Quinolone Residues in Food Products

&
Pages 223-250 | Published online: 03 Jan 2017

References

  • Alcaráz, M. R.; Siano, G. G.; Culzoni, M. J.; de la Peña, A. M.; Goicoechea, H. C. Modeling Four and Three-way Fast High-Performance Liquid Chromatography with fluorescence Detection Data for Quantitation of Fluoroquinolones in Water Samples. Anal. Chim. Acta 2014b, 809, 37–46.
  • Alcaráz, M. R.; Vera-Candioti, L.; Culzoni, M. J.; Goicoechea, H. C. Ultrafast Quantitation of Six Quinolones in Water Samples by Second-order Capillary Electrophoresis Data Modeling with Multivariate Curve Resolution–Alternating Least Squares. Anal. Bional. Chem. 2014a, 406, 2571–2580.
  • Alcaráz, M. R.; Bortolato, S. A.; Goicoechea, H. C.; Olivieri, A. C. A New Modeling Strategy for Third-order Fast High-Performance Liquid Chromatographic Data with Fluorescence Detection. Quantitation of Fluoroquinolones in Water Samples. Anal Bional Chem. 2015, 407, 1999–2011.
  • Anastassiades, M.; Lehotay, S. J.; S.tajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC. Int. 2003, 86, 412–431.
  • Anderson, C. R.; Rupp, H. S.; Wu, W. H. Complexities in Tetracycline Analysis—Chemistry, Matrix Extraction, Cleanup, and Liquid Chromatography. J. Chromatogr. A 2005, 1075, 23–32.
  • Andreu, V.; Blasco, C.; Picó, Y. Analytical Strategies to Determine Quinolone Residues in Food and the Environment. TrAC Trend Anal. Chem. 2007, 26, 534–556.
  • Blasco, C.; Picó, Y. Development of an Improved Method for Trace Analysis of Quinolones in Eggs of Laying Hens and Wildlife Species Using Molecularly Imprinted Polymers. J. Agric. Food Chem. 2012, 60, 11005–11014.
  • Brás Gomes, F. B. M.; Riedstra, S.; Ferreira, J. P. M. Development of an immunoassay for ciprofloxacin based on phage-displayed antibody fragments. J. Immunol. Methods 2010, 358, 17–22.
  • Cao, L.; Kong, D.; Sui, J.; Jiang, T.; Li, Z.; Ma, L.; Lin, H. Broad-Specific Antibodies for a Generic Immunoassay of Quinolone: Development of a Molecular Model for Selection of Haptens Based on Molecular Field-Overlapping. Anal. Chem. 2009, 81, 3246–3251.
  • Capocefalo, M.; Ridley, E. V.; Tranfield, E. Y.; Thompson, K. C. (In Molecular Microbial Diagnostic Methods; Thompson, N., Cook, D. and D'Agostino, K. C., Ed.; Academic Press: San Diego, 2016, pp. 185–220.
  • Capriotti, A. L.; Cavaliere, C.; Piovesana, S.; Samperi, R.; Laganà, A. Multiclass Screening Method Based on Solvent Extraction and Liquid Chromatography–Tandem Mass Spectrometry for the Determination of Antimicrobials and Mycotoxins in Egg. J. Chromatogr. A 2012, 1268, 84–90.
  • Chen, L.; Zhang, X.; Xu, Y.; Du, X.; Sun, X.; Sun, L.; Wang, H.; Zhao, Q.; Yu, A.; Zhang, H.; Ding, L. Determination of Fluoroquinolone Antibiotics in Environmental Water Samples Based on Magnetic Molecularly Imprinted Polymer Extraction Followed by Liquid Chromatography–Tandem Mass Spectrometry. Anal. Chim. Acta 2010, 662, 31–38.
  • Chen, B.; Wang, W.; Huang, Y. Cigarette Filters as Adsorbents of Solid-phase Extraction for Determination of Fluoroquinolone Antibiotics in Environmental Water Samples Coupled with High-Performance Liquid Chromatography. Talanta 2012a, 88, 237–243.
  • Chen, Z.; Zhong, Z.; Xia, Z.; Yang, F.; Mu, X. Separation of Fluoroquinolones by MEKC Modified with Hydrophobic Ionic Liquid as a Modifier. Chromatographia 2012b, 75, 65–70.
  • Chen, Y.; Schwack, W. High-Performance Thin-Layer Chromatography Screening of Multi Class Antibiotics in Animal Food by Bioluminescent Bioautography and Electrospray Ionization Mass Spectrometry. J. Chromatogr. A 2014, 1356, 249–257.
  • Chiaochan, C.; Koesukwiwat, U.; Yudthavorasit, S.; Leepipatpiboon, N. Efficient Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry for the Multiclass Analysis of Veterinary Drugs in Chicken Muscle. Anal. Chim. Acta 2010, 682, 117–129.
  • Cohen, L.; Gusev, A. Small Molecule Analysis by MALDI Mass Spectrometry. Anal. Bional. Chem. 2002, 373, 571–586.
  • Davydov, N.; Zairov, R.; Mustafina, A.; Syakayev, V.; Tatarinov, D.; Mironov, V.; Eremin, S.; Konovalov, A.; Mustafin, M. Determination of Fluoroquinolone Antibiotics Through the Fluorescent Response of Eu(III) based Nanoparticles Fabricated by Layer-By-Layer Technique. Anal. Chim. Acta 2013, 784, 65–71.
  • Dorival-García, N.; Zafra-Gómez, A.; Camino-Sánchez, F. J.; Navalón, A.; Vílchez, J. L. Analysis of Quinolone Antibiotic Derivatives in Sewage Sludge Samples by Liquid Chromatography–Tandem Mass Spectrometry: Comparison of the Efficiency of Three Extraction Techniques. Talanta 2013a, 106, 104–118.
  • Dorival-García, N.; Zafra-Gomez, A.; Cantarero, S.; Navalón, A.; Vílchez, J. L. Simultaneous Determination of 13 Quinolone Antibiotic Derivatives in Wastewater Samples using Solid-Phase Extraction and Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry. Microchem. J. 2013b, 106, 323–333.
  • Dorival-García, N.; Labajo-Recio, C.; Zafra-Gómez, A.; Juárez-Jiménez, B.; Vílchez, J. L. Improved Sample Treatment for the Determination of 17 Strong Sorbed Quinolone Antibiotics from Compost by Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry. Talanta 2015, 138, 247–257.
  • Du, D.; Dong, G.; Wu, Y.; Wang, J.; Gao, M.; Wang, X.; Li, Y. Salting-Out Induced Liquid-Liquid Microextraction Based on the System of Acetonitrile/Magnesium Sulfate for Trace-Level Quantitative Analysis of Fluoroquinolones in Water, Food and Biological Matrices by High-Performance Liquid Chromatography with a Fluorescence Detector. Anal. Methods 2014, 6, 6973–6980.
  • European Union (EU). Commission Regulation No 124/2009 of 10 February 2009 Setting Maximum Levels for the Presence Of Coccidiostats or Histomonostats in Food Resulting from the Unavoidable Carry-Over of These Substances in Non-Target Feed. 2009.
  • European Union (EU). Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. 2010.
  • Esponda, S.; Padrón, M.; Ferrera, Z.; Rodríguez, J. Solid-Phase Microextraction with Micellar Desorption and HPLC-Fluorescence Detection for the Analysis of Fluoroquinolones Residues in Water Samples. Anal. Bional. Chem. 2009, 394, 927–935.
  • Ferdig, M.; Kaleta, A.; Thanh Vo, T. D.; Buchberger, W. Improved Capillary Electrophoretic Separation of Nine (fluoro)quinolones with Fluorescence Detection for Biological and Environmental Samples. J. Chromatogr. A 2004, 1047, 305–311.
  • Fernández, F.; Pinacho, D. G.; Sánchez-Baeza, F.; Marco, M. P. Portable Surface Plasmon Resonance Immunosensor for the Detection of Fluoroquinolone Antibiotic Residues in Milk. J. Agric. Food. Chem. 2011, 59, 5036–5043.
  • Gao, S.; Jin, H.; You, J.; Ding, Y.; Zhang, N.; Wang, Y.; Ren, R.; Zhang, R.; Zhang, H. Ionic Liquid-Based Homogeneous Liquid–Liquid Microextraction for the Determination of Antibiotics in Milk by High-Performance Liquid Chromatography. J. Chromatogr. A 2011, 1218, 7254–7263.
  • García-Campaña, A.; Gámiz-Gracia, L.; Lara, F.; del Olmo Iruela, M.; Cruces-Blanco, C. Applications of Capillary Electrophoresis to the Determination of Antibiotics in Food and Environmental Samples. Anal. Bional. Chem. 2009, 395, 967–986.
  • García, M. D. G.; Gallegos, A. B.; Valverde, R. S.; Galera, M. M. Determination of (fluoro)Quinolones in Environmental Water using Online Preconcentration with Column Switching Linked to Large Sample Volumes and Fluorescence Detection. J. Sep. Sci. 2012, 35, 823–831.
  • Garrido Frenich, A.; Aguilera-Luiz, M. d. M.; Martínez Vidal, J. L.; Romero-González, R. Comparison of Several Extraction Techniques for Multiclass Analysis of Veterinary Drugs in Eggs using Ultra-high Pressure Liquid Chromatography–Tandem Mass Spectrometry. Anal. Chim. Acta 2010, 661, 150–160.
  • Gazzaz, S. S.; Rasco, B. A.; Dong, F. M. Application of Immunochemical Assays to Food Analysis. Crit. Rev. Food Sci. Nutr. 1992, 32, 197–229.
  • Gbylik-Sikorska, M.; Posyniak, A., Sniegocki, T.; Zmudzki, J. Liquid Chromatography–Tandem Mass Spectrometry Multiclass Method for the Determination of Antibiotics Residues in Water Samples From Water Supply Systems in Food-Producing Animal Farms. Chemosphere 2015, 119, 8–15.
  • Giroud, F.; Gorgy, K.; Gondran, C.; Cosnier, S.; Pinacho, D. G.; Marco, M. P.; Sánchez-Baeza, F. J. Impedimetric Immunosensor Based on a Polypyrrole−Antibiotic Model Film for the Label-Free Picomolar Detection of Ciprofloxacin. Anal. Chem. 2009, 81, 8405–8409.
  • Golet, E. M.; Strehler, A.; Alder, A. C.; Giger, W. Determination of Fluoroquinolone Antibacterial Agents in Sewage Sludge and Sludge-Treated Soil Using Accelerated Solvent Extraction Followed by Solid-Phase Extraction. Anal. Chem. 2002, 74, 5455–5462.
  • Golet, E. M.; Xifra, I.; Siegrist, H.; Alder, A. C.; Giger, W. Environmental Exposure Assessment of Fluoroquinolone Antibacterial Agents from Sewage to Soil. Environ. Sci. Technol. 2003, 37, 3243–3249.
  • González-Curbelo, M. Á.; Lehotay, S. J.; Hernández-Borges, J.; Rodríguez-Delgado, M. Á. Use of Ammonium Formate in QuEChERS for High-throughput Analysis of Pesticides in Food by Fast, Low-Pressure Gas Chromatography and Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2014, 1358, 75–84.
  • Granelli, K.; Elgerud, C.; Lundström, Å.; Ohlsson, A.; Sjöberg, P. Rapid Multi-residue Analysis of Antibiotics in Muscle by Liquid Chromatography–Tandem Mass Spectrometry. Anal. Chim. Acta 2009, 637, 87–91.
  • Grosa, M.; Rodríguez-Mozaz, S.; Barceló, D. Fast and Comprehensive Multi-Residue Analysis of a Broad Range of Human and Veterinary Pharmaceuticals and Some of Their Metabolites in Surface and Treated Waters by Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole-Linear ion Trap Tandem Mass Spectrometry. J. Chromatogr. A 2012, 1248, 104–121.
  • Halling-Sørensen, B.; Lützhøft, H. C. H.; Andersen, H. R.; Ingerslev, F. Environmental Risk Assessment of Antibiotics: Comparison of Mecillinam, Trimethoprim and Ciprofloxacin. J. Antimicrob. Chemoth. 2000, 46, 53–58.
  • He, K.; Blaney, L. Systematic Optimization of an SPE with HPLC-FLD Method for Fluoroquinolone Detection in Wastewater. J. Hazard. Mater. 2015, 282, 96–105.
  • Herrera-Herrera, A. V.; Hernández-Borges, J.; Borges-Miquel, T.M.; Rodríguez-Delgado, M. Á. Dispersive Liquid–Liquid Microextraction Combined with No aqueous Capillary Electrophoresis for the Determination of Fluoroquinolone Antibiotics in Waters. Electrophoresis 2010, 31, 3457–3465.
  • Herrera-Herrera, A. V.; Hernández-Borges, J.; Borges-Miquel, T. M.; Rodríguez-Delgado, M. Á. Dispersive Liquid–Liquid Microextraction Combined with Ultra-High Performance Liquid Chromatography for the Simultaneous Determination of 25 Sulfonamide and Quinolone Antibiotics in Water Samples. J. Pharmaceut. Biomed. 2013, 75, 130–137.
  • Hu, K.; Huang, X.; Jiang, Y.; Fang, W.; Yang, X. Monoclonal Antibody Based Enzyme-Linked Immunosorbent Assay for the Specific Detection of Ciprofloxacin and Enrofloxacin Residues in Fishery Products. Aquaculture 2010a, 310, 8–12.
  • Hu, X.; Zhou, Q.; Lou, Y. Occurrence and Source Analysis of Typical Veterinary Antibiotics in Manure, Soil, Vegetables and Groundwater From Organic Vegetable Bases, Northern China. Environ. Pollut. 2010b, 158, 2992–2998.
  • Hu, F.; Bain, K.; Liu, Y.; Su, Y.; Zhou, T.; Song, X.; He, L. Development of a Modified QUick, Easy, CHeap, Effective, Rugged and Safe Method for the Determination of Multi-Class Antimicrobials in Vegetables by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2014, 1368, 52–63.
  • Hu, Y.; Cheng, H. Research Opportunities for Antimicrobial Resistance Control in China's Factory Farming. Environ. Sci. Technol. 2014, 48, 5364–5365.
  • Hu, Y.; Cheng, H. Use of Veterinary Antimicrobials in China and Efforts to Improve Their Rational Use. J. Glo. Antimicrob. Res. 2015, 3, 144–146.
  • Hu, Y.; Cheng, H. Health Risk from Veterinary Antimicrobial use in China's Food Animal Production and Its Reduction. Environ. Pollut., 2016, 219, 993–997.
  • Huang, B.; Yin, Y.; Lu, L.; Ding, H.; Wang, L.; Yu, T.; Zhu, J.-J.; Zheng, X.-D.; Zhang, Y.-Z. Preparation of High-Affinity Rabbit Monoclonal Antibodies for Ciprofloxacin and Development of an Indirect Competitive ELISA for Residues in Milk. J. Zhejiang Univer. Sci. B 2010a, 11, 812–818.
  • Huang, X.; Qiu, N.; Yuan, D.; Lin, Q. Preparation of a Mixed Stir Bar for Sorptive Extraction Based on Monolithic Material for the Extraction of Quinolones From Wastewater. J. Chromatogr. A 2010b, 1217:2667–2673.
  • Huet, A. C, Charlier, C.; Tittlemier, S. A; Singh, G; Benrejeb, S; Delahaut, P. Simultaneous Determination of (Fluoro)Quinolone Antibiotics in Kidney, Marine Products, Eggs, and Muscle by Enzyme-Linked Immunosorbent Assay (ELISA). J. Agric. Food. Chem. 2006, 54, 2822–2827.
  • Huet, A. C.; Charlier, C.; Weigel, S.; Godefroy, S. B.; Delahaut, P. Validation of an Optical Surface Plasmon Resonance Biosensor Assay for Screening (Fluoro)Quinolones in Egg, Fish and Poultry. Food Addit. Contam. A 2009, 26, 1341–1347.
  • Ibarra, I. S.; Rodriguez, J. A.; Páez-Hernández, M. E.; Santos, E. M.; Miranda, J. M. Determination of Quinolones in Milk Samples Using a Combination of Magnetic Solid-Phase Extraction and Capillary Electrophoresis. Electrophoreis 2012, 33, 2041–2048.
  • Junza, A.; Barbosa, S.; Codony, M. R.; Jubert, A.; Barbosa, J.; Barrón, D. Identification of Metabolites and Thermal Transformation Products of Quinolones in Raw Cow's Milk by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2014, 62, 2008–2021.
  • Kaewsuya, P.; Brewer, W. E.; Wong, J.; Morgan, S. L. Automated QuEChERS Tips for Analysis of Pesticide Residues in Fruits and Vegetables by GC-MS. J. Agric. Food Chem. 2013, 61, 2299–2314.
  • Kamel, A. H.; Mahmoud, W. H.; Mostafa, M. S. Biomimetic Ciprofloxacin Sensors Made of Molecularly Imprinted Network Receptors for Potential Measurements. Anal. Methods 2011, 3, 957–964.
  • Karageorgou, E.; Myridakis, A.; Stephanou, E. G.; Samanidou, V. Multiresidue LC–MS/MS Analysis of Cephalosporins and Quinolones in Milk Following Ultrasound-Assisted Matrix Solid-Phase Dispersive Extraction Combined with the Quick, Easy, Cheap, Effective, Rugged, and Safe Methodology. J. Sep. Sci. 2013, 36, 2020–2027.
  • Karas, M.; Bachmann, D.; Hillenkamp, F. Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules. Anal. Chem. 1985, 57, 2935–2939.
  • Kato, M., Ihara, Y.; Nakata, E.; Miyazawa, M.; Sasaki, M.; Kodaira, T.; Nakazawa, H. Development of Enrofloxacin ELISA using a Monoclonal Antibody Tolerating An Organic Solvent with Broad Cross-Reactivity to Other Newquinolones. Food Agric. Immunol. 2007, 18, 179–187.
  • Kaufmann, A.; Butcher, P.; Maden, K.; Walker, S.; Widmer, M. Development of an Improved High Resolution Mass Spectrometry based Multi-Residue Method for Veterinary Drugs in Various Food Matrices. Anal. Chim. Acta 2011, 700, 86–94.
  • Kawai, Y.; Matsubayashi, K.; Hakusui, H. Interaction of Quinolones with Metal Cations in Aqueous Solution. Chem. Pharm. Bull. (Tokyo) 1996, 44, 1425–1430.
  • López-Serna, R.; Pérez, S.; Ginebreda, A.; Petrović, M.; Barceló, D. Fully Automated Determination of 74 Pharmaceuticals in Environmental and Waste Waters by Online Solid Phase Extraction–Liquid Chromatography-Electrospray–Tandem Mass Spectrometry. Talanta 2010, 83, 410–424.
  • Lee, Y. J. Development of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) for plant metabolite analysis. Dissertation, Iowa State University, 2014.
  • Leivo, J.; Chappuis, C.; Lamminmäki, U.; Lövgren, T.; Vehniäinen, M. Engineering of a Broad-Specificity Antibody: Detection of Eight Fluoroquinolone Antibiotics Simultaneously. Anal. Biochem. 2011, 409, 14–21.
  • Leivo, J.; Lamminmäki, U.; Lövgren, T.; Vehniäinen, M. Multiresidue Detection of Fluoroquinolones: Specificity Engineering of a Recombinant Antibody with Oligonucleotide-Directed Mutagenesis. J. Agric. Food Chem. 2013, 61, 11981–11985.
  • LeRiche, T.; Osterodt, J.; Volmer, D. A. An Experimental Comparison of Electrospray Ion-Trap and Matrix-Assisted Laser Desorption/Ionization Post-Source Decay Mass Spectra for the Characterization of Small Drug Molecules. Rapid Commun. Mass Spectrom. 2001, 15, 608–614.
  • Li, Y.; Ji, B.; Chen, B.; Liu, L.; Xu, C.; Peng, C.; Wang, L. Production of New Class-Specific Polyclonal Antibody for Determination of Fluoroquinolones Antibiotics by Indirect Competitive ELISA. Food Agric. Immunol. 2008, 19, 251–264.
  • Li, H.; Yin, J.; Liu, Y.; Shang, J. Effect of Protein on the Detection of Fluoroquinolone Residues in Fish Meat. J. Agric. Food Chem. 2012, 60, 1722–1727.
  • Li, X. W.; Xie, Y. F.; Li, C. L.; Zhao, H. N.; Zhao, H.; Wang, N.; Wang, J. F. Investigation of Residual Fluoroquinolones in a Soil–Vegetable System in an Intensive Vegetable Cultivation Area in Northern China. Sci. Total Environ. 2014, 468–469, 258–264.
  • Liu, S.; Yan, H.; Wang, M.; Wang, L. Water-Compatible Molecularly Imprinted Microspheres in Pipette Tip Solid-Phase Extraction for Simultaneous Determination of Five Fluoroquinolones in Eggs. J Agric. Food Chem. 2013, 61, 11974–11980.
  • Liu, X.; Wang, X.; Tan, F.; Zhao, H.; Quan, X.; Chen, J.; Li, L. An Electrochemically Enhanced Solid-Phase Microextraction Approach based on Molecularly Imprinted Polypyrrole/Multi-Walled Carbon Nanotubes Composite Coating for Selective Extraction of Fluoroquinolones in Aqueous Samples. Anal. Chim. Acta 2012, 727, 26–33.
  • Lombardo-Agüí, M.; Gámiz-Gracia, L.; García-Campaña, A.; Cruces-Blanco, C. Sensitive Determination of Fluoroquinolone Residues in Waters by Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Anal. Bional. Chem. 2010a, 396, 1551–1557.
  • Lombardo-Agüí, M.; García-Campaña, A. M.; Gámiz-Gracia, L.; Cruces Blanco, C. Laser Induced Fluorescence Coupled to Capillary Electrophoresis for the Determination of Fluoroquinolones in Foods of Animal Origin using Molecularly Imprinted Polymers. J. Chromatogr. A 2010b, 1217, 2237–2242.
  • Lombardo-Agüí, M.; Gámiz-Gracia, L.; Cruces-Blanco, C.; García-Campaña, A. M. Comparison of Different Sample Treatments for the Analysis of Quinolones in Milk by Capillary-Liquid Chromatography with Laser Induced Fluorescence Detection. J. Chromatogr. A 2011, 1218, 4966–4971.
  • Lombardo-Agüí, M.; García-Campaña, A. M.; Gámiz-Gracia, L.; Cruces-Blanco, C. Determination of Quinolones of Veterinary Use in Bee Products by Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry using a QuEChERS Extraction Procedure. Talanta 2012, 93, 193–199.
  • Lombardo-Agüí, M.; García-Campaña, A. M.; Cruces-Blanco, C.; Gámiz-Gracia, L. Determination of Quinolones in Fish by Ultra-High Performance Liquid Chromatography with Fluorescence Detection using QuEChERS as Sample Treatment. Food Control 2014a, 50, 864–868.
  • Lombardo-Agüí, M.; Cruces-Blanco, C.; García-Campaña, A. M.; Gámiz-Gracia, L. Multiresidue Analysis of Quinolones in Water by Ultra-High Perfomance Liquid Chromatography with Tandem Mass Spectrometry Using a Simple and Effective Sample Treatment. J. Sep. Sci. 2014b, 37, 2145–2152.
  • Lopes, R. P.; Reyes, R. C.; Romero-González, R.; Vidal, J. L. M.; Frenich, A. G. Multiresidue Determination of Veterinary Drugs in Aquaculture Fish Samples by Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Chromatogr. B 2012a, 895–896, 39–47.
  • Lopes, R. P.; Reyes, R. C.; Romero-González, R.; Frenich, A. G.; Vidal, J. L. M. Development and Validation of a Multiclass Method for the Determination of Veterinary Drug Residues in Chicken by Ultra High Performance Liquid Chromatography–Tandem Mass Spectrometry. Talanta 2012b, 89, 201–208.
  • Lucatello, L.; Cagnardi, P.; Capolongo, F.; Ferraresi, C.; Bernardi, F.; Montesissa, C. Development and Validation of an LC–MS/MS/MS Method for the Quantification of Fluoroquinolones in Several Matrices from Treated Turkeys. Food Control 2015, 48, 2–11.
  • Manbohi, A.; Ahmadi, S. H. In-Tube Magnetic Solid Phase Microextraction of Some Fluoroquinolones based on the Use of Sodium Dodecyl Sulfate Coated Fe3O4 Nanoparticles Packed Tube. Anal. Chim. Acta 2015, 885, 114–121.
  • Marchesini, G. R.; Buijs, J.; Haasnoot, W.; Hooijerink, D.; Jansson, O.; Nielen, M. W. F. Nanoscale Affinity Chip Interface for Coupling Inhibition SPR Immunosensor Screening with Nano-LC TOF MS. Anal. Chem. 2008, 80, 1159–1168.
  • Marengo, J. R.; Kok, R. A.; O'Brien, K.; Velagaleti, R. R.; Stamm, J. M. Aerobic Biodegradation of (14C)-Sarafloxacin Hydrochloride in Soil. Environ. Toxicol. Chem. 1997, 16, 462–471.
  • Martínez Vidal, J.; Frenich, A.; Aguilera-Luiz, M.; Romero-González, R. Development of Fast Screening Methods for the Analysis of Veterinary Drug Residues in Milk by Liquid Chromatography-Triple Quadrupole Mass Spectrometry. Anal. Bional. Chem. 2010, 397, 2777–2790.
  • Martins, M. T.; Melo, J.; Barreto, F.; Barcellos Hoff, R.; Jank, L.; Soares Bittencourt, M.; Bazzan Arsand, J.; Scherman Schapoval, E. E. A Simple, Fast and Cheap Non-SPE Screening Method for Antibacterial Residue Analysis in Milk and Liver Using Liquid Chromatography–Tandem Mass Spectrometry. Talanta 2014, 129, 374–383.
  • Meng, H. L.; Chen, G. H.; Guo, X.; Chen, P.; Cai, Q. H.; Tian, Y. F. Determination of Five Quinolone Antibiotic Residues in Foods by Micellar Electrokinetic Capillary Chromatography With Quantum Dot Indirect Laser-Induced Fluorescence. Anal. Bional. Chem. 2014, 406, 3201–3208.
  • Mi, T.; Wang, Z.; Eremin, S. A.; Shen, J.; Zhang, S. Simultaneous Determination of Multiple (Fluoro)quinolone Antibiotics in Food Samples by a One-Step Fluorescence Polarization Immunoassay. J. Agric. Food Chem. 2013, 61, 9347–9355.
  • Mi, T.; Liang, X.; Ding, L.; Zhang, S.; Eremin, S. A.; Beier, R. C.; Shen, J.; Wang, Z. Development and Optimization of a Fluorescence Polarization Immunoassay for Orbifloxacin in Milk. Anal. Methods 2014, 6, 3849–3857.
  • Migliore, L.; Cozzolino, S.; Fiori, M. Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 2003, 52, 1233–1244.
  • Ministry of Agriculture (MOA). Maximum Residue Limits of Veterinary Drug in Foodstuffs of Animal Origin; Ministry of Agriculture: Beijing, China, 2002.
  • Ministry of Agriculture (MOA). Releasing of the Maximum Residue Limits of 12 Veterinary Drugs in Foodstuffs of Animal Origin; Ministry of Agriculture: Beijing, China, 2003.
  • Mirzajani, R.; Kardani, F. Fabrication of Ciprofloxacin Molecular Imprinted Polymer Coating on a Stainless Steel Wire as a Selective Solid-Phase Microextraction Fiber for Sensitive Determination of Fluoroquinolones in Biological Fluids and Tablet Formulation Using HPLC-UV Detection. J. Pharmaceut. Biomed. 2016, 122, 98–109.
  • Moema, D.; Nindi, M. M.; Dube, S. Development of a Dispersive Liquid–Liquid Microextraction Method for the Determination of Fluoroquinolones in Chicken Liver by High Performance Liquid Chromatography. Anal. Chim. Acta 2012, 730, 80–86.
  • Nebot, C.; Iglesias, A.; Regal, P.; Miranda, J.; Cepeda, A.; Fente, C. Development of a Multi-Class Method for the Identification and Quantification of Residues Of Antibiotics, Coccidiostats and Corticosteroids in Milk by Liquid Chromatography–Tandem Mass Spectrometry. Int. Dairy J. 2012, 22, 78–85.
  • Ni, H.; Zhang, S.; Ding, X.; Mi, T.; Wang, Z.; Liu, M. Determination of Enrofloxacin in Bovine Milk by a Novel Single-Stranded DNA Aptamer Chemiluminescent Enzyme Immunoassay. Anal. Lett. 2014, 47, 2844–2856.
  • Niell, S.; Jesús, F.; Pérez, C.; Mendoza, Y.; Díaz, R.; Franco, J.; Cesio, V.; Heinzen, H. QuEChERS Adaptability for the Analysis of Pesticide Residues in Beehive Products Seeking the Development of an Agroecosystem Sustainability Monitor. J. Agric. Food Chem. 2015, 63, 4484–4492.
  • World Health Organization (WHO). (2003) Summary and conclusion of the sixty meeting of the joint FAO/WHO expert committee on food additives.
  • Phonkeng, N.; Burakham, R. Signal Derivatization for HPLC Analysis of Fluoroquinolone Antibiotic Residues in Milk Products. Chromatographia 2012, 75, 233–239.
  • Picó, Y.; Andreu, V. Fluoroquinolones in Soil—Risks and Challenges. Anal. Bioanal. Chem. 2007, 387, 1287–1299.
  • Pinacho, D. G.; Sánchez-Baeza, F.; Pividori, M. I.; Marco, M. P. Electrochemical Detection of Fluoroquinolone Antibiotics in Milk Using a Magneto Immunosensor. Sensors 2014, 14, 15965–15980.
  • Pinacho, D. G.; Sánchez-Baeza, F.; Marco, M. P. Molecular Modeling Assisted Hapten Design To Produce Broad Selectivity Antibodies for Fluoroquinolone Antibiotics. Anal. Chem. 2012, 84, 4527–4534.
  • Prideaux, B.; Dartois, V.; Staab, D.; Weiner, D. M.; Goh, A.; Via, L. E.; Barry Iii, C. E.; Stoeckli, M. High-Sensitivity MALDI-MRM-MS Imaging of Moxifloxacin Distribution in Tuberculosis-Infected Rabbit Lungs and Granulomatous Lesions. Anal. Chem. 2011, 83, 2112–2118.
  • Prideaux, B.; ElNaggar, M. S.; Zimmerman, M.; Wiseman, J. M.; Li, X.; Dartois, V. Mass Spectrometry Imaging of Levofloxacin Distribution in TB-Infected Pulmonary Lesions by MALDI-MSI and Continuous Liquid Microjunction Surface Sampling. Int. J. Mass Spectrom. 2015, 377, 699–708.
  • Prieto, A.; Schrader, S.; Bauer, C.; Möder, M. Synthesis of a Molecularly Imprinted Polymer and Its Application for Microextraction by Packed Sorbent for the Determination of Fluoroquinolone Related Compounds in Water. Anal. Chim. Acta 2011, 685, 146–152.
  • Quesada, S. P.; Paschoal, J. A.; Reyes, F. G. A Simple Method for the Determination of Fluoroquinolone Residues in Tilapia (Oreochromis Niloticus) and Pacu (Piaractus Mesopotamicus) Employing LC-MS/MS QToF. Food Addit. Contam. A 2013, 30, 813–825.
  • Rocha, D. G.; Santos, F. A.; da Silva, J. C. C.; Augusti, R.; Faria, A. F. Multiresidue Determination of Fluoroquinolones in Poultry Muscle and Kidney According to the Regulation 2002/657/EC. A Systematic Comparison of Two Different Approaches: Liquid Chromatography Coupled to High-Resolution Mass Spectrometry or Tandem Mass Spectrometry. J. Chromatogr. A 2015, 1379, 83–91.
  • Rodríguez, E.; Navarro-Villoslada, F.; Benito-Peña, E.; Marazuela, M. A. D.; Moreno-Bondi, M. A. C. Multiresidue Determination of Ultratrace Levels of Fluoroquinolone Antimicrobials in Drinking and Aquaculture Water Samples by Automated Online Molecularly Imprinted Solid Phase Extraction and Liquid Chromatography. Anal. Chem. 2011, 83, 2046–2055.
  • Rusu, A.; Hancu, G.; Völgyi, G.; Tóth, G.; Noszál, B.; Gyéresi, Á. Separation and Determination of Quinolone Antibacterials by Capillary Electrophoresis. J. Chromatogr. Sci. 2014, 52, 919–925.
  • Scortichini, G.; Annunziata, L.; Di Girolamo, V.; Buratti, R.; Galarini, R. Validation of an Enzyme-Linked Immunosorbent Assay Screening for Quinolones in Egg, Poultry Muscle and Feed Samples. Anal. Chim. Acta 2009, 637, 273–278.
  • Shanta, S. R.; Kim, T. Y.; Hong, J. H.; Lee, J. H.; Shin, C. Y.; Kim, K. H.; Kim, Y. H.; Kim, S. K.; Kim, K. P. A New Combination MALDI Matrix for Small Molecule Analysis: Application to Imaging Mass Spectrometry for Drugs and Metabolites. Analyst. 2012, 137, 5757–5762.
  • Sharma, P. C.; Jain, A.; Jain, S. Fluoroquinolone Antibacterials: A Review on Chemistry, Microbiology and Therapeutic Prospects. Acta Pol. Pharm. 2009, 66, 587–604.
  • Shobo, A.; Baijnath, S.; Bratkowska, D.; Naiker, S.; Somboro, A. M.; Bester, L. A.; Singh, S. D.; Naicker, T.; Kruger, H. G.; Govender, T. MALDI MSI and LC-MS/MS: Towards Preclinical Determination of the Neurotoxic Potential of Fluoroquinolones. Drug Test Anal. 2016, 8, 832–828.
  • Speltini, A.; Sturini, M.; Maraschi, F.; Consoli, L.; Zeffiro, A.; Profumo, A. Graphene-Derivatized Silica as an Efficient Solid-Phase Extraction Sorbent for Pre-Concentration of Fluoroquinolones from Water Followed by Liquid-Chromatography Fluorescence Detection. J. Chromatogr. A 2015, 1379, 9–15.
  • Springer, V.; Jacksén, J.; Ek, P.; Lista, A. G.; Emmer, Å. Determination of Fluoroquinolones in Bovine Milk Samples Using a Pipette-tip SPE Step Based on Multiwalled Carbon Nanotubes Prior to CE Separation. J. Sep. Sci. 2014, 37, 158–164.
  • Springer, V.; Jacksén, J.; Ek, P.; Lista, A.; Emmer, Å. Capillary Electrophoretic Determination of Fluoroquinolones in Bovine Milk Followed by Off-Line MALDI-TOF-MS Analysis. Chromatographia 2015, 78, 285–290.
  • Stubbings, G.; Bigwood, T. The Development and Validation of a Multiclass Liquid Chromatography Tandem Mass Spectrometry (LC–MS/MS) Procedure for the Determination of Veterinary Drug Residues in Animal Tissue Using a QuEChERS (QUick, Easy, CHeap, Effective, Rugged and Safe) approach. Anal. Chim. Acta 2009, 637, 68–78.
  • Sturini, M.; Speltini, A.; Maraschi, F.; Rivagli, E.; Profumo, A. Solvent-Free Microwave-Assisted Extraction of Fluoroquinolones From Soil and Liquid Chromatography-Fluorescence Determination. J. Chromatogr. A 2010, 1217, 7316–7322.
  • Sun, X.; Wang, J.; Li, Y.; Yang, J.; Jin, J.; Shah, S. M.; Chen, J. Novel Dummy Molecularly Imprinted Polymers for Matrix Solid-Phase Dispersion Extraction of Eight Fluoroquinolones From Fish Samples. J. Chromatogr. A. 2014, 1359, 1–7.
  • Tang, Q.; Yang, T.; Tan, X.; Lou, J. Simultaneous Determination of Fluoroquinolone Antibiotic Residues in Milk Sample by Solid-Phase Extraction−Liquid Chromatography−Tandem Mass Spectrometry. J. Agr. Food Chem. 2009, 57:4535–4539.
  • Tao, X.; Chen, M.; Jiang, H.; Shen, J.; Wang, Z.; Wang, X.; Wu, X.; Wen, K. Chemiluminescence Competitive Indirect Enzyme Immunoassay for 20 Fluoroquinolone Residues in Fish and Shrimp Based on a Single-Chain Variable Fragment. Anal. Bioanal. Chem. 2013, 405, 7477–7484.
  • Toleikis, L.; Frenzel, A. Antibody Engineering: Methods and Protocols; Chames, P., Ed.; Humana Press: Totowa, NJ, 2012;, Second edition; pp. 59–71.
  • Tong, C.; Zhuo, X.; Guo, Y. Occurrence and Risk Assessment of Four Typical Fluoroquinolone Antibiotics in Raw and Treated Sewage and in Receiving Waters in Hangzhou, China. J. Agric. Food Chem. 2011, 59, 7303–7309.
  • Tong, Z.; Bianfei, Y.; Wanjin, T.; Haixia, Z. Spectrofluorimetric Determination of Ofloxacin in Milk with N-(9-fluorenylmethyloxycarbonyl)-l-alanine. Spectrochim. Acta A 2015, 148, 125–130.
  • Tsai, W. H.; Chuang, H. Y.; Chen, H. H.; Huang, J. J.; Chen, H. C.; Cheng, S. H.; Huang, T. C. Application of Dispersive Liquid–Liquid Microextraction and Dispersive Micro-Solid-Phase Extraction for the Determination of Quinolones in Swine Muscle by High-Performance Liquid Chromatography With Diode-Array Detection. Anal. Chim. Acta 2009, 656, 56–62.
  • Turnipseed, S. B.; Storey, J. M.; Clark, S. B.; Miller, K. E. Analysis of Veterinary Drugs and Metabolites in Milk Using Quadrupole Time-of-Flight Liquid Chromatography−Mass Spectrometry. J. Agric. Food Chem. 2011, 59, 7569–7581.
  • Urraca, J. L.; Castellari, M.; Barrios, C. A.; Moreno-Bondi, M. C. Multiresidue Analysis of Fluoroquinolone Antimicrobials in Chicken Meat by Molecularly Imprinted Solid-Phase Extraction and High Performance Liquid Chromatography. J. Chromatogr. A 2014, 1343, 1–9.
  • Vázquez, M. M. P.; Vázquez, P. P.; Galera, M. M.; García, M. D. G. Determination of Eight Fluoroquinolones in Groundwater Samples With Ultrasound-Assisted Ionic Liquid Dispersive Liquid–Liquid Microextraction Prior to High-Performance Liquid Chromatography and Fluorescence Detection. Anal. Chim. Acta 2012, 748, 20–27.
  • van Kampen, J. J. A.; Burgers, P. C.; de Groot, R.; Luider, T. M. Qualitative and Quantitative Analysis of Pharmaceutical Compounds by MALDI-TOF Mass Spectrometry. Anal. Chem. 2006, 78, 5403–5411.
  • Volmer, D. A.; Sleno, L.; Bateman, K.; Sturino, C.; Oballa, R.; Mauriala, T.; Corr, J. Comparison of MALDI to ESI on a Triple Quadrupole Platform for Pharmacokinetic Analyses. Anal. Chem. 2007, 79, 9000–9006.
  • Wang, J.; Leung, D. The Challenges of Developing a Generic Extraction Procedure to Analyze Multi-Class Veterinary Drug Residues in Milk and Honey using Ultra-High Pressure Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. Drug Test Anal. 2012, 4, 103–111.
  • Wang, J. P.; Dong, J.; Duan, C. F.; Zhang, H. C.; He, X.; Wang, G. N.; Zhao, G. X.; Liu, J. Production and Directional Evolution of Antisarafloxacin ScFv Antibody for Immunoassay of Fluoroquinolones in Milk. J. Agric. Food Chem. 2016, 64, 7957–7965.
  • Watkinson, A. J.; Murby, E. J.; Kolpin, D. W.; Costanzo, S. D. The Occurrence of Antibiotics in an Urban Watershed: From Wastewater to Drinking Water. Sci. Total Environ. 2009, 407, 2711–2723.
  • Weigel, S.; Pikkemaat, M. G.; Elferink, J. W. A.; Mulder, P. P. J.; Huet, A. C.; Delahaut, P.; Schittko, S.; Flerus, R.; Nielen, M. Comparison of a Fluoroquinolone Surface Plasmon Resonance Biosensor Screening Assay with Established Methods. Food Addit. Contam. A 2009, 26, 441–452.
  • Wen, K.; Nölke, G.; Schillberg, S.; Wang, Z.; Zhang, S.; Wu, C.; Jiang, H.; Meng, H.; Shen, J. Improved Fluoroquinolone Detection in ELISA Through Engineering of a Broad-Specific Single-Chain Variable Fragment Binding Simultaneously to 20 Fluoroquinolones. Anal. Bional. Chem. 2012, 403, 2771–2783.
  • Xia, Q.; Yang, Y.; Liu, M. Spectrofluorimetric Determination of Fluoroquinolones in Honey with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone in the Presence of β-cyclodextrin. J. Fluoresc. 2013, 23, 713–723.
  • Xia, Q., Yang, Y.; Liu, M. Vortex-Assisted Acid-Induced Cloud Point Extraction Coupled With Spectrofluorometry for the Determination of Fluoroquinolones in Environmental Water Samples. Spectrosc. Lett. 2014a, 47, 206–213.
  • Xia, Q.; Jiao, Y.; Xiong, W.; Yang, Y.; Liu, M. Development of a Precolumn Derivatization Procedure Prior to Ultrasound-Assisted Cloud Point Extraction for Sensitive Determination of Fluoroquinolones in Eggs by High-Performance Liquid Chromatography with Fluorescence Detection. Food Anal. Methods 2014b, 7, 1130–1138.
  • Xie, A. J.; Chen, Y.; Lou, S. P.; Tao, Y. W.; Jin, Y. S.; Li, W. W. Electrochemical Detection of Ciprofloxacin Based on Graphene Modified Glassy Carbon Electrode. Mater. Technol. 2015, 30, 362–367.
  • Xu, S.; Jiang, C.; Lin, Y.; Jia, L. Magnetic Nanoparticles Modified with Polydimethylsiloxane and Multi-walled Carbon Nanotubes for Solid-phase Extraction of Fluoroquinolones. Microchim. Acta 2012, 179, 257–264.
  • Yan, H.; Wang, H.; Qin, X.; Liu, B.; Du, J. Ultrasound-assisted Dispersive Liquid–Liquid Microextraction for Determination of Fluoroquinolones in Pharmaceutical Wastewater. J. Pharmaceut. Biomed. 2011, 54, 53–57.
  • Yang, X.; Wang, R.; Wang, W.; Yan, H.; Qiu, M.; Song, Y. 2014 Synthesis of a Novel Molecularly Imprinted Organic–Inorganic Hybrid Polymer for the Selective Isolation and Determination of Fluoroquinolones in Tilapia. J. Chromatogr. B 945–946, 127–134.
  • Wang, Z.; Zhu, Y.; Ding, S.; He, F.; Beier, R. C.; Li, J.; Jiang, H.; Feng, C.; Wan, Y.; Zhang, S.; Kai, Z.; Yang, X.; Shen, J. Development of a Monoclonal Antibody-Based Broad-Specificity ELISA for Fluoroquinolone Antibiotics in Foods and Molecular Modeling Studies of Cross-Reactive Compounds. Anal. Chem. 2007, 79, 4471–4483.
  • Zeng, H.; Chen, J.; Zhang, C.; Huang, X.-a.; Sun, Y.; Xu, Z.; Lei, H. Broad-Specificity Chemiluminescence Enzyme Immunoassay for (Fluoro)quinolones: Hapten Design and Molecular Modeling Study of Antibody Recognition. Anal. Chem. 2016, 88:3909–3916.
  • Zhang, F.; Gu, S.; Ding, Y.; Zhang, Z.; Li, L. A Novel Sensor Based on Electropolymerization of β-cyclodextrin and l-arginine on Carbon Paste Electrode for Determination of Fluoroquinolones. Anal. Chim. Acta 2013, 770, 53–61.
  • Zhou, J. L.; Maskaoui, K.; Lufadeju, A. Optimization of Antibiotic Analysis in Water by Solid-phase Extraction and High Performance Liquid Chromatography–Mass Spectrometry/Mass Spectrometry. Anal. Chim. Acta 2012, 731, 32–39.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.