3,388
Views
88
CrossRef citations to date
0
Altmetric
Review Article

Analytical Techniques in Lipidomics: State of the Art

, , , , &
Pages 418-437 | Received 17 Jan 2017, Accepted 21 Mar 2017, Published online: 20 Apr 2017

References

  • Abidi, S.; Thiam, S.; Warner, I. Elution Behavior of Unsaponifiable Lipids with Various Capillary Electrochromatographic Stationary Phases. J. Chromatogr. A 2002, 949, 195–207.
  • Abramczyk, H.; Surmacki, J.; Kopeć, M.; Olejnik, A.K.; Lubecka-Pietruszewska, K.; Fabianowska-Majewska, K. The Role of Lipid Droplets and Adipocytes in Cancer. Raman Imaging of Cell Cultures: MCF10A, MCF7, and MDA-MB-231 Compared to Adipocytes in Cancerous Human Breast Tissue. Analyst 2015, 140, 2224–2235.
  • Ackman, R. Misidentification of Fatty Acid Methyl Ester Peaks in Liquid Canola Shortening. J. Am. Oil Chem. Soc. 1990, 67, 1028–1028.
  • Afseth, N. K.; Wold, J. P.; Segtnan, V. H. The Potential of Raman Spectroscopy for Characterisation of the Fatty Acid Unsaturation of Salmon. Anal. Chim. Acta. 2006, 527, 185–192.
  • Al-Saffar, N. M. S.; Titley, J. C.; Robertson, D.; Clarke, P. A.; Jackson, L. E.; Leach, M. O.; Ronen, S. M. Apoptosis is Associated with Triacylglycerol Accumulation in Jurkat T-cells. Br. J. Cancer. 2002, 86, 963–970.
  • Baker, M. Big Biology: The'omes Puzzle. Nature 2013, 494, 416–419.
  • Balliu, B.; Tsonaka, R.; Boehringer, S.; Houwing-Duistermaat, J. A Retrospective Likelihood Approach for Efficient Integration of Multiple Omics Factors in Case-Control Association Studies. Genet Epidemiol. 2015, 39, 156–165.
  • Bamba, T.; Lee, J. W.; Matsubara, A.; Fukusaki, E. Metabolic Profiling of Lipids by Supercritical Fluid Chromatography/Mass Spectrometry. J. Chromatogr. A 2012, 1250, 212–219.
  • Bang, D. Y.; Moon, H. M. On-Line Two-Dimensional Capillary Strong Anion Exchange/Reversed Phase Liquid Chromatography–Tandem Mass Spectrometry for Comprehensive Lipid Analysis. J. Chromatogr. A 2013, 1310, 82–90.
  • Beattie, J. R.; Bell, S. E.; Borgaard, C.; Fearon, A.; Moss, B. W. Prediction of Adipose Tissue Composition Using Raman Spectroscopy: Average Properties and Individual Fatty Acids. Lipids 2006, 41, 287–294.
  • Bhakoo, K. K.; Bell, J. D. The Application of NMR Spectroscopy to the Study of Apoptosis. Cell. Mol. Biol. 1997, 43, 621–629.
  • Bohlin, M. E.; Ohman, M.; Hamberg, M.; Blomberg, L.G. Separation of Conjugated Trienoic Fatty Acid Isomers by Capillary Electrophoresis. J. Chromatogr. A 2003, 985, 471–478.
  • Bondarenko, V.; Mowrey, D.; Tillman, T.; Cui, T.; Liu, L.T.; Xu, Y.; Tang, P. NMR Structures of the Transmembrane Domains of the α4β2 nAChR. Biochim. Biophys. Acta. 2012, 1818, 1261–1268.
  • Bowen, S.; Sekar, G.; Hilty, C. Rapid Determination of Biosynthetic Pathways Using Fractional Isotope Enrichment and High-Resolution Dynamic Nuclear Polarization Enhanced NMR. NMR Biomed. 2011, 24, 1016–1022.
  • Brando, T.; Pardin, C.; Prandi, J.; Puzo, G. Analysis of Aminofluorescein–Fatty Acid Derivatives by Capillary Electrophoresis with Laser-Induced Fluorescence Detection at the Attomole Level: Application to Mycobacterial Fatty Acids. J. Chromatogr. A 2002, 973, 203–210.
  • Budvytiene, M.; Babenko, N.; Liesiene, J. LC Separation of Fatty Acid Ceramides Using a Two Column System. Chromatographia 2009, 69, 1473–1475.
  • Cakmak, G.; Miller, L. M.; Zorlu, F.; Severcan, F.Amifostine, a Radioprotectant Agent, Protects Rat Brain Tissue Lipids Against Ionizing Radiation Induced Damage: An FTIR Microspectroscopic Imaging Study. Arch. Biochem. Biophys. 2012, 520, 67–73.
  • Can, T. V.; Sharma, M.; Hung, I.; Gorkov, P. L.; Brey, W. W.; Cross, T. A. Magic Angle Spinning and Oriented Sample Solid-State NMR Structural Restraints Combine for Influenza a M2 Protein Functional Insights. J. Am. Chem. Soc. 2012, 134, 9022–9025.
  • Chatham, J. C.; Blackband, S. J. Nuclear Magnetic Resonance Spectroscopy and Imaging in Animal Research. IlAR J. 2001, 42, 189–208.
  • Christie, W.W.; Nikolova-Damyanova, B.; Laakso, P.; Herslofet, B. Stereospecific Analysis of Triacyl- Sn-Glycerols Via Resolution of Diastereomeric Diacylglycerol Derivatives by High-Performance Liquid Chromatography on Silica. J. Am. Oil Chem. Soc. 1991, 68, 695–701.
  • Cífková, E.; Holčapek, M.; Lísa, M. Nontargeted Lipidomic Characterization of Porcine Organs Using Hydrophilic Interaction Liquid Chromatography and Off-Line Two-Dimensional Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Lipids 2013, 48, 915–928.
  • Cífková, E.; Holčapek, M.; Lísa, M.; Vrána, D.; Melichar, B.; Študent, V. Lipidomic Differentiation Between Human Kidney Tumors and Surrounding Normal Tissues Using HILIC-HPLC/ESI–MS and Multivariate Data Analysis. J. Chromatogr. B 2015, 1000, 14–21.
  • Coe, R. A.; Rathe, J. O.; Lee, J. W. Supercritical Fluid Chromatography–Tandem Mass Spectrometry for Fast Bioanalysis of R/S-Warfarin in Human Plasma. J. Pharm. Biomed. Anal. 2006, 42, 573–580.
  • Cropper, F. R.; Heywood, A. Analytical Separation of the Methyl Esters of the C12-C22 Fatty Acids by Vapour-Phase Chromatography. Nature 1953, 172, 1101–1102.
  • de Oliveira, M. A.; Solis, V. E.; Gioielli, L. A.; Polakiewicz, B.; Tavares, M.F. Method Development for the Analysis of Trans-Fatty Acids in Hydrogenated Oils by Capillary Electrophoresis. Electrophoresis 2003, 24, 1641–1647.
  • Dennis, E. A. Lipidomics Joins the Omics Evolution. Proc. Natl. Acad. Sci. 2009, 106, 2089–2090.
  • Dermaux, A.; Sandra, P.; Ferraz, V. Analysis of Free Fatty Acids and Fatty Acid Phenacyl Esters in Vegetable Oils and Margarine by Capillary Electrochromatography. Electrophoresis 1999, 20, 74–79.
  • Dermaux, A.; Sandra, P.; Ksir, M. H.; Zarrouck, K. F. F. Analysis of the Triglycerides and the Free and Derivatized Fatty Acids in Fish Oil by Capillary Electrochromatography. J. High Resolut. Chromatogr. 1998, 21, 545–548.
  • Descalzo, A.; Insani, E.; Pensel, N. Light-Scattering Detection of Phospholipids Resolved by HPLC. Lipids 2003, 38, 999–1003.
  • Dillon, J. T.; Aponte, J. C.; Tsai, Y.-J.; Huang, Y. Thin Layer Chromatography in the Separation of Unsaturated Organic Compounds Using Silver-Thiolate Chromatographic Material. J. Chromatogr. A 2012, 1251, 240–243.
  • Dodds, E. D.; McCoy, M. R.; Rea, L. D.; Kennish, J. M. Gas Chromatographic Quantification of Fatty Acid Methyl Esters: Flame Ionization Detection vs. Electron Impact Mass Spectrometry. Lipids 2005, 40, 419–428.
  • Domínguez, A.; Jarne, C.; Cebolla, V. L.; Galbán, J.; Savirón, M.; Orduna, J.; Membrado, L.; Lapieza, M.-P.; Romero, E.; Vicente, I.S.; de Marcos, S.; Garriga, R. A Hyphenated Technique Based on High-Performance Thin Layer Chromatography. Chromatography 2015, 2, 167–187.
  • Dreissig, I.; Machill, S.; Salzer, R.; Krafft, C. Quantification of Brain Lipids by FTIR Spectroscopy and Partial Least Squares Regression. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 71, 2069–2075.
  • Dugo, P.; Cacciola, F.; Kumm, T.; Dugo, G.; Mondello, L. Comprehensive Multidimensional Liquid Chromatography: Theory and Applications. J. Chromatogr. A 2008, 1184, 353–368.
  • Dugo, P.; Fawzy, N.; Cichello, F.; Cacciola, F.; Donato, P.; Mondello, L. Stop-Flow Comprehensive Two-Dimensional Liquid Chromatography Combined with Mass Spectrometric Detection for Phospholipid Analysis. J. Chromatogr. A 2013, 1278, 46–53.
  • Dugo, P.; Kumm, T.; Chiofalo, B.; Cotroneo, A.; Mondello, L. Separation of Triacylglycerols in a Complex Lipidic Matrix by Using Comprehensive Two-Dimensional Liquid Chromatography Coupled with Atmospheric Pressure Chemical Ionization Mass Spectrometric Detection. J. Sep. Sci. 2006, 29, 1146–1154.
  • Dürr, U. H.; Afonin, S.; Hoff, B.; de Luca, G.; Emsley, J. W.; Ulrich, A. S. Alignment of Drug-Like Compounds in Lipid Bilayers Analyzed by Solid-State (19)F-NMR and Molecular Dynamics, Based on Dipolar Couplings of Adjacent CF3 Groups. J. Phys. Chem. B 2012, 116, 4769–4782.
  • Ecker, J.; Scherer, M.; Schmitz, G.; Liebisch, G. A Rapid GC–MS Method for Quantification of Positional and Geometric Isomers of Fatty Acid Methyl Esters. J. Chromatogr. B 2012, 897, 98–104.
  • Effenhauser, C. S.; Paulus, A.; Manz, A.; Widmer, H.M. High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device. Anal. Chem. 1994, 66, 2949–2953.
  • Eisinger, K.; Krautbauer, S.; Hebel, T.; Schmitz, G.; Aslanidis, C.; Liebisch, G.; Buechler, C. Lipidomic Analysis of the Liver from High-Fat Diet Induced Obese Mice Identifies Changes in Multiple Lipid Classes. Exp. Mol. Pathol. 2014, 97, 37–43.
  • Erim, F.; Xu, X.; Kraak, J. Application of Micellar Electrokinetic Chromatography and Indirect UV Detection for the Analysis of Fatty Acids. J. Chromatogr. A 1995, 694, 471–479.
  • Frohnert, B. I.; Rewers, M. J. Metabolomics in Childhood Diabetes. Pediatr. Diabetes 2016, 17, 3–14.
  • Fu, D.; Yu, Y.; Folick, A.; Currie, E.; Farese, R. V.; Tsai, T. H.; Xie, X. S.; Wang, M. C. In Vivo Metabolic Fingerprinting of Neutral Lipids with Hyperspectral Stimulated Raman Scattering Microscopy. J. Am. Chem. Soc. 2014, 136, 8820–8828.
  • Fuchs, B. Analysis of Phospolipids and Glycolipids by Thin-Layer Chromatography–Matrix-Assisted Laser Desorption and Ionization Mass Spectrometry. J. Chromatogr. A 2012, 1259, 62–73.
  • Fuchs, B.; Süß, R.; Teuber, K.; Eibisch, M.; Schiller, J. Lipid Analysis by Thin-Layer Chromatography—A Review of the Current State. J. Chromatogr. A 2011, 1218, 2754–2774.
  • Fujimoto, C. Charged Polyacrylamide Gels for Capillary Electrochromatographic Separations of Uncharged, Low Molecular Weight Compounds. Anal. Chem. 1995, 67, 2050–2053.
  • Gallaher, D. L.; Johnson, M. E. Nonaqueous Capillary Electrophoresis of Fatty Acids Derivatized with a Near-Infrared Fluorophore. Anal. Chem. 2000, 72, 2080–2086.
  • Gao, F.; Zhang, Z.; Fu, X.; Li, W.; Wang, T.; Liu, H. Analysis of Phospholipids by NACE with On-Line ESI-MS. Electrophoresis. 2007, 28, 1418–1425.
  • Garrido Arteaga, R.; Veloso Pita, R.C.; López López, M. A.; González Labaut, J. A.; Rodríguez Montero Mdel, C.; Vélez Castro, H.; Cremata Alvarez, J.A. Evaluation and Evidence of Natural Gangliosides with Two Unsaturated Bonds in the Ceramide Structure Obtained by a Combination of MALDI-MS and NMR Spectroscopy. Anal. Bioanal. Chem. 2011, 400, 3675–3680.
  • Gaspar, A.; Englmann, M.; Fekete, A.; Harir, M.; Schmitt-Kopplin, P. Trends in CE-MS 2005–2006. Electrophoresis 2008, 29, 66–79.
  • Giarola, M.; Guella, G.; Mariotto, G.; Monti, F.; Rossi, B.; Sanson, A.; Sbarbati, A. Vibrational and Structural Investigations on Adipose Tissues. Philosophical Magazine 2008, 88, 3953–3959.
  • Gibbons, H.; O'Gorman, A.; Brennan, L. Metabolomics as a Tool in Nutritional Research. Curr. Opin. Lipidol. 2015, 26, 30–34.
  • Gildenast, T.; Lasch, J. Isolation of Ceramide Fractions from Human Stratum Corneum Lipid Extracts by High-Performance Liquid Chromatography. Biochim. Biophys. Acta. 1997, 1346, 69–74.
  • Gonçalves, C.; Alpendurada, M. F. Solid-Phase Micro-Extraction–Gas Chromatography (tandem) Mass. J. Chromatogr. A 2004, 1026, 239–250.
  • Guo, B.-Y.; Wen, B.; Shan, X.-Q.; Zhang, S.-Z.; Lin, J.-M. Separation and Determination of Phospholipids in Plant Seeds by Nonaqueous Capillary Electrophoresis. J. Chromatogr. A 2005, 1074, 205–213.
  • Gutnikov, G.; Beck, W.; Engelhardt, H. Separation of Homologous Fatty Acids by Capillary Electrophoresis. J. Microcolumn Sep. 1994, 6, 565–570.
  • Haddadian, E.; Shamsi, S.A.; Schaeper, J. P.; Danielson, N.D. Capillary Electrophoresis of Phospholipids with Indirect Photometric Detection. J. Chromatogr. Sci. 1998, 36, 395–400.
  • Haddadian, F.; Shamsi, S.; Warner, I. Separation of Saturated and Unsaturated Free Fatty Acids Using Capillary Electrophoresis with Indirect Photometric Detection. J. Chromatogr. Sci. 1999, 37, 103–107.
  • Hamilton, G.; Yokoo, T.; Bydder, M.; Cruite, I.; Schroeder, M. E.; Sirlin, C. B.; Middleton, M. S. In Vivo Characterization of the Liver fat (1)H MR Spectrum. NMR Biomed. 2011, 24, 784–790.
  • Hawrysh, Z. J.; Shand, P. J.; Lin, C.; Tokarska, B.; Hardinet, R. T. Efficacy of Tertiary Butylhydroquinone on the Storage and Heat Stability of Liquid Canola Shortening. J. Am. Oil Chem. Soc. 1990, 67, 585–590.
  • Hejazi, L.; Ebrahimi, D.; Guilhaus, M.; Hibbert, D.B. Determination of the Composition of Fatty Acid Mixtures Using GC×FI-MS: A Comprehensive Two-Dimensional Separation Approach. Anal. Chem. 2009, 81, 1450–8.
  • Hines, K. M.; Herron, J.; Xu, L. Assessment of Altered Lipid Homeostasis by HILIC-ion Mobility-Mass Spectrometry-Based Lipidomics. J. Lipid Res. 2017, doi: 10.1194/jlr.D074724.
  • Ho, Y.-L.; Chiu, J. H.; Wu, C. Y.; Liu, M. Y. Separation and Determination of In Vitro Oxidized Phospholipids by Capillary Zone Electrophoresis. Anal. Biochem. 2007, 367, 210–218.
  • Holčapek, M.; Ovčačíková, M.; Lísa, M.; Cífková, E.; Hájek, T. Continuous Comprehensive Two-Dimensional Liquid Chromatography–Electrospray Ionization Mass Spectrometry of Complex Lipidomic Samples. Anal. Bioanal. Chem. 2015, 407, 5033–5043.
  • Holčapek, M.; Cífková, E.; Cervená, B.; Lísa, M.; Vostálová, J.; Galuszka, J. Determination of Nonpolar and Polar Lipid Classes in Human Plasma, Erythrocytes and Plasma Lipoprotein Fractions Using Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A 2015b, 1377, 85–91.
  • Hoop, C. L.; Sivanandam, V. N.; Kodali, R.; Srnec, M. N.; van der Wel, P. C. Structural Characterization of the Caveolin Scaffolding Domain in Association with Cholesterol-Rich Membranes. Biochemistry 2012, 51, 90–99.
  • Horvath, G.; Király, P.; Tárkányi, G.; Toke, O. Internal Motions and Exchange Processes in Human Ileal Bile Acid Binding Protein as Studied by Backbone (15)N Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2012, 51, 1848–1861.
  • Huang, J. Y.; Peng, S. F.; Yang, C. C.; Yen, K. Y.; Tzen, K. Y.; Yen, R. F. Neuroimaging Findings in a Brain with Niemann-Pick Type C Disease. J. Formos. Med. Assoc. 2011, 110, 537–542.
  • Iorio, E.; Di Vito, M.; Spadaro, F.; Ramoni, C.; Lococo, E.; Carnevale, R.; Lenti, L.; Strom, R.; Podo, F. Triacsin C Inhibits the Formation of 1H NMR-Visible Mobile Lipids and Lipid Bodies in HuT 78 Apoptotic Cells. Biochim. Biophys. Acta. 2003, 1634, 1–14.
  • James, A.; Martin, A. Gas-Liquid Partition Chromatography: The Separation and Micro-Estimation of Volatile Fatty Acids from Formic Acid to Dodecanoic Acid. Biochem. J. 1952, 50, 679.
  • Janiak-Osajca, A.; Timoszyk, A. Application of (1)H and (31)P NMR to Topological Description of a Model of Biological Membrane Fusion: Topological Description of a Model of Biological Membrane Fusion. Acta Biochim. Pol. 2012, 59, 219–224.
  • Jensen, S. M.; Brandl, M.; Treusch, A. H.; Ejsing, C. S. Structural Characterization of Ether Lipids from the Archaeon Sulfolobus Islandicus by High-Resolution Shotgun Lipidomics. J. Mass Spectrom. 2015, 50, 476–487.
  • Jess, P. R.; Mazilu, M.; Dholakia, K.; Riches, A. C.; Herrington, C. S. Optical Detection and Grading of Lung Neoplasia by Raman Microspectroscopy. Int. J. Cancer 2009, 124, 376–380.
  • Jinno, K.; Sawada, H. Recent Trends in Open-Tubular Capillary Electrochromatography. Trends Anal. Chem. 2000, 19, 664–675.
  • Ju, D. D.; Lai, C. C.; Her, G. R. Analysis of Gangliosides by Capillary Zone Electrophoresis and Capillary Zone Electrophoresis-Electrospray Mass Spectrometry. J Chromatogr. A 1997, 779, 195–203.
  • Jurowski, K.; Buszewski, B.; Piekoszewski, W. Bioanalytics in Quantitive (bio) Imaging/Mapping of Metallic Elements in Biological Samples. Crit. Rev. Anal. Chem. 2015, 45, 334–347.
  • Jurowski, K.; Buszewski, B.; Piekoszewski, W. The Analytical Calibration in (bio) Imaging/Mapping of the Metallic Elements in Biological Samples–Definitions, Nomenclature and Strategies: State of the Art. Talanta 2015, 131, 273–285.
  • Kawai, Y.; Miyoshi, M.; Moon, J. H.; Terao, J. Detection of Cholesteryl Ester Hydroperoxide Isomers Using Gas Chromatography–Mass Spectrometry Combined with Thin-Layer Chromatography Blotting. Anal. Biochem. 2007, 360, 130–137.
  • Kilulya, K. F.; Mamba, B. B.; Msagati, T. A. Extraction Procedures and GCxGC-TOFMS Determination of Fatty Acids (FAs) in Cyanobacteria Cultures and the Effect of Growth Media Iron Concentration Variation on Cellular FAs Composition. J. Environ. Anal. Toxicol. 2015, 6, doi: 10.4172/2161-0525.S7-009.
  • Kishimoto, K.; Urade, R.; Ogawa, T.; Moriyama, T. Nondestructive Quantification of Neutral Lipids by Thin-Layer Chromatography and Laser-Fluorescent Scanning: Suitable Methods for “Lipidome” Analysis. Biochem. Biophys. Res. Commun. 2001, 281, 657–662.
  • Kochan, K.; Marzec, K. M.; Maslak, E.; Chlopicki, S.; Baranska, M. Raman Spectroscopic Studies of Vitamin A Content in the Liver: A Biomarker of Healthy Liver. Analyst 2015, 140, 2074–2079.
  • Kochan, K.; Maslak, E.; Kostogrys, R.; Chlopicki, S.; Baranska, M. A Comprehensive Approach to Study Liver Tissue: Spectroscopic Imaging and Histochemical Staining. Biomed. Spectrosc. Imaging 2013, 2, 331–337.
  • Kochan, K.; Maslak, E.; Krafft, C.; Kostogrys, R.; Chlopicki, S.; Baranska, M. Raman Spectroscopy Analysis of Lipid Droplets Content, Distribution and Saturation Level in Non-Alcoholic Fatty Liver Disease in Mice. J. Biophotonics. 2015, 8, 597–609.
  • Köfeler, H. C.; Fauland, A.; Rechberger, G. N.; Trötzmüller, M. Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms. Metabolites 2012, 2, 19–38.
  • Köhler, M.; Machill, S.; Salzer, R.; Krafft, C. Characterization of Lipid Extracts from Brain Tissue and Tumors using Raman Spectroscopy and Mass Spectrometry. Anal. Bioanal. Chem. 2009, 393, 1513–1520.
  • Kosol, S.; Schrank, E.; Krajačić, M. B.; Wagner, G. E.; Meyer, N. H.; Göbl, C.; Rechberger, G. N.; Zangger, K.; Novak, P. Probing the Interactions of Macrolide Antibiotics with Membrane-Mimetics by NMR Spectroscopy. J. Med. Chem. 2012, 55, 5632–5636.
  • Krafft, C.; Neudert, L.; Simat, T.; Salzer, R. Near Infrared Raman Spectra of Human Brain Lipids. Spectrochimica Acta A Mol. Biomol. Spectrosc. 2005, 61, 1529–1535.
  • Kritchevsky, D. Quantitation of Serum Lipids by a Simple TLC-Charring Method. Clin. Chim. Acta. 1973, 46, 63–68.
  • Kucuk Baloglu, F.; Garip, S.; Heise, S.; Brockmann, G.; Severcan, F. FTIR Imaging of Structural Changes in Visceral and Subcutaneous Adiposity and Brown to White Adipocyte Transdifferentiation. Analyst 2015, 140, 2205–2214.
  • Kucukbenli, E.; Sonkar, K.; Sinha, N.; de Gironcoli, S. Complete 13C NMR Chemical Shifts Assignment for Cholesterol Crystals by Combined CP-MAS Spectral Editing and Ab Initio GIPAW Calculations with Dispersion Forces. J. Phys. Chem. A 2012, 116, 3765–3769.
  • Kunisawa, J.; Kiyono, H. Sphingolipids and Epoxidized Lipid Metabolites in the Control of Gut Immunosurveillance and Allergy. Front. Nutr. 2016, 3, 3.
  • Kussmann, M.; Raymond, F.; Affolter, M. OMICS-Driven Biomarker Discovery in Nutrition and Health. J. Biotechnol. 2006, 124, 758–787.
  • Larkin, P. Infrared and Raman Spectroscopy, Principles and Spectral Interpretation; Philadelphia, PA: Elsevier, 2011.
  • Lattermann, A.; Matthäus, C.; Bergner, N.; Beleites, C.; Romeike, B. F.; Krafft, C.; Brehm, B. R.; Popp, J. Characterization of Atherosclerotic Plaque Depositions by Raman and FTIR Imaging. J. Biophotonics. 2013, 6, 110–121.
  • Lay, J.O.; Liyanage, R. Problems with the “Omics.” Track-Trend Anal. Chem. 2006, 25, 1046–1056.
  • Lee, J.W.; Nishiumi, S.; Yoshida, M.; Fukusaki, E.; Bamba, T. Simultaneous Profiling of Polar Lipids by Supercritical Fluid Chromatography/Tandem Mass Spectrometry with Methylation. J. Chromatogr. A. 2013, 1279, 98–107.
  • Lee, K. J.; Mwongela, S. M.; Kottegoda, S.; Borland, L.; Nelson, A. R.; Sims, C. E.; Allbritton, N. L. Determination of Sphingosine Kinase Activity for Cellular Signaling Studies. Anal. Chem. 2008, 80, 1620–1627.
  • Li, J.; Richards, J. C. Application of Capillary Electrophoresis Mass Spectrometry to the Characterization of Bacterial Lipopolysaccharides. Mass Spectrom. Rev. 2007, 26, 35–50.
  • Li, J. L.; Yan, X.; Wu, Y. L.; Fang, M. J.; Wu, Z.; Qiu, Y. K. Comprehensive Two-Dimensional Normal-Phase Liquid Chromatography Reversed-Phase Liquid Chromatography for Analysis of Toad Skin. Anal. Chim. Acta. 2017, 962, 114–120.
  • Li, M.; Yang, L.; Bai, Y.; Liu, H. Analytical Methods in Lipidomics and Their Applications Their Applications. Anal. Chem. 2014, 86, 161–175.
  • Li, S.; Ganguli-Indra, G.; Indra, A. K. Lipidomic Analysis of Epidermal Lipids: A Tool to Predict Progression of Inflammatory Skin Disease in Humans. Expert. Rev. Proteomics 2016, 13, 451–456.
  • Li, J.; Ren, S.; Piao, H. L.; Wang, F.; Yin, P.; Xu, C.; Lu, X.; Ye, G.; Shao, Y.; Yan, M.; Zhao, X.; Sun, Y.; Xu, G. Integration of Lipidomics and Transcriptomics Unravels Aberrant Lipid Metabolism and Defines Cholesteryl Oleate as Potential Biomarker of Prostate Cancer. Sci. Rep. 2016, 6, 20984.
  • Lin, S.; Fischl, A. S.; Bi, X.; Parce, W. Separation of Phospholipids in Microfluidic Chip Device: Application to High-Throughput Screening Assays for Lipid-Modifying Enzymes. Anal. Biochem. 2003, 314, 97–107.
  • Lisa, M.; Cifkova, E.; Holcapek, M. Lipidomic Profiling of Biological Tissues Using Off-Line Two-Dimensional High-Performance Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A 2011, 1218, 5146–5456.
  • Loomba, R.; Quehenberger, O.; Armando, A.; Dennis, E. Polyunsaturated Fatty Acid Metabolites as Novel Lipidomic Biomarkers for Noninvasive Diagnosis of Nonalcoholic Steatohepatitis. J. Lipid Res. 2015, 56, 185–192.
  • Lutz, N. W.; Tome, M. E.; Cozzone, P. J. Early Changes in Glucose and Phospholipid Metabolism following Apoptosis Induction by IFN-γ/TNF-α in HT-29 Cell. FEBS lett. 2003, 544, 123–128.
  • Machtoub, L.; Bataveljic, D.; Andjus, P. Molecular Imaging of Brain Lipid Environment of Lymphocytes in Amyotrophic Lateral Sclerosis Using Magnetic Resonance Imaging and SECARS Microscopy. Physiol. Res. 2011, 60, S121–S127.
  • Majzner, K.; Kochan, K.; Kachamakova-Trojanowska, N.; Maslak, E.; Chlopicki, S.; Baranska, M. Raman Imaging Providing Insights into Chemical Composition of Lipid Droplets of Different Size and Origin: In Hepatocytes and Endothelium. Anal. Chem. 2014, 86, 6666–6674.
  • Mardones, C.; Vizioli, N. M.; Carducci, C.; Rios, A.; Valcarcel, M. Separation and Determination of Carnitine and Acyl-Carnitines by Capillary Electrophoresis with Indirect UV Detection. Anal. Chim. Acta. 1999, 382, 23–31.
  • Marini, D.; HPLC of Lipids, in Food analysis by HPLC, M.D. AG, Editor. 2000, Edited by Nollt LML New York. p. 169–251.
  • Matsumori, N.; Okazaki, H.; Nomura, K.; Murata, M. Fluorinated Cholesterol Retains Domain-Forming Activity in Sphingomyelin Bilayers. Chem. Phys. Lipids 2011, 164, 401–408.
  • Matthäus, C.; Krafft, C.; Dietzek, B.; Brehm, B. R.; Lorkowski, S.; Popp, J. Noninvasive Imaging of Intracellular Lipid Metabolism in Macrophages by Raman Microscopy in Combination with Stable Isotopic Labeling. Anal. Chem. 2012, 84, 8549–8556.
  • McLaren, D. G.; He, T.; Wang, S. P.; Mendoza, V.; Rosa, R.; Gagen, K.; Bhat, G.; Herath, K.; Miller, P. L.; Stribling, S.; Taggart, A.; Imbriglio, J.; Liu, J.; Chen, D.; Pinto, S.; Balkovec, J. M.; Devita, R. J.; Marsh, D. J.; Castro-Perez, J.M.; Strack, A.; Johns, D. G.; Previs, S. F.; Hubbard, B. K.; Roddy, T. P. The Use of Stable-Isotopically Labeled Oleic Acid to Interrogate Lipid Assembly in Vivo: Assessing Pharmacological Effects in Preclinical Species. J. Lipid Res. 2011, 52, 1150–1161.
  • Menon, G. K.; Orsó, E.; Aslanidis, C.; Crumrine, D.; Schmitz, G.; Elias, P. M. Ultrastructure of Skin from Refsum Disease with Emphasis on Epidermal Lamellar Bodies and Stratum Corneum Barrier Lipid Organization. Arch. Dermatol. Res. 2014, 306, 731–737.
  • Metcalf, R.; Pandit, S. A. Mixing Properties of Sphingomyelin Ceramide Bilayers: A Simulation Study. J. Phys. Chem. B 2012, 116, 4500–4509.
  • Meyers, M. A.; Chen, P.-Y.; Lin, A. Y. M.; Seki, Y. Biological Materials: Structure and Mechanical Properties. Progr. Materials Sci. 2008, 53, 1–206.
  • Mirbahai, L.; Wilson, M.; Shaw, C. S.; McConville, C.; Malcomson, R. D.; Kauppinen, R. A.; Peet, A. C. Lipid Biomarkers of Glioma Cell Growth Arrest and Cell Death Detected by 1 H Magic Angle Spinning MRS. NMR Biomed. 2012, 25, 1253–1262.
  • Mjøs, S. A. Identification of Fatty Acids in Gas Chromatography by Application of Different Temperature and Pressure Programs on a Single Capillary Column. J. Chromatogr. A 2003, 1015, 151–161.
  • Morrison, N.; Bearden, D.; Bundy, J. G.; Collette, T.; Currie, F.; Davey, M. P.; Haigh, N. S.; Hancock, D.; Jones, O. A. H.; Rochfort, S.; Sansone, S.-A.; Štys, D.; Teng, Q.; Field, D.; Viant, M. R. Standard Reporting Requirements for Biological Samples in Metabolomics Experiments: Environmental Context. Metabolomics 2007, 3, 203–210.
  • Muhle-Goll, C.; Hoffmann, S.; Afonin, S.; Grage, S. L.; Polyansky, A. A.; Windisch, D.; Zeitler, M.; Bürck, J.; Ulrich, A. S. Hydrophobic Matching Controls the Tilt and Stability of the Dimeric Platelet-Derived Growth Factor Receptor (PDGFR) Beta Transmembrane Segment. J. Biol. Chem. 2012, 287, 26178–26186.
  • Murphy, E. J. Lipids: 50th Anniversary Celebration and the Future. Lipids 2015, 50, 1–2.
  • Murphy, S. A.; Nicolaou, A. Lipidomics Applications in Health, Disease and Nutrition Research. Mol. Nutr. Food Res. 2013, 57, 1336–1346.
  • Nagano, M.; Hoshino, D.; Koshiba, S.; Shuo, T.; Koshikawa, N.; Tomizawa, T.; Hayashi, F.; Tochio, N.; Harada, T.; Akizawa, T.; Watanabe, S.; Handa, N.; Shirouzu, M.; Kigawa, T.; Yokoyama, S.; Seiki, M. ZF21 Protein, A Regulator of the Disassembly of Focal Adhesions and Cancer Metastasis, Contains a Novel Noncanonical Pleckstrin Homology Domain. J. Biol. Chem. 2011, 286, 31598–31609.
  • Narváez-Rivas, M.; Vu, N.; Chen, G.-Y.; Zhang, Q. Off-Line Mixed-Mode Liquid Chromatography Coupled with Reversed Phase High Performance Liquid Chromatography-High Resolution Mass Spectrometry to Improve Coverage in Lipidomics Analysis. Anal. Chim. Acta. 2017, 954, 140–150.
  • Nie, H.; Liu, R.; Yang, Y.; Bai, Y.; Guan, Y.; Qian, D.; Wang, T.; Liu, H. Lipid Profiling of Rat Peritoneal Surface Layer by an Online NP/RP 2D LC-QToF-MS System. J. Lipid Res. 2010, 51, 2833–2844.
  • Nikolova-Damyanova, B.; Momchilova, S. Silver Ion Hplc for the Analysis of Positionally Isomeric Fatty Acids. J. Liq. Chromatogr. Relat. Technol. 2002, 25, 1947–1965.
  • O'Gorman, A.; Brennan, L. Metabolomic Applications in Nutritional Research: A Perspective. J. Sci. Food Agric. 2015, 95, 2567–2570.
  • Otieno, A. C.; Mwongela, S. M. Capillary Electrophoresis-Based Methods for the Determination of Lipids-A Review. Anal. Chim. Acta. 2008, 624, 163–174.
  • Pati, S.; Nie, B.; Arnold, R. D.; Cummings, B. S. Extraction, Chromatographic and Mass Spectrometric Methods for Lipid Analysis. Biomed. Chromatogr. 2016, 30, 695–709.
  • Pawlikowska-Pawlega, B.; Misiak, L. E.; Zarzyka, B.; Paduch, R.; Gawron, A.; Gruszecki, W. I. Localization and Interaction of Genistein with Model Membranes Formed with Dipalmitoylphosphatidylcholine (DPPC). Biochim. Biophys. Acta. 2012, 1818, 1785–1893.
  • Perona, J. S.; Ruiz-Gutierrez, V. Simultaneous Determination of Molecular Species of Monoacylglycerols, Diacylglycerols and Triacylglycerols in Human Very-Low-Density Lipoproteins by Reversed-Phase Liquid Chromatography. J. Chromatogr. B. 2003, 785, 89–99.
  • Peters, E.C.; Petr, M.; Svec, F.; Fréchet, J.M. Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. Effect of Chromatographic Conditions on the Separation. Anal. Chem. 1998, 70, 2296–2302.
  • Porta, M.; Hernández-Aguado, I.; Lumbreras, B.; Crous-Bou, M. “Omics” Research, Monetization of Intellectual Property and Fragmentation of Knowledge: Can Clinical Epidemiology Strengthen Integrative Research? J. Clin. Epidemiol. 2007, 60, 1220–1225.
  • Preidis, G. A.; Hotez, P. J.; Jex, A. R. The Newest “Omics”—Metagenomics and Metabolomics—Enter the Battle Against the Neglected Tropical Diseases. PLOS Negl. Trop. Dis. 2015, 9, e0003382.
  • Psychogios, N.; Hau, D. D.; Peng, J.; Guo, A. C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; Young, N.; Xia, J.; Knox, C.; Dong, E.; Huang, P.; Hollander, Z.; Pedersen, T.L.; Smith, S.R.; Bamforth, F.; Greiner, R.; McManus, B.; Newman, J.W.; Goodfriend, T.; Wishart, D. S. The Human Serum Metabolome. PloS One 2011, 6, e16957.
  • Pulfer, M.; Murphy, R. C. Electrospray Mass Spectrometry of Phospholipids. Mass Spectrom. Rev. 2003, 22, 332–364.
  • Qi, L.; Danielson, N. D.; Dai, Q.; Lee, R. M. Capillary Electrophoresis of Cardiolipin with On-Line Dye Interaction and Spectrophotometric Detection. Electrophoresis 2003, 24, 1680–1686.
  • Quinn, P. J.; Rainteau, D.; Wolf, C. Lipidomics of the Red Cell in Diagnosis of Human Disorders. Methods Mol. Biol. 2009, 579, 127–159.
  • Rabiei, Z.; Bigdeli, M. R.; Rasoulian, B.; Ghassempour, A.; Mirzajani, F. The Neuroprotection Effect of Pretreatment with Olive Leaf Extract on Brain Lipidomics in Rat Stroke Model. Phytomedicine 2012, 19, 940–946.
  • Reeder, S. B.; Cruite, I.; Hamilton, G.; Sirlin, C. B. Quantitative Assessment of Liver Fat with Magnetic Resonance Imaging and Spectroscopy. J. Magn. Reson. Imaging 2011, 34, 729–749.
  • Reid, D. G.; Shanahan, C. M.; Duer, M. J.; Arroyo, L. G.; Schoppet, M.; Brooks, R. A.; Murray, R. C. Lipids in Biocalcification: Contrasts and Similarities Between Intimal and Medial Vascular Calcification and Bone by NMR. J. Lipid Res. 2012, 53, 1569–1575.
  • Roach, J. A.; Yurawecz, M. P.; Kramer, J. K.; Mossoba, M. M.; Eulitz, K.; Ku, Y. Gas Chromatography-High Resolution Selected-Ion Mass Spectrometric Identification of Trace 21:0 and 20:2 Fatty Acids Eluting with Conjugated Linoleic Acid Isomers. Lipids 2000, 35, 797–802.
  • Roldan-Assad, R.; Gareil, P. Capillary Zone Electrophoretic Determination of C2 C18 Linear Saturated Free Fatty Acids with Indirect Absorbance Detection. J. Chromatogr. A 1995, 708, 339–350.
  • Rolim, A. E. H.; Henrique-Araújoa, R.; Ferraza, E. G.; de Araújo Alves Dultraa, F. K.; Fernandez, L. G. Lipidomics in the Study of Lipid Metabolism: Current Perspectives in the Omic Sciences. Gene 2015, 554, 131–139.
  • Row, K. H.; Lee, J. W. Preparative Separation of Phospholipids from Soybean by NP-HPLC. Korean J. Chem. Eng. 1997, 14, 412–415.
  • Samek, O.; Janas, A.; Pilat, Z.; Zemanek, P.; Nedbal, L.; Triska, J.; Kotas, P.; Trtilek, M. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids In Vivo. Sensors 2010, 10, 8635–8651.
  • Sanchez-Avila, N.; Mata-Granados, J. M.; Ruiz-Jiménez, J.; Luque de Castro, M. D. Fast, Sensitive and Highly Discriminant Gas Chromatography–Mass Spectrometry Method for Profiling Analysis of Fatty Acids in Serum. J. Chromatogr. A 2009, 1216, 6864–6872.
  • Scherer, M.; Leuthäuser-Jaschinski, K.; Ecker, J.; Schmitz, G.; Liebisch, G. A Rapid and Quantitative LC-MS/MS Method to Profile Sphingolipids. J. Lipid Res. 2010, 51, 2001–2011.
  • Schneider, M. V.; Orchard, S. Omics Technologies, Data and Bioinformatics Principles. Methods Mol. Biol. 2011, 719, 3–30.
  • Schwalbe-Herrmann, M.; Willmann, J.; Leibfritz, D. Separation of Phospholipid Classes by Hydrophilic Interaction Chromatography Detected by Electrospray Ionization Mass Spectrometry. J. Chromatogr. A 2010, 1217, 5179–5183.
  • Schwertner, H. A.; Mosser, E. L. Comparison of Lipid Fatty Acids on a Concentration Basis Vs Weight Percentage Basis in Patients with and Without Coronary Artery Disease or Diabetes. Clin. Chem. 1993, 39, 659–663.
  • Sibson, N. R.; Dhankhar, A.; Mason, G. F.; Rothman, D. L.; Behar, K. L.; Shulman, R. G. Stoichiometric Coupling of Brain Glucose Metabolism and Glutamatergic Neuronal Activity. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 316–321.
  • Smejkal, G. B.; Hoppe, G.; Hoff, H. F. Filipin as a Fluorescent Probe of Lipoprotein-Derived Sterols on Thin-Layer Chromatograms. Anal. Biochem. 1996, 239, 115–117.
  • Smith, E. C.; Jones, A. D.; Hammond, E. W. Investigation of the Use of Argentation High-Performance Liquid Chromatography for the Analysis of Triglycerides. J. Chromatogr. A 1980, 188, 205–212.
  • Sokol, E.; Almeida, R.; Hannibal-Bach, H. K.; Kotowska, D.; Vogt, J.; Baumgart, J.; Kristiansen, K.; Nitsch, R.; Knudsen, J.; Ejsing, C. S. Profiling of Lipid Species by Normal-Phase Liquid Chromatography, Nanoelectrospray Ionization, and Ion Trap-Orbitrap Mass Spectrometry. Anal. Biochem. 2013, 443, 88–96.
  • Souza, S. L.; Hallock, K. J.; Funari, S. S.; Vaz, W. L.; Hamilton, J. A.; Melo, E. Study of the Miscibility of Cholesteryl Oleate in a Matrix of Ceramide, Cholesterol and Fatty Acid. Chem. Phys. Lipids 2011, 164, 664–671.
  • Stoll, C.; Stadnick, H.; Kollas, O.; Holovati, J. L.; Glasmacher, B.; Acker, J. P.; Wolkers, W. F. Liposomes Alter Thermal Phase Behavior and Composition of Red Blood Cell Membranes. Biochim. Biophys. Acta. 2011, 1808, 474–481.
  • Takahashi, T.; Yoshida, S. Distribution of Glycolipid and Unsaturated Fatty Acids in Human Hair. Lipids 2014, 49, 905–917.
  • Tan, H. H.; Makino, A.; Sudech, K.; Greimel, P.; Kobayashi, T. Spectroscopic Evidence for the Unusual Stereochemical Configuration of an Endosome-Specific Lipid. Angew. Chem. Int. Ed. Engl. 2012, 51, 533–535.
  • Tanaka, T.; Kassai, A.; Ohmoto, M.; Morito, K.; Kashiwada, Y.; Takaishi, Y.; Urikura, M.; Morishige, J.; Satouchi, K.; Tokumura, A. Quantification of Phosphatidic Acid in Foodstuffs Using a Thin-Layer-Chromatography-Imaging Technique. J. Agric. Food Chem. 2012, 60, 4156–4161.
  • Taylor, L.T. Supercritical Fluid Chromatography for the 21st Century. J. Supercrit. Fluids 2009, 47, 566–573.
  • Thumanu, K.; Sangrajrang, S.; Khuhaprema, T.; Kalalak, A.; Tanthanuch, W.; Pongpiachan, S.; Heraud, P. Diagnosis of Liver Cancer from Blood Sera Using FTIR Microspectroscopy: A Preliminary Study. J. Biophotonics 2014, 7, 222–231.
  • Top, D.; Read, J. A.; Dawe, S. J.; Syvitski, R. T.; Duncan, R. Cell-Cell Membrane Fusion Induced by p15 Fusion-Associated Small Transmembrane (FAST) Protein Requires a Novel Fusion Peptide Motif Containing a Myristoylated Polyproline type II Helix. J. Biol. Chem. 2012, 287, 3403–3414.
  • Tyurina, Y. Y.; Tyurin, V. A.; Kapralova, V. I.; Wasserloos, K.; Mosher, M.; Epperly, M. W.; Greenberger, J. S.; Pitt, B. R.; Kagan, V. E. Oxidative Lipidomics of γ-Radiation-Induced Lung Injury: Mass Spectrometric Characterization of Cardiolipin and Phosphatidylserine Peroxidation. Radiat. Res. 2011, 175, 610–621.
  • Uchikata, T.; Matsubara, A.; Fukusaki, E.; Bamba, T. High-Throughput Phospholipid Profiling System Based on Supercritical Fluid Extraction–Supercritical Fluid Chromatography/Mass Spectrometry for Dried Plasma Spot Analysis. J. Chromatogr. A 2012, 1250, 69–75.
  • Uchikata, T.; Matsubara, A.; Nishiumi, S.; Yoshida, M.; Fukusaki, E.; Bamba, T. Development of Oxidized Phosphatidylcholine Isomer Profiling Method Using Supercritical Fluid Chromatography/Tandem Mass Spectrometry. J. Chromatogr. A 2012, 1250, 205–211.
  • van Dongen, J.; Slagboom, E.; Draisma, H. H. M.; Martin, N. G.; Boomsma, D. I. The Continuing Value of Twin Studies in the Omics Era. Nat. Rev. Genet. 2012, 13, 640–653.
  • Vyssotski, M.; Ryan, J.; Lagutin, K.; Wong, H.; Morgan, X.; Stott, M. A Novel Fatty Acid, 12,17-Dimethyloctadecanoic Acid, from the Extremophile Thermogemmatispora sp. (Strain T81). Lipids 2012, 47, 601–611.
  • Wang, S.; Li, J.; Shi, X.; Qiao, L.; Lu, X.; Xu, G. A Novel Stop-Flow Two-Dimensional Liquid Chromatography–Massspectrometry Method for Lipid Analysis. J. Chromatogr. A 2013, 1321, 65–72.
  • Wang, T.; Cady, S. D.; Hong, M. NMR Determination of Protein Partitioning into Membrane Domains with Different Curvatures and Application to the Influenza M2 Peptide. Biophys. J. 2012, 102, 787–794.
  • Wei, H.; Frei, B.; Beckman, J. S.; Zhang, W. J. Copper Chelation by Tetrathiomolybdate Inhibits Lipopolysaccharide-Induced Inflammatory Responses In Vivo. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H712–20.
  • Wiesmann, F.; Ruff, J.; Hiller, K. H.; Rommel, E.; Haase, A.; Neubauer, S. Developmental Changes of Cardiac Function and Mass Assessed with MRI in Neonatal, Juvenile, and Adult Mice. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H652–H657.
  • Wilhelm, M. J.; Ong, H. H.; Wehrli, S. L.; Li, C.; Tsai, P.-H.; Hackney, D. B.; Wehrli, F. W. Direct Magnetic Resonance Detection of Myelin and Prospects for Quantitative Imaging of Myelin Density. Proc. Natl. Acad. Sci. 2012, 109, 9605–9610.
  • Wilson, R.; Sargent, J. R. High-Resolution Separation of Polyunsaturated Fatty Acids by Argentation Thin-Layer Chromatography. J. Chromatogr. A 1992, 623, 403–407.
  • Winter, P. W.; Al-Qatati, A.; Wolf-Ringwall, A. L.; Schoeberl, S.; Chatterjee, P. B.; Barisas, B. G.; Roess, D. A.; Crans, D. C., The Anti-Diabetic bis(maltolato)oxovanadium(IV) Decreases Lipid Order While Increasing Insulin Receptor Localization in Membrane Microdomains. Dalton Trans. 2012, 41, 6419–6430.
  • Wrobel, T. P.; Mateuszuk, L.; Kostogrys, R. B.; Chlopicki, S.; Baranska, M. Quantification of Plaque Area and Characterization of Plaque Biochemical Composition with Atherosclerosis Progression in ApoE/LDLR−/− mice by FT-IR Imaging. Analyst 2013, 138, 6645–6652.
  • Xiao, L.; Wu, E. X. Diffusion-Weighted Magnetic Resonance Spectroscopy: A Novel Approach to Investigate Intramyocellular Lipids. Magn. Reson. Med. 2011, 66, 937–944.
  • Xiao, Y.; Mei, J.; He, X.; Cheng, W. Fractionation and High Performance Capillary Electrophoretic Analysis of Phospholipids. Se Pu. 2006, 24, 30–34.
  • Yamaguchi, T.; Suzuki, T.; Yasuda, T.; Oishi, T.; Matsumori, N.; Murata, M. NMR-based Conformational Analysis of Sphingomyelin in Bicelles. Bioorg. Med. Chem. 2012, 20, 270–278.
  • Yamamura, R.; Shimomura, Y. Industrial High-Performance Liquid Chromatography Purification of Docosahexaenoic Acid Ethyl Ester and Docosapentaenoic Acid Ethyl Ester from Single-Cell Oil. J. Am. Oil Chem. Soc. 1997, 74, 1435–1440.
  • Yang, L.; Ma, P.; Zhang, X.; Niu, J.; Wang, J. An Organic–Inorganic Hybrid Dy (III)-Containing Polyoxomolybdate Based on Functionalized Diphosphonate Ligands. Inorg. Chem. Commun. 2013, 35, 5–8.
  • Yang, L.; Li, M.; Shan, Y.; Shen, S.; Bai, Y.; Liu, H. Recent Advances in Lipidomics for Disease Research. J. Sep. Sci. 2016, 39, 38–50.
  • Young, Y. S.; Young, S. K. Separation of Gangliosides Using Cyclodextrin in Capillary Zone Electrophoresis. J. Chromatogr A 1993, 652, 431–439.
  • Zamfir, A.; Vukelic, Z.; Peter-Katalinic, J. A Capillary Electrophoresis and Off-Line Capillary Electrophoresis/Electrospray Ionization-Quadrupole Time of Flight-Tandem Mass Spectrometry Approach for Ganglioside Analysis. Electrophoresis 2002, 23, 2894–2903.
  • Zarzycki, P. K.; Slączka, M. M.; Zarzycka, M. B.; Bartoszuk, M. A.; Włodarczyk, E.; Baran, M. J. Temperature-Controlled Micro-TLC: A Versatile Green Chemistry and Fast Analytical Tool for Separation and Preliminary Screening of Steroids Fraction from Biological and Environmental Samples. J. Steroid Biochem. Mol. Biol. 2011, 127, 418–427.
  • Zhang, L.; Hu, S.; Cook, L.; Dovichi, N. J. Analysis of Aminophospholipid Molecular Species by Methyl-β-cyclodextrin Modified Micellar Electrokinetic Capillary Chromatography with Laser-Induced Fluorescence Detection. Electrophoresis 2002, 23, 3071–3077.
  • Zhang, L.; Krylov, S. N.; Hu, S.; Dovichi, N. J. Methyl-β-cyclodextrin Modified Micellar Electrokinetic Capillary Chromatography with Laser-Induced Fluorescence for Separation and Detection of Phospholipids. J. Chromatogr. A 2000, 894, 129–134.
  • Zhang, M.; Ostrander, G. K.; El Rassi, Z. Capillary Electrochromatography with Novel Stationary Phases. IV. Retention Behavior of Glycosphingolipids on Porous and Non-Porous Octadecyl Sulfonated Silica. J. Chromatogr. A 2000, 887, 287–297.
  • Zhang, T.; Li, Y.; Mueller, A. Phase Structure of Liposome in Lipid Mixtures. Chem. Phys. Lipids 2011, 164, 722–726.
  • Zhendre, V.; Grélard, A.; Garnier-Lhomme, M.; Buchoux, S.; Larijani, B.; Dufourc, E. J. Key Role of Polyphosphoinositides in Dynamics of Fusogenic Nuclear Membrane Vesicles. PLoS One 2011, 6, e23859.
  • Zhou, Q.; Gao, B.; Zhang, X.; Xu, Y.; Shi, H.; Yu, L. Chemical Profiling of Triacylglycerols and Diacylglycerols in Cow Milk Fat by Ultra-Performance Convergence Chromatography Combined with a Quadrupole Time-of-Flight Mass Spectrometry. Food Chem. 2014, 143, 199–204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.