900
Views
16
CrossRef citations to date
0
Altmetric
Review Article

Application of GC/MS Soft Ionization for Isomeric Biological Compound Analysis

&
Pages 438-453 | Published online: 30 May 2017

References

  • Adar, F.; Delhaye, M.; Dashilva, E. Evolution of Instrumentation for Detection of the Raman Effect as Driven by Available Technologies and by Developing Applications. J. Chem. Educ. 2007, 48(1), 50–60.
  • Alderkamp, A. C.; van Rijssel, M.; Bolhuis, H. Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin. FEMS Microbiol. Ecol. 2007, 59, 108–117.
  • Amirav, A.; Gordin, A.; Poliak, M.; Fialkov, A. B. Gas Chromatography-Mass Spectrometry with Supersonic Molecular Beams. J. Mass Spectrom. 2008, 43, 141–163.
  • Andrey, B. Liquid Chromatography-Mass Spectrometry: An Introduction; John Wiley & Sons: USA, 2003, p. 276.
  • Ardrey, B. Liquid chromatography and mass spectrometry: An introduction; John Wiley & Sons: England, UK, 2003, p. 276.
  • Armstrong, D. W.; Ward, T. J.; Armstrong, R. D.; Beesley, T. E. Separation of Drug Stereoisomers by the Formation of β-Cyclodextrin Inclusion Complexes. Science 1986, 232, 1132–1135.
  • Armstrong, D. W. Optical Isomer Separation by Liquid Chromatography. Anal. Chem. 1987, 59(2), 84A–91A.
  • Baer, T.; Dunbar, R. C. Ion Spectroscopy: Where did it Come from, Where is it Now, and Where is it Going? J. Am. Soc. Mass Spectrom. 2010, 21, 681–693.
  • Baker, L. C. W.; Figgis, J. S. A. New Fundamental Type of Inorganic Complex: Hybrid between Heteropoly and Conventional Coordination Complexes. Possibilities for Geometrical Isomerisms in 11-, 12-, 17-, and 18-Heteropoly Derivatives. J. Am. Chem. Soc. 1970, 12(92), 3794–3797.
  • Barden, D.; McGregor, L.; Smith, S. Comprehensive Fragrance Profiling of Ginger, Wintergreen, and Rosemary Essential Oils by GC–TOF-MS with Soft Electron Ionization. Spectroscopy 2016, 14(4), 18–26.
  • Barron, L. D. Molecular Light Scattering and Optical Activity; Second Edition; Cambridge University Press: UK, 2004, pp. 443.
  • Becker, E. D. A Brief History of Nuclear Magnetic Resonance. Anal. Chem. 1993, 65(6), 295A–302A.
  • Beckey, H. D. Determination of the Structures of Organic Molecules and Quantitative Analyses with the Field Ionization Mass Spectrometer. Angew. Chem. Int. Ed. 1969a, 8(9), 623–688.
  • Beckey, H. D. Field Ionization Mass Spectrometry. Res. Develop. 1969b, 20, 26–29.
  • Beer, M. D.; Lynen, F.; Chen, K.; Ferguson, P.; Hanna-Brown, M.; Sandra, P. Stationary-Phase Optimized Selectivity Liquid Chromatography: Development of a Linear Gradient Prediction Algorithm. Anal. Chem. 2010, 82, 1733–1743.
  • Beesley, T. E. Review of Chiral Stationary Phase Development and Chiral Applications. LCGC Europe 2011, 24(5), 270–276.
  • Bell, R. Introductory Fourier Transform Spectroscopy; Elsevier, 2012, p. 400.
  • Bennett, K. H.; Cook, K. D.; Seebach, G. L. Simultaneous Analysis of Butene Isomer Mixtures Using Process Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 1079–1085.
  • Berke, H. Counting ions' in Alfred Werner's Coordination Chemistry using Electrical Conductivity Measurements. Educ. Quim. 2014, 25(E1), 267–275.
  • Bhushan, R.; Brückner, H. Marfey's Reagent for Chiral Amino Acid Analysis. Amino Acids 2004, 27, 231–247.
  • Blackmond, D. G. The Origin of Biological Homochirality. Cold Spring Harb. Perspect. Biol. 2010, 2, 1–17.
  • Buczek, O.; Yoshikami, D.; Bulaj, G.; Jimenez, E. C.; Olivera, B. M. Post-Translational Amino Acid Isomerization. JBC 2005, 280(6), 4247–4253.
  • Buchmeiser, M. R. Polymeric Monolithic Materials: Syntheses, Properties, Functionalization and Applications. Polymer 2007, 48, 2187–2198.
  • Burmeister, J. L; Basolo, F. Inorganic Linkage Isomerism of the Thiocyanate Ion. Inorg. Chem. 1964, 3(11), 1587–1593.
  • Chhabra, N.; Aseri, M. L.; Padmanabhan, D. A Review of Drug Isomerism and its Significance. Int. J. Appl. Basic. Med. Res. 2013, 3(1), 16–18.
  • Chu, I. K; Zhao, J.; Xu, M.; Siu, S. O; Hopkinson, A. C.; Michael Siu, K. M. Are the Radical Centers in Peptide Radical Cations Mobile? The Generation, Tautomerism, and Dissociation of Isomeric α-Carbon-Centered Triglycine Radical Cations in the Gas Phase. J. Am. Chem. Soc. 2008, 130, 7862–7872.
  • Cody, R. B.; Dane, A. D. Dopant-Assisted Direct Analysis in Real Time Mass Spectrometry with Argon Gas. Rapid Commun. Mass Spectrom. 2016, 30, 1181–1189.
  • Crosland, M. P. Historical Studies in the Language of Chemistry; Dover, Inc.: New York, 1978, p. 406.
  • Crosley, D. R.; Coggiola, M. J.; Faris, G. W.; Oser, H. Development of a Jet-REMPI Based Continuous Emissions Monitor for Dioxins. In Proceedings of the Conference on Incineration and Thermal Treatment Technologies, 1999, p. 553.
  • Damen, C. W. N.; Isaac, G.; Langridge, J.; Hankemeier, T.; Vreeken, R. J. Enhanced Lipid Isomer Separation in Human Plasma using Reversed-Phase UPLC with Ion-Mobility/High-Resolution MS Detection. J. Lipid Res. 2014, 55, 1772–1783.
  • Dass, C. Fundamentals of Contemporary Mass Spectrometry; Wiley & Sons: USA, 2007, p. 585.
  • Deelman, J. C. Low-Temperature Formation of Dolomite and Magnesite; CD Publications: Eindhoven, The Netherlands, 2003, p. 504.
  • Dessent, C. E. H.; Müller-Dethlefs, K. Hydrogen-Bonding and Van der Waals Complexes Studied by ZEKE and REMPI Spectroscopy. Chem. Rev. 2000, 100, 3999–4021.
  • Dimandja, J. M. D. Comprehensive 2-D GC Provides High-Performance Separations in Terms of Selectivity, Sensitivity, Speed, and Structure. Anal. Chem. 2004, 1, 167A–174A.
  • Ditter-Wilde, K. Derivatization. In Practical Gas Chromatography: A Comprehensive Reference; Dettmer-Wilde, K.; Engewald, W., Eds.; Springer: Heidelberg, Germany, 2014, pp. 603–632, Chapter 17.
  • Engewald, W.; Detmer-Wilde, K.; Rotzsche, H. Columns and Stationary Phases. In Practical Gas Chromatography: A Comprehensive Reference; Dettmer-Wilde, K.; Engewald, W., Eds.; Springer: Heidelberg, Germany, 2014, pp. 59–116, Chapter 3.
  • Englander, S. W. Hydrogen Exchange and Mass Spectrometry: A Historical Perspective. J. Am. Soc. Mass Spectrom. 2006, 17, 1481–1489.
  • Fales, B. S.; Fujamade, N. O.; Nei, Y. W.; Oomens, J.; Rodgers, M. T. Infrared Multiple Photon Dissociation Action Spectroscopy and Theoretical Studies of Diethyl Phosphate Complexes: Effects of Protonation and Sodium Cationization on Structure. J. Am. Soc. Mass Spectrom. 2011, 22, 81–92.
  • Fanali, S. Identification of Chiral Drug Isomers by Capillary Electrophoresis. J. Chromatogr. A 1996, 735, 77–121.
  • Fernández-Maestre, R. Ion Mobility Spectrometry: History, Characteristics and Applications. Rev. U.D.C.A Actual. Divulgación Científica 2012, 15(2), 467–479.
  • Fromherz, R.; Ganteför, G.; Shvartsburg, A. A. Isomer-Resolved Ion Spectroscopy. Phys. Rev. Lett. 2002, 89(8), 1–4.
  • Fuchs, B.; Süß, R.; Teuber, K.; Eibisch, M.; Schiller, J. Lipid Analysis by Thin-Layer Chromatography – A Review of the Current State. J. Chromatogr. A 2011, 1218, 2754–2774.
  • Fujiki, M.; Donguri, M.; Zhao, Y.; Nakao, A.; Suzuki, N.; Yoshida, K.; Zhang, W. Photon Magic: Chiroptical Polarisation, Depolarisation, Inversion, Retention and Switching of Non-Photochromic Light-Emitting Polymers in Optofluidic Medium. Polym. Chem. 2015, 6, 1627–1638.
  • Furuhashi, T.; Ishii, K.; Tanaka, K.; Weckwerth, W.; Nakamura, T. Fragmentation Patterns of Methyloxime-Trimethylsilyl Derivatives of Constitutive Mono- and Disaccharide Isomers Analyzed by Gas Chromatography/Field Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2015, 29(3), 238–246.
  • Furuhashi, T. MTBLS215: Field ionization and lower voltage electron ionization mass spectra archives of methyloxime-trimethylsilyl derivatives of primary metabolites analyzed by gas chromatography mass spectrometry. MetaboLight. EMBL-EBI, http://www.ebi.ac.uk/metabolights/MTBLS215, 2015.
  • Furuhashi, T.; Nakamura, T.; Fragner, L.; Roustan, V.; Schon, V.; Weckwerth, W. Biodiesel and Poly-Unsaturated Fatty Acids Production from Algae and Crop Plants – a Rapid and Comprehensive Workflow for Lipid Analysis. Biotechnol. J. 2016, 11, 1262–1267.
  • Gal, J. The Discovery of Biological Enantioselectivity: Louis Pasteur and the Fermentation of Tartaric Acid, 1857 – A Review and Analysis 150 yr later. Chirality 2008, 20(1), 5–19.
  • Gao, W. N.; Yau, L. F.; Liu, L.; Zeng, X.; Chen, D. C.; Jiang, M.; Liu, J.; Wang, J. R.; Jiang, Z. H. Microfluidic Chip-LC/MS-based Glycomic Analysis Revealed Distinct N-glycan Profile of Rat Serum. Sci. Rep. 2015, 5(12844), 1–14.
  • Gassend, R.; Duprat, F.; Gau, G. Inductive Adsorption as a New Approach to Amine Enantiomer Resolution. J. Chromatogr. 1987, 404, 87–94.
  • Gaweł, B.; Gaweł, K.; Øye, G. Sol-Gel Synthesis of Non-Silica Monolithic Materials. Materials 2010, 3, 2815–2833.
  • Gerlich, M.; Neumann, S. MetFusion: Integration of Compound Identification Strategies. J. Mass Spectrom. 2013, 48, 291–298.
  • Græsbøll, R.; Nielsen, N. J.; Christensen, J. H. Using the Hydrophobic Subtraction Model to Choose Orthogonalcolumns for Online Comprehensive Two-Dimensional Liquidchromatography. J. Chromatogr. A 2014, 1326, 39–46.
  • Gross, J. H. Mass Spectrometry; Springer: Berlin, Germany, 2004, p. 566.
  • Gucinski, A. C.; Somogyi, A.; Chamot-Rooke, J.; Wysocki, V. H. Separation and Identification of Structural Isomers by Quadrupole Collision-Induced Dissociation-Hydrogen/Deuterium Exchange-Infrared Multiphoton Dissociation (QCID-HDX-IRMPD). J. Am. Soc. Mass Spectrom. 2010, 21, 1329–1338.
  • Guerrero, A.; Lebrilla, C. B. New Strategies for Resolving Oligosaccharide Isomers by Exploiting Mechanistic and Thermochemical Aspects of Fragment Ion Formation. Int. J. Mass Spectrom. 2013, 15, 354–355.
  • Hafner, K.; Zimmermann, R.; Rohwer, E. R.; Dorfner, R.; Kettrup, A. A Capillary-based Supersonic Jet Inlet System for Resonance-Enhanced Laser Ionization Mass Spectrometry: Principle and First on-Line Process Analytical Applications. Anal. Chem. 2001, 73, 4171–4180.
  • Hahn, O. Über ein neues radioaktives Zerfallsprodukt im Uran. Die Naturwissenschaften 1921, 9(5), 84.
  • Ham, B. M.; MaHam, A. Ionization in Mass Spectrometry. In Analytical Chemistry. A Chemist and Laboratory Technician's Toolkit; John Wiley & Sons: USA, 2015, pp. 467–490, Chapter 29.
  • Hanley, L.; Zimmermann, R. Light and Molecular Ions: The Emergence of Vacuum UV Single-Photon Ionization in MS. Anal. Chem. 2009, 81(11), 4174–4182.
  • Hazel, J. R. Thermal Adaptation in Biological Membranes: Is Homeoviscous Adaptation the Explanation? Annu. Rev. Physiol. 1995, 57, 19–42.
  • Hinneburg, H.; Hofmann, J.; Struwe, W. B.; Thader, A.; Altmann, F.; Silva, D. V.; Seeberger, P. H.; Pagel, K.; Kolarich, D. Distinguishing N-Acetylneuraminic Acid Linkage Isomers on Glycopeptides by Ion Mobility-Mass Spectrometry. Chem. Commun. 2016, 52, 4381–4384.
  • Hoffmann, W.; Hoffann, J.; Pagel, K. Energy-Resolved ion Mobility-Mass Spectrometry—A Concept to Improve the Separation of Isomeric Carbohydrates. J. Am. Soc. Mass Spectrom. 2014, 25(3), 471–479.
  • Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K. Identification of Carbohydrate Anomers Using Ion Mobility–Mass Spectrometry. Nature 2015, 526, 241–244.
  • Hofmeister, G. E.; Zhou, Z.; Leary, J. A. Linkage Position Determination in Lithium-Cationized Disaccharides: Tandem Mass Spectrometry and Semiempirical Calculations. J. Am. Chem. Soc. 1991, 113, 5964–5970.
  • Hopkins, W. S.; Marta, R. A.; McMahon, T. B. Proton-Bound 3-Cyanophenylalanine Trimethylamine Clusters:Isomer-Specific Fragmentation Pathways and Evidence of Gas-Phase Zwitterions. J. Phys. Chem. A 2013, 117, 10714–10718.
  • Hsu, C. S.; Green, H. Fragment-Free Accurate Mass Measurement of Complex Mixture Components by Gas Chromatography/Field Ionization-Orthogonal Acceleration Time-of-Flight Mass Spectrometry: An Unprecedented Capability for Mixture Analysis. Rapid Comm. Mass Spec. 2001, 15(3), 236–239.
  • Huang, L.; Lu, X.; Gough, P. C.; De Felippis, M. R. Identification of Racemization Sites Using Deuterium Labeling and Tandem Mass Spectrometry. Anal. Chem. 2010, 82, 6363–6369.
  • Huang, Y.; Dodds, E. D. Discrimination of Isomeric Carbohydrates as the Electron Transfer Products of Group II Cation Adducts by Ion Mobility Spectrometry and Tandem Mass Spectrometry. Anal. Chem. 2015, 87, 5664–5668.
  • Hunt, D. F. Selective Reagents for Chemical Ionization Mass Spectrometry. Finnigan Spectra. 1976, 6(1), 1–8.
  • Hyyrylainen, A. R. M.; Pakarinen, J. M. H.; Forro, E.; Fulop, F.; Vainiotalo, P. Chiral Differentiation of Some Cyclopentane and Cyclohexane β-Amino Acid Enantiomers through ion/Molecule Reactions. J. Am. Soc. Mass Spectrom. 2009, 20, 1235–1241.
  • Jackson, W. G.; McKeon, J. A.; Cortez, S. Alfred Werner's Inorganic Counterparts of Racemic and Mesomeric Tartaric Acid: A Milestone Revisited. Inorganic Chemistry 2004, 43(20), 6249–6254.
  • Jia, C.; Wu, Z.; Lietz, C. B.; Liang, Z.; Cui, Q.; Li, L. Gas-Phase Ion Isomer Analysis Reveals the Mechanism of Peptide Sequence Scrambling. Anal. Chem. 2014, 86, 2917–2924.
  • Kailemia, M. J.; Ruhaak, L. R.; Lebrilla, C. B.; Amster, I. J. Oligosaccharide Analysis by Mass Spectrometry: A Review of Recent Developments. Anal. Chem. 2014, 86(1), 196–212.
  • Kanu, A. B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill Jr, H. H. Ion mobility–mass spectrometry. Journal of Mass Spectrometry 2008, 43, 1–22.
  • Kapota, C.; Lemaire, J.; Maitre, P.; Ohanessian, G. Vibrational Signature of Charge Solvation vs Salt Bridge Isomers of Sodiated Amino Acids in the Gas Phase. J. Am. Chem. Soc. 2004, 126, 1836–1842.
  • Kasper, P. T.; Rojas-Chertó, M.; Mistrik, R.; Reijmers, T.; Hankemeier, T.; Vreeken, R. J. Fragmentation Trees for the Structural Characterisation of Metabolites. Rapid Comm. Mass Spec. 2012, 26, 2275–2286.
  • Kieser, R. Introduction to Mass Spectrometry and its Applications; Prentice-Hall, Inc.: UK, 1965, p. 356.
  • Kirk, B. B.; Harman, D. G.; Kenttämaa, H. I.; Trevitt, A. J.; Blanksby, S. J. Isolation and Characterization of Charge-Tagged Phenylperoxyl Radicals in the Gas Phase: Direct Evidence for Products and Pathways in Low Temperature Benzene Oxidation. Phys. Chem. Chem. Phys. 2012, 14, 16719–16730.
  • Krupczyńska, K.; Buszewski, B.; Jandera, P. Characterizing HPLC Stationary Phases. Anal. Chem. 2004, 76(13), 227A–234A.
  • Kuklya, A.; Joksimoski, S.; Kerpen, K; Uteschil, F.; Marks, R.; Telgheder, U. Analysis of Gasoline Contaminated Water Samples by Means of Dopant-Assisted Atmospheric Pressure Photoionization Differential Ion Mobility Spectrometry. Int. J. Ion. Mobil. Spec. 2016, 19, 121–130.
  • Kunz, H. Emil Fischer—Unequalled Classicist, Master of Organic Chemistry Research, and Inspired Trailblazer of Biological Chemistry. Angew. Chem. 2002, 41(23), 4439–4451.
  • Lam, W.; Ramanathan, R. In Electrospray Ionization Source Hydrogen/Deuterium Exchange LC-MS and LC-MS/MS for Characterization of Metabolites. J. Am. Soc. Mass Spectrom. 2002, 13, 345–353
  • Lee, S.; Valentine, S. J.; Reilly, J. P.; Clemmer, D. E. Analyzing a Mixture of Disaccharides by IMS-VUVPD-MS. Int. J. Mass Spectrom. 2012, 309, 161–167.
  • Leavitt, C. M.; Oomens, J.; Dain, R. P.; Steill, J.; Groenewold, G. S.; Stipdonk, M. J. V. IRMPD Spectroscopy of Anionic Group II Metal Nitrate Cluster Ions. J. Am. Soc. Mass Spectrom. 2009, 20, 772–782.
  • Li, D. X.; Gan, L.; Bronja, A.; Schmitz, O. J. Gas Chromatography Coupled to Atmospheric Pressure Ionization Mass Spectrometry (GC-API-MS). Anal. Chim. Acta 2015, 891, 43–61.
  • Li, H.; Bendiak, B.; Siems, W. F.; Gang, D. R.; Hill, H. H. J. Determining the Isomeric Heterogeneity of Neutral Oligosaccharide-Alditols of Bovine Submaxillary Mucin Using Negative Ion Traveling Wave Ion Mobility Mass Spectrometry. Anal. Chem. 2015, 87, 2228–2235.
  • Lossing, F. P.; Tanaka, I. Photoionization as a Source of Ion for Mass spectrometry. J. Chem. Phys. 1956, 25, 1031–1034.
  • Ma, X.; Xia, Y. Pinpointing Double Bonds in Lipids by Paternò-Büchi Reactions and Mass Spectrometry. Angew. Chem. 2014, 53(10), 2592–2596.
  • Malhotra, R.; McMillen, D. Field Ionization Mass Spectrometry for Characterizing Coals and Coal Derived Liquids. Fuel Chem. Div. Am. Chem. Soc. 1992, 37(3), 1214–1220.
  • Martens, J.; Grzetic, J.; Berden, G.; Oomens, J. Structural Identification of Electron Transfer Dissociation Products in Mass Spectrometry using Infrared Ion Spectroscopy. Nat. Commun. 2016, 7, 1–7.
  • May, J. C.; McLean, J. A. Ion Mobility-Mass Spectrometry: Time-Dispersive Instrumentation. Anal. Chem. 2015, 87, 1422–1436.
  • McLean, J. A.; Ridenour, W. B.; Caprioli, R. M. Profiling and Imaging of Tissues by Imaging Ion Mobility-Mass Spectrometry. J. Mass Spectrom. 2007, 42(8), 1099–105.
  • MacLean, B.; Tomazela, D. M.; Abbatiello, S. E.; Zhang, S.; Whiteaker, J. R.; Paulovich, A. G.; Carr, S. A.; MacCoss, M. J. Effect of Collision Energy Optimization on the Measurement of Peptides by Selected Reaction Monitoring (SRM) Mass Spectrometry. Anal. Chem. 2010, 82(24), 10116–10124.
  • McLuckey, S. A.; Huang, T. Y. Ion/Ion Reactions: New Chemistry for Analytical MS. Anal. Chem. 2009, 81, 8669–8676.
  • McLuckey, S. A.; Mentinova, M. Ion/Neutral, Ion/Electron, Ion/Photon, and Ion/Ion Interactions in Tandem Mass Spectrometry: Do We Need Them All? Are They Enough? J. Am. Soc. Mass Spectrom. 2011, 22(1), 3–12.
  • Min, K. S.; Kim, Y. J.; Ko, H. J.; Kwak, D. H.; Kim, T. W.; Shin, J. W.; Kim, B. G. J. Isolation and Characterization of Conformational Isomers of N,N′-bis(3,5- dichlorosalicylidene)-2,2′-Ethylenedianiline: Crystal Structure, Photoluminescence, and Density Functional Theory Calculation. Phys. Org. Chem. 2014, 27, 960–966.
  • Mitchum, R. K.; Korfmachter, W. A.; Moler, G. F. Capillary Gas Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry of the 22 Isomeric Tetrachlorodibennzo-p-dioxins. Anal. Chem. 1982, 54, 719–722.
  • Miyamoto, K.; Fujimaki, S.; Ueda, Y. Development of a New Electron Ionization/Field Ionization Ion Source for Gas Chromatography/Time-of-Flight Mass Spectrometry. Rapid Comm. Mass Spec. 2009, 23, 3350.
  • Moeder, M. Gas Chromatography-Mass Spectrometry. In Practical Gas Chromatography: A Comprehensive Reference; Dettmer-Wilde, K.; Engewald, W., Eds.; Springer: Heidelberg, Germany, 2014, pp. 303–350, Chapter 9.
  • Mrozek, M. F.; Zhang, D.; Ben-Amotz, D. Oligosaccharide Identification and Mixture Quantification using Raman Spectroscopy and Chemometric Analysis. Carbohydr. Res. 2004, 339, 141–145.
  • Müller, E. N. M.; Grace, L. I.; de Vries, M. S. REMPI Spectroscopy of Cytosine. Chem. Phys. Lett. 2002, 355, 59–64.
  • Nir, E.; Grace, L.; Brauer, B.; deVries, M. S. REMPI Spectroscopy of Jet-Cooled Guanine. J. Am. Chem. Soc. 1999, 121, 4896–4897.
  • Nourse, B. D.; Hettich, R. L; Buchanan, M. V. Methyl Guanine Isomer Distinction by Hydrogen/Deuterium Exchange using a Fourier Transform Mass Spectrometer. J. Am. Sot. Mass Spectrom. 1993, 4, 296–305.
  • Noyori, R. Chemical Multiplication of Chirality: Science and Applications. Chem. Soc. Rev. 1989, 18, 187–208.
  • Núñez, O.; Ikegami, T.; Kajiwara, W.; Miyamoto, K.; Horie, K.; Tanaka, N. Preparation of High Efficiency and Highly Retentive Monolithic Silica Capillary Columns for Reversed-Phase Chromatography by Chemical Modification by Polymerization of Octadecyl Methacrylate. J. Chromatogr. A 2007, 1156, 35–44.
  • Ohashi, Y.; Kubota, M.; Hatase, H.; Nakamura, M.; Hirano, T.; Niwa, H.; Nagai, Y. Distinction of Sialyl Anomers on ESI- and FAB-MS/MS: Stereo-Specific Fragmentations. J. Am. Soc. Mass Spectrom. 2009, 20, 394–397.
  • Osburn, S.; Ryzhov, V. Ion−Molecule Reactions: Analytical and Structural Tool. Anal. Chem. 2013, 85, 769–778.
  • Park, G. B.; Krüger, B. C.; Meyer, S.; Wodtkea, A. M.; Schäfer, T. A1+1’ Resonance-Enhanced Multiphoton Ionization Scheme for Rotationally State-Selective Detection of Formaldehyde via the A˜1A2 X˜ 1A1 Transition. Phys. Phem. Chem. Phys. 2016, 18, 22355–22363.
  • Paul, M. J.; Primavesi, L F.; Jhurreea, D.; Zhang, Y. Trehalose Metabolism and Signaling. Annu. Rev. Plant. Biol. 2008, 59, 417–441.
  • Pirkle, W. H.; Finn, J. M.; Schreiner, J. L.; Hamper, B. C. A. Widely Useful Chiral Stationary Phase for the High-Performance Liquid Chromatography Separation of Enantiomers. J. Am. Chem. Soc. 1981, 103, 3964–3966.
  • Poad, B. L. J.; Pham, H. T.; Thomas, M. C.; Nealon, J. R.; Campbell, J. L.; Mitchell, T. W.; Blanksby, S. J. Ozone-Induced Dissociation on a Modified Tandem Linear Ion-Trap: Observations of Different Reactivity for Isomeric Lipids. J. Am. Soc. Mass. Spectrom. 2010, 21, 1989–1999.
  • Poulton, G. A. Isomer Analysis by Spectral Methods. J. Chem. Educ. 1976, 52(6), 397–398.
  • Pyatkivskyy, Y.; Ryzhov, V. Coupling of Ion-Molecule Reactions with Liquid Chromatography on a Quadrupole ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2008, 22, 1288–1294.
  • Qian, K.; Dechert, G. J. Recent Advances in Petroleum Characterization by GC Field Ionization Time-of-Flight High-Resolution Mass Spectrometry. Anal. Chem. 2002, 74, 3977–3983.
  • Rasche, F.; Scheubert, K.; Hufsky, F.; Zichner, T.; Kai, M.; Svatoš, A.; Böcker, S. Identifying the Unknowns by Aligning Fragmentation Trees. Anal. Chem. 2012, 84, 3417–3426.
  • Ren, Y.; Liu, H.; Yao, X.; Liu, M. An accurate QSRR Model for the Prediction of the GC×GC–TOFMS Retention Time of Polychlorinated Biphenyl (PCB) Congeners. Anal. Bioanal. Chem. 2007, 388, 165–172.
  • Ruttkies, C.; Gerlich, M.; Neumann, S. Tackling CASMI 2012: Solutions from MetFrag and MetFusion. Metabolites 2013, 3, 623–636.
  • Sakamoto, M.; Mino, T. Asymmetric Reaction Using Molecular Chirality Controlled by Spontaneous Crystallization. In Advances in Crystallization Processes; Mustai, Y., Ed., 2012, pp. 59–80. Rijeka, Croatia: TechOpen.
  • Sander, L. C.; Sharpless, K. P.; Craft, N. E.; Wlse, S. A. Development of Engineered Stationary Phases for the Separation of Carotenoid Isomers. Anal. Chem. 1994, 66, 1667–1674.
  • Shipman, R.; Conti, T.; Tighe, T.; Buel, E. Forensic Drug Identification by Gas Chromatography-Infrared Spectroscopy; Vermont Forensic Laboratory: Waterbury, USA, 2013, p. 63.
  • Silveira, J. A.; Michelmann, K.; Ridgeway, M. E.; Park, M. A. Fundamentals of Trapped Ion Mobility Spectrometry. Part II: Fluid Dynamics. J. Am. Soc. Mass Spectrom. 2016, 27, 585–595.
  • Smith, D.; Sovova, K.; Spanel, P. A Selected Ion Flow Tube Study of the Reactions of H3O+, NO+ and O2 +• with Seven Isomers of Hexanol in Support of SIFT-MS. Int. J. Mass Spectrom. 2012, 319–320, 25–30.
  • Snyder, L. R. HPLC: Past and Present. Anal. Chem. 2000, 72(11), 413A–420A.
  • Solomons, T. W. G. Fundamentals of Organic Chemistry; Wiley: USA, 1992, p. 1043.
  • Soyez, D.; Toullec, J. Y.; Ollivaux, C.; Géraud, G. l to d Amino Acid Isomerization in a Peptide Hormone Is a Late Post-translational event Occurring in Specialized Neurosecretory Cells. J. Biol. Chem. 2000, 275, 37870–37875.
  • Stuart, B. Infrared Spectroscopy: Fundamentals and Application; Wiley: England, UK, 2014, p. 244.
  • Szabadváry, F. International Series of Monographs in Analytical Chemistry. Vol 26—History of Analytical Chemistry; Pergamon Press: Oxford, 1966, p. 418.
  • Thibodeaux, C. J.; Melançon, C. E. III; Liu, H. Natural-Product Sugar Biosynthesis and Enzymatic Glycodiversification. Angew. Chem. Int. Ed. 2008, 47, 9814–9859.
  • Valentine, S. J.; Clemmer, D. E. H/D Exchange Levels of Shape-Resolved Cytochrome c Conformers in the Gas Phase. J. Am. Chem. Soc. 1997, 119, 3558–3566.
  • Varki, A.; Freeze, H. H.; Manzi, A. E. Overview of Glycoconjugate Analysis. Curr. Protoc. Protein Sci. 2010, 1, 1–16.
  • Vekey, K. Internal Energy Effects in Mass Spectrometry. J. Mass Spectrom. 1996, 31, 445–463.
  • Wang, Z.; Wan, K. X.; Ramanathan, R.; Taylor, J. S.; Gross, M. L. Structure and Fragmentation Mechanisms of Isomeric T-Rich Oligodeoxynucleotides: A Comparison of Four Tandem Mass Spectrometric Methods. J. Am. Soc. Mass Spectrom. 1998, 9, 683–691.
  • Ward, T. J.; Ward, K. D. Chiral Separations: A Review of Current Topics and Trends. Anal. Chem. 2012, 84, 626–635.
  • Waridel, P.; Wolfender, J. L.; Ndjoko, K.; Hobby, K. R.; Major, H. J.; Hostettmann, K. Evaluation of Quadrupole Time-of-Flight Tandem Mass Spectrometry and Ion-Trap Multiple-Stage Mass Spectrometry for the Differentiation of C-glycosidic Flavonoid Isomers. J. Chromatogr. A 2001, 926, 29–41.
  • Wolfender, J. L.; Ndjoko, K.; Hostettmann, K. The Potential of LC-NMR in Phytochemical Analysis. Phytochem. Anal. 2001, 12, 2–22.
  • Wu, L.; Vogt, F. G. A Review of Recent Advances in Mass Spectrometric Methods for Gas-Phase Chiral Analysis of Pharmaceutical and Biological Compounds. J. Pharm. Biomed. Anal. 2012, 69, 133–147.
  • Wu, R. R.; Yang, B.; Frieler, C. E.; Berden, G.; Oomens, J.; Rodgers, M. T. N3 and O2 Protonated Tautomeric Conformations of 2′-Deoxycytidine and Cytidine Coexist in the Gas Phase. J. Phys. Chem. B 2015, 119(18), 5773–5784.
  • Zhu, F.; Issacs, N. W.; Hecht, L.; Tranter, G. E.; Barron, L. D. Raman Optical Activity of Proteins, Carbohydrates and Glycoproteins. Chirality 2006, 18, 103–115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.