660
Views
6
CrossRef citations to date
0
Altmetric
Articles

Solid Phase Microextraction Techniques in Determination of Biomarkers

, &
Pages 239-251 | Published online: 16 Jan 2018

References

  • Shanaiah, N.; Shanaiah, N.; Desilva, M. A.; Nagana Gowda, G. A.; Raftery, M. A.; Hainline, B. E.; Raftery, D. Class Selection of Amino Acid Metabolites in Body Fluids Using Chemical Derivatization and their Enhanced 13c NMR. Proc Natl Acad Sci U S A. 2007, 104, (28), 11540–11544. doi:10.1073/pnas.0704449104.
  • Gutteridge, J. Lipid Peroxidation and Antioxidants as Biomarkers of Tissue Damage. Clin Chem. 1995. 41, (12), 1819–1828.
  • Del Rio, D.; Stewart, A. J.; Pellegrini, N. A Review of Recent Studies on Malondialdehyde as Toxic Molecule and Biological Marker of Oxidative Stress. Nutr Metab Cardiovasc Dis. 2005. 15, (4), 316–328. doi:10.1016/j.numecd.2005.05.003.
  • Lowry, L. K. Role of Biomarkers of Exposure in the Assessment of Health Risks. Toxicol Lett. 1995. 77, (1–3), 31–38. doi:10.1016/0378-4274(95)03268-1.
  • Hamidi, S.; Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V. Direct Analysis of Methadone in Exhaled Breath Condensate by Capillary Zone Electrophoresis. Current Pharmaceutical Analysis. 2016. 12, (2), 137–145. doi:10.2174/1573412911666150911202647.
  • Hamidi, S.; Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamalekicd, V.; Jouyban, A. Chiral Separation of Methadone in Exhaled Breath Condensate Using Capillary Electrophoresis. Analytical Methods. 2017. 9, (15), 2342–2350. doi:10.1039/C7AY00110J.
  • Jouyban, A.; Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V.; Panahi-Azaar, V.; Hamidi, S.; Azarmir, Z. Methadone Concentrations in Exhaled Breath Condensate, Serum and Urine of Patients Under Maintenance Treatment (Autumn 2017). Iranian Journal of Pharmaceutical Research. 2017. 16, (4), 1621–1630.
  • Servais, A. C.; Crommen, J.; Fillet, M. Capillary Electrophoresis‐Mass Spectrometry, an Attractive Tool for Drug Bioanalysis and Biomarker Discovery. Electrophoresis. 2006. 27, (13), 2616–2629. doi:10.1002/elps.200500934.
  • Hamidi, S.; Soltani, S.; Jouyban, A. A Dispersive Liquid–Liquid Microextraction and Chiral Separation of Carvedilol in Human Plasma Using Capillary Electrophoresis. Bioanalysis. 2015. 7, (9), 1107–1117. doi:10.4155/bio.15.51.
  • Hamidi, S.; Jouyban, A. Pre-Concentration Approaches Combined with Capillary Electrophoresis in Bioanalysis of Chiral Cardiovascular Drugs. Pharm Sci. 2015. 21, (4), 229–43. doi:10.15171/PS.2015.42.
  • Hamidi, S.; Jouyban, A. Capillary Electrophoresis with UV Detection, On-line Stacking and off-Line Dispersive Liquid–Liquid Microextraction for Determination of Verapamil Enantiomers in Plasma. Analytical Methods. 2015. 7, (14), 5820–5829. doi:10.1039/C5AY00916B.
  • Hamidi, S.; Alipour-Ghorbani, N. Liquid Phase Microextraction of Biomarkers: A Review on Current Methods. Journal of Liquid Chromatography & Related Technologies. 2017 1–9. doi:10.1080/10826076.2017.1374291.
  • Simpson, N. J. Solid-phase extraction: principles, techniques, and applications. 2000: CRC press: United States.
  • Ashri, N. Y.; Abdel-Rehim, M. Sample Treatment Based on Extraction Techniques in Biological Matrices. Bioanalysis. 2011. 3, (17), 2003–2018. doi:10.4155/bio.11.201.
  • Jouyban, A.; Hamidi, S. Dispersive Micro Solid Phase Extraction Using Carbon‐Based Adsorbents for Sensitive Determination of Verapamil in Plasma Samples Coupled with CE. Journal of Separation Science. 2017. 40, (16), 3318–3326. doi:10.1002/jssc.201700385.
  • Wierucka, M.; Biziuk, M. Application of Magnetic Nanoparticles for Magnetic Solid-Phase Extraction in Preparing Biological, Environmental and Food Samples. TrAC Trends in Analytical Chemistry. 2014. 59, 50–58. doi:10.1016/j.trac.2014.04.007.
  • Tang, S.; Tang, S.; Chia, G. H.; Chang, Y.; Lee, H. K. Automated Dispersive Solid-Phase Extraction Using Dissolvable Fe3O4-Layered Double Hydroxide Core–Shell Microspheres as Sorbent. Anal Chem. 2014. 86, (22), 11070–11076. doi:10.1021/ac503323e.
  • Arthur, C. L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal Chem. 1990. 62, (19), 2145–2148. doi:10.1021/ac00218a019.
  • Eisert, R.; Pawliszyn, J. Automated In-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography. Anal Chem. 1997. 69, (16), 3140–3147. doi:10.1021/ac970319a.
  • Pawliszyn, J. Solid Phase Microextraction: Theory and Practice. 1997. John Wiley & Sons: UK.
  • Pawliszyn J, ed. Applications of solid phase microextraction. Royal Society of Chemistry. 1999.
  • Zhang, S.; Sun, X.; Wang, W.; Cai, L. Determination of Urinary 8‐Hydroxy‐2′‐Deoxyguanosine by a Combination of on‐Line Molecularly Imprinted Monolithic Solid Phase Microextraction with High Performance Liquid Chromatography–Ultraviolet Detection. J Sep Sci. 2013. 36, (4), 752–757. doi:10.1002/jssc.201200735.
  • Svensson, S.; Lärstad, M.; Broo, K.; Olin, A. C. Determination of Aldehydes in Human Breath by On-Fibre Derivatization, Solid-Phase Microextraction and Gc–Ms. J Chromatogr B Analyt Technol Biomed Life Sci. 2007. 860, (1), 86–91. doi:10.1016/j.jchromb.2007.10.021.
  • Cha, D.; Liu, M.; Zeng, Z.; Cheng, D.; Zhan, G. Analysis of Fatty Acids in Lung Tissues Using Gas Chromatography–Mass Spectrometry Preceded by Derivatization-Solid-Phase Microextraction with a Novel Fiber. Anal Chim Acta. 2006. 572, (1), 47–54. doi:10.1016/j.aca.2006.05.014.
  • Hong-Wen, C. Determination of 1-Hydroxypyrene in Human Urine by Acid Hydrolysis Coupled to Solid-Phase Microextraction and Semi-Microcolumn Liquid Chromatography. Anal Sci. 2007. 23, (10), 1221–1225.
  • Scibetta, L.; Campo, L.; Mercadante, R.; Foà, V.; Fustinoni, S. Determination of Low Level Methyl Tert-Butyl Ether, Ethyl Tert-Butyl Ether and Methyl Tert-Amyl Ether in Human Urine by HS-Spme Gas Chromatography/Mass Spectrometry. Anal Chim Acta. 2007. 581, (1), 53–62. doi:10.1016/j.aca.2006.07.083.
  • Ligor, T.; Szeliga, J.; Jackowski, M.; Buszewski, B. Preliminary Study of Volatile Organic Compounds from Breath and Stomach Tissue by Means of Solid Phase Microextraction and Gas Chromatography–Mass Spectrometry. J Breath Res. 2007. 1, (1), p. 016001. doi:10.1088/1752-7155/1/1/016001.
  • Amorim, L. C.; Carneiro, J. P.; Cardeal, Z. L. An Optimized Method for Determination of Benzene in Exhaled Air by Gas Chromatography–Mass Spectrometry Using Solid Phase Microextraction as a Sampling Technique. J Chromatogr B Analyt Technol Biomed Life Sci. 2008. 865, (1), 141–146.
  • Xue, R.; Dong, L.; Zhang, S.; Deng, C.; Liu, T.; Wang, J.; Shen, X. Investigation of Volatile Biomarkers in Liver Cancer Blood Using Solid‐Phase Microextraction and Gas Chromatography/Mass Spectrometry. Rapid Commun Mass Spectrom. 2008. 22. (8). 1181–1186. doi:10.1002/rcm.3466.
  • Oliveira, A. F. F.; Maia, P. P.; Paiva, M. J.; Siqueira, M. E. Determination of 2, 5-Hexanedione in Urine by Headspace Solid-Phase Microextraction and Gas Chromatography. J Anal Toxicol. 2009. 33, (4), 223–228. doi:10.1093/jat/33.4.223.
  • Mattarozzi, M.; Musci, M.; Careri, M.; Mangia, A.; Fustinoni, S.; Campo, L.; Bianchi, F. A Novel Headspace Solid-Phase Microextraction Method Using In Situ Derivatization and a Diethoxydiphenylsilane Fibre for the Gas Chromatography–Mass Spectrometry Determination of Urinary Hydroxy Polycyclic Aromatic Hydrocarbons. J Chromatogr A. 2009. 1216, (30), 5634–5639. doi:10.1016/j.chroma.2009.05.072.
  • Roehsig, M.; de Paula, D. M.; Moura, S.; Diniz, E. M.; Yonamine, M. Determination of Eight Fatty Acid Ethyl Esters in Meconium Samples by Headspace Solid‐Phase Microextraction and Gas Chromatography–Mass Spectrometry. J Sep Sci. 2010. 33, (14), 2115–2122. doi:10.1002/jssc.201000118.
  • Shin, H. S. Determination of Malondialdehyde in Human Blood by Headspace-Solid Phase Micro-Extraction Gas Chromatography–Mass Spectrometry After Derivatization with 2, 2, 2-Trifluoroethylhydrazine. J Chromatogr B Analyt Technol Biomed Life Sci. 2009. 877, (29), 3707–3711. doi:10.1016/j.jchromb.2009.09.022.
  • Poli, D.; Goldoni, M.; Corradi, M.; Acampa, O.; Carbognani, P.; Internullo, E.; Casalini, A.; Mutti, A. Determination of Aldehydes in Exhaled Breath of Patients with Lung Cancer by Means of on-Fiber-Derivatisation Spme–Gc/Ms. J Chromatogr B Analyt Technol Biomed Life Sci. 2010. 878, (27), 2643–2651. doi:10.1016/j.jchromb.2010.01.022.
  • Campo, L.; Fustinoni, S.; Bertazzi, P. Quantification of Carcinogenic 4-to 6-Ring Polycyclic Aromatic Hydrocarbons in Human Urine by Solid-Phase Microextraction Gas Chromatography–Isotope Dilution Mass Spectrometry. Anal Bioanal Chem. 2011. 401, (2), 625–634. doi:10.1007/s00216-011-5110-4.
  • Rudnicka, J.; Kowalkowski, T.; Ligor, T.; Buszewski, B. Determination of Volatile Organic Compounds as Biomarkers of Lung Cancer by Spme–Gc–Tof/Ms and Chemometrics. J Chromatogr B Analyt Technol Biomed Life Sci. 2011. 879, (30), 3360–3366. doi:10.1016/j.jchromb.2011.09.001.
  • Cavaliere, B.; Macchione, B.; Monteleone, M.; Naccarato, A.; Sindona, G.; Tagarelli, A. Sarcosine as a Marker in Prostate Cancer Progression: A Rapid and Simple Method for its Quantification in Human Urine by Solid-Phase Microextraction–Gas Chromatography–Triple Quadrupole Mass Spectrometry. Anal Bioanal Chem. 2011. 400, (9), 2903–2912. doi:10.1007/s00216-011-4960-0.
  • Guadagni, R.; Miraglia, N.; Simonelli, A.; Silvestre, A.; Lamberti, M.; Feola, D.; Acampora, A.; Sannolo, N. Solid-Phase Microextraction–Gas Chromatography–Mass Spectrometry Method Validation for the Determination of Endogenous Substances: Urinary Hexanal and Heptanal as Lung Tumor Biomarkers. Anal Chim Acta. 2011. 701. (1), 29–36. doi:10.1016/j.aca.2011.05.035.
  • Silva, C.; Passos, M.; Câmara, J. Investigation of Urinary Volatile Organic Metabolites as Potential Cancer Biomarkers by Solid-Phase Microextraction in Combination with Gas Chromatography-Mass Spectrometry. Br J Cancer. 2011. 105, (12), 1894–1904. doi:10.1038/bjc.2011.437.
  • Monteleone, M.; Naccarato, A.; Sindona, G.; Tagarelli, A. A Reliable and Simple Method for the Assay of Neuroendocrine Tumor Markers in Human Urine by Solid-Phase Microextraction–Gas Chromatography-Triple Quadrupole Mass Spectrometry. Anal Chim Acta. 2013. 759, 66–73. doi:10.1016/j.aca.2012.11.017.
  • Liu, H.; Wang, H.; Li, C.; Wang, L.; Pan, Z.; Wang, L. Investigation of Volatile Organic Metabolites in Lung Cancer Pleural Effusions by Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2014. 945, 53–59.
  • Ma, H.; Xiang, L.; Jianmin, C.; Huijie Wang, b.; Tiantao, C.; Kai, C.; Shifen, X. Analysis of Human Breath Samples of Lung Cancer Patients and Healthy Controls with Solid-Phase Microextraction (Spme) and Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography (Gc× Gc). Analytical Methods. 2014. 6, (17), 6841–6849. doi:10.1039/C4AY01220H.
  • Tzatzarakis, M. N.; Barbounis, E. G.; Kavvalakis, M. P.; Vakonaki, E.; Renieri, E.; Vardavas, A. I.; Tsatsakis, A. M. Rapid Method for the Simultaneous Determination of Ddts and Pcbs in Hair of Children by Headspace Solid Phase Microextraction and Gas Chromatography‐Mass Spectrometry (Hsspme/Gc‐Ms). Drug Test Anal. 2014. 6, (S1), 85–92. doi:10.1002/dta.1631.
  • Sampson, M. M.; Chambers, D. M.; Pazo, D. Y.; Moliere, F.; Blount, B. C.; Watson, C. H. Simultaneous Analysis of 22 Volatile Organic Compounds in Cigarette Smoke Using Gas Sampling Bags for High-Throughput Solid-Phase Microextraction. Anal Chem. 2014. 86, (14), p. 7088. doi:10.1021/ac5015518.
  • Naccarato, A.; Gionfriddo, E.; Elliani, R.; Sindona, G.; Tagarelli, A. A Fast and Simple Solid Phase Microextraction Coupled with Gas Chromatography-Triple Quadrupole Mass Spectrometry Method for the Assay of Urinary Markers of Glutaric Acidemias. J Chromatogr A. 2014. 1372, 253–259. doi:10.1016/j.chroma.2014.10.069.
  • Prasad, B. B.; Srivastava, A.; Tiwari, M. P. Highly Sensitive and Selective Hyphenated Technique (Molecularly Imprinted Polymer Solid-Phase Microextraction–Molecularly Imprinted Polymer Sensor) for Ultra Trace Analysis of Aspartic Acid Enantiomers. Journal of Chromatography A. 2013. 1283, 9–19. doi:10.1016/j.chroma.2013.01.096.
  • Li, J.; Xu, H. A Novel Polyaniline/Polypyrrole/Graphene Oxide Fiber for the Determination of Volatile Organic Compounds in Headspace Gas of Lung Cell Lines. Talanta. 2017. 167, 623–629. doi:10.1016/j.talanta.2017.03.005.
  • Liu, F.; Xu, H. Development of a Novel Polystyrene/Metal-Organic Framework-199 Electrospun Nanofiber Adsorbent for Thin Film Microextraction of Aldehydes in Human Urine. Talanta. 2017. 162, 261–267. doi:10.1016/j.talanta.2016.09.065.
  • Mehdinia, A.; Fazlollah Mousavi, M. Enhancing Extraction Rate in Solid‐Phase Microextraction by Using Nano‐Structured Polyaniline Coating. Journal of separation science. 2008. 31, (20), 3565–3572. doi:10.1002/jssc.200800284.
  • Kan, X., et al., Composites of Multiwalled Carbon Nanotubes and Molecularly Imprinted Polymers for Dopamine Recognition. Journal of Physical Chemistry C. 2008. 112, (13), 4849–4854. doi:10.1021/jp077445v.
  • Vuckovic, D. High-Throughput Solid-Phase Microextraction in Multi-Well-Plate Format. TrAC Trends in Analytical Chemistry. 2013. 45, 136–153. doi:10.1016/j.trac.2013.01.004.
  • Cudjoe, E.; Vuckovic D.; Hein, D.; Pawliszyn, J. Investigation of the Effect of the Extraction Phase Geometry on the Performance of Automated Solid-Phase Microextraction. Anal Chem. 2009. 81, (11), 4226–4232. doi:10.1021/ac802524w.
  • Saunders, K. C.; Ghanem, A.; Boon Hon, W.; Hilder, E. F.; Haddad, P. R. Separation and Sample Pre-Treatment in Bioanalysis Using Monolithic Phases: A Review. Anal Chim Acta. 2009. 652, (1), 22–31.
  • Wei, F.; Lin, B.; Feng, Y. Applications of Monoliths in Sample Preconcentration. Se pu = Chinese journal of chromatography. 2007. 25, (2), p. 150.
  • Svec, F.; Peters, E. C.; Sýkora, D.; Fréchet, J. M. Design of the Monolithic Polymers Used in Capillary Electrochromatography Columns. J Chromatogr A. 2000. 887, (1), 3–29.
  • Shintani, Y., et al. Monolithic Silica Column for in-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography. Journal of Chromatography A. 2003. 985, (1), 351–357.
  • Wang, S.; Xu, H. Inorganic–Organic Hybrid Coating Material for the Online in‐Tube Solid‐Phase Microextraction of Monohydroxy Polycyclic Aromatic Hydrocarbons in Urine. Journal of Separation Science. 2016. 39. (23), 4610–4620. doi:10.1002/jssc.201600712.
  • Kataoka, H., et al. Determination Of Nicotine, Cotinine, and Related Alkaloids in Human Urine and Saliva by Automated in-Tube Solid-Phase Microextraction Coupled with Liquid Chromatography–Mass Spectrometry. Journal of pharmaceutical and biomedical analysis. 2009. 49, (1), 108–114. doi:10.1016/j.jpba.2008.09.044.
  • Kataoka, H., et al. Development of Exposure Assessment Method Based on the Analysis of Urinary Heterocyclic Amines as Biomarkers by On-Line In-Tube Solid-Phase Microextraction Coupled with Liquid Chromatography–Tandem Mass Spectrometry. Analytical and bioanalytical chemistry. 2014. 406, (8), 2171–2178. doi:10.1007/s00216-013-7420-1.
  • Mizuno, K.; Kataoka, H. Analysis of Urinary 8-Isoprostane as an Oxidative Stress Biomarker by Stable Isotope Dilution Using Automated Online in-Tube Solid-Phase Microextraction Coupled with Liquid Chromatography–Tandem Mass Spectrometry. Journal of pharmaceutical and biomedical analysis. 2015. 112, 36–42. doi:10.1016/j.jpba.2015.04.020.
  • Yamamoto, Y.; Ishizaki, A.; Kataoka, H. Biomonitoring Method for the Determination of Polycyclic Aromatic Hydrocarbons in Hair by Online in-Tube Solid-Phase Microextraction Coupled with High Performance Liquid Chromatography and Fluorescence Detection. Journal of Chromatography B. 2015. 1000, 187–191. doi:10.1016/j.jchromb.2015.07.033.
  • Moriyama, E.; Kataoka, H. Automated Analysis of Oxytocin by on-Line in-Tube Solid-Phase Microextraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry. Chromatography. 2015. 2, (3), 382–391. doi:10.3390/chromatography2030382.
  • Zhang, H. J., et al. Determination of Low-Aliphatic Aldehyde Derivatizatives in Human Saliva Using Polymer Monolith Microextraction Coupled to High-Performance Liquid Chromatography. Analytica chimica acta. 2006. 565, (2), 129–135. doi:10.1016/j.aca.2006.02.050.
  • Zhang, H. J., et al. Polymer Monolith Microextraction with in Situ Derivatization and its Application to High-Performance Liquid Chromatography Determination of Hexanal and Heptanal in Plasma. Journal of Chromatography A. 2007. 1160, (1), 114–119.
  • Zhang, S. W., et al. Molecularly Imprinted Monolith in-Tube Solid-Phase Microextraction Coupled with Hplc/Uv Detection for Determination of 8-Hydroxy-2′-Deoxyguanosine in Urine. Analytical and bioanalytical chemistry. 2009. 395, (2), 479–487. doi:10.1007/s00216-009-2964-9.
  • Xu, H., et al. A Novel Solid-Phase Microextraction Method Based on Polymer Monolith Frit Combining with High-Performance Liquid Chromatography for Determination of Aldehydes in Biological Samples. Analytica chimica acta. 2011. 690. (1), 86–93. doi:10.1016/j.aca.2011.02.006.
  • Wu, S., et al. Polydopamine/Dialdehyde Starch/Chitosan Composite Coating for in-Tube Solid-Phase Microextraction and in-Situ Derivation to Analysis of Two Liver Cancer Biomarkers in Human Blood. Analytica Chimica Acta. 2016. 935, 113–120. doi:10.1016/j.aca.2016.06.031.
  • Abdel-Rehim, M. New trend in sample preparation: on-line microextraction in packed syringe for liquid and gas chromatography applications: i. Determination of local anaesthetics in human plasma samples using gas chromatography–mass spectrometry. Journal of Chromatography B. 2004. 801, (2), 317–321. doi:10.1016/j.jchromb.2003.11.042.
  • El‐Beqqali, A.; Abdel‐Rehim, M. Quantitative Analysis of Methadone in Human Urine Samples by Microextraction in Packed Syringe‐Gas Chromatography‐Mass Spectrometry (Meps‐Gc‐Ms). Journal of Separation Science. 2007. 30, (15), 2501–2505.
  • Iwai, M., et al. Simple and Rapid Assay Method for Simultaneous Quantification of Urinary Nicotine and Cotinine Using Micro-Extraction by Packed Sorbent and Gas Chromatography-Mass Spectrometry. Nagoya journal of medical science. 2013. 75, (3–4), p. 255.
  • Moein, M. M., et al. On-Line Detection of Hippuric Acid by Microextraction with a Molecularly-Imprinted Polysulfone Membrane Sorbent and Liquid Chromatography–Tandem Mass Spectrometry. Journal of Chromatography A. 2014. 1372, 55–62. doi:10.1016/j.chroma.2014.10.061.
  • Moein, M. M., et al. A Needle Extraction Utilizing a Molecularly Imprinted-Sol–Gel Xerogel for on-Line Microextraction of the Lung Cancer Biomarker Bilirubin from Plasma and Urine Samples. Journal of Chromatography A. 2014. 1366, 15–23. doi:10.1016/j.chroma.2014.09.012.
  • Ligor, M., et al. The Chromatographic Assay of 4‐Hydroxynonenal as a Biomarker of Diseases by Means of Meps and Hplc Technique. Biomedical Chromatography. 2015. 29, (4), 584–589. doi:10.1002/bmc.3317.
  • Magiera, S.; Baranowski, J. Determination of Carnitine and Acylcarnitines in Human Urine by Means of Microextraction in Packed Sorbent and Hydrophilic Interaction Chromatography–Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Journal of pharmaceutical and biomedical analysis. 2015. 109, 171–176. doi:10.1016/j.jpba.2015.02.044.
  • Moein, M. M.; Abdel‐Rehim, A; Abdel‐Rehim, M. on‐Line Determination of Sarcosine in Biological Fluids Utilizing Dummy Molecularly Imprinted Polymers in Microextraction by Packed Sorbent. Journal of separation science. 2015. 38, (5), 788–795. doi:10.1002/jssc.201401116.
  • Nogueira, J. Novel Sorption-Based Methodologies for Static Microextraction Analysis: A Review on Sbse and Related Techniques. Analytica Chimica Acta. 2012. 757, 1–10. doi:10.1016/j.aca.2012.10.033.
  • Neng, N.; Silva, A.; Nogueira, J. Adsorptive Micro-Extraction Techniques—Novel Analytical Tools for Trace Levels of Polar Solutes in Aqueous Media. Journal of Chromatography A. 2010. 1217, (47), 7303–7310. doi:10.1016/j.chroma.2010.09.048.
  • Kawaguchi, M., et al. Determination of Bisphenol a in River Water and Body Fluid Samples by Stir Bar Sorptive Extraction with in Situ Derivatization and Thermal Desorption-Gas Chromatography–Mass Spectrometry. Journal of Chromatography B. 2004. 805, (1), 41–48. doi:10.1016/j.jchromb.2004.02.005.
  • Kawaguchi, M., et al. Stir Bar Sorptive Extraction with in Situ Derivatization and Thermal Desorption-Gas Chromatography–Mass Spectrometry for Measurement of Phenolic Xenoestrogens in Human Urine Samples. Journal of Chromatography B. 2005. 820, (1), 49–57. doi:10.1016/j.jchromb.2005.03.019.
  • Oenning, A. L., et al. A New Configuration for Bar Adsorptive Microextraction (Baμe) for the Quantification of Biomarkers (Hexanal And Heptanal) in Human Urine by Hplc Providing an Alternative for Early Lung Cancer Diagnosis. Analytica Chimica Acta. 2017. 965, 54–62. doi:10.1016/j.aca.2017.02.034.
  • Bojko, B.; Pawliszyn, J. In Vivo and Ex Vivo Spme: A Low Invasive Sampling and Sample Preparation Tool in Clinical Bioanalysis. Bioanalysis. 2014. 6, (9), 1227–1239. doi:10.4155/bio.14.91.
  • Ouyang, G.; Vuckovic, D.; Pawliszyn, J. Nondestructive Sampling of Living Systems Using In Vivo Solid-Phase Microextraction. Chemical Reviews, 2011. 111, (4), 2784–2814. doi:10.1021/cr100203t.
  • Musteata, F. M.; Pawliszyn, J. In Vivo Sampling with Solid Phase Microextraction. Journal of biochemical and biophysical methods. 2007. 70, (2), 181–193. doi:10.1016/j.jbbm.2006.07.006.
  • Zhang, Q. H., et al. Solid-Phase Microextraction Technology for In Vitro and in Vivo Metabolite Analysis. TrAC Trends in Analytical Chemistry. 2016. 80, 57–65. doi:10.1016/j.trac.2016.02.017.
  • Kataoka, H. Current Developments and Future Trends in Solid-Phase Microextraction Techniques for Pharmaceutical and Biomedical Analyses. Analytical Sciences. 2011. 27, (9), 893–893. doi:10.2116/analsci.27.893.
  • Kataoka, H.; Ishizaki, A.; Saito, K. Recent Progress in Solid-Phase Microextraction and its Pharmaceutical and Biomedical Applications. Analytical Methods. 2016. 8, (29), 5773–5788. doi:10.1039/C6AY00380J.
  • Lord, H. L., et al. In Vivo Solid-Phase Microextraction for Monitoring Intravenous Concentrations of Drugs and Metabolites. Nature protocols. 2011. 6, (6), p. 896. doi:10.1038/nprot.2011.329.
  • Hamidi, S., et al. Lc-Ms Determination of Propranolol in Exhaled Breath Condensate. Pharmaceutical Sciences. 2017.
  • Syhre, M., et al. The Scent of Mycobacterium Tuberculosis–Part Ii Breath. Tuberculosis. 2009. 89, (4), 263–266. doi:10.1016/j.tube.2009.04.003.
  • Gottzein, A. K.; Musshoff, F.; Madea, B. Systematic Toxicological Analysis Revealing a Rare Case of Captan Ingestion. Journal of forensic sciences. 2013. 58, (4), 1099–1103. doi:10.1111/1556-4029.12154.
  • Silva, C., et al. Microextraction by Packed Sorbent (Meps) and Solid-Phase Microextraction (Spme) as Sample Preparation Procedures for the Metabolomic Profiling of Urine. Metabolites. 2014. 4, (1), 71–97. doi:10.3390/metabo4010071.
  • Hyšpler, R. r., et al. Determination of Isoprene in Human Expired Breath Using Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications. 2000. 739, (1), 183–190.
  • Mochalski, P., et al. Improved Pre-Concentration and Detection Methods for Volatile Sulphur Breath Constituents. Journal of Chromatography B. 2009. 877, (20), 1856–1866.
  • Wang, C., et al. Determination of Fentanyl in Human Breath by Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry. Microchemical Journal. 2009. 91, (2), 149–152. doi:10.1016/j.microc.2008.09.002.
  • Miekisch, W., et al. Assessment of Propofol Concentrations in Human Breath and Blood by Means of Hs-Spme–Gc–Ms. Clinica chimica acta. 2008. 395, (1), 32–37.
  • Syhre, M.; Scotter, J. M.; Chambers, S. T. Investigation into the Production of 2-Pentylfuran by Aspergillus Fumigatus and Other Respiratory Pathogens in Vitro and Human Breath Samples. Medical Mycology. 2008. 46, (3), 209–215. doi:10.1080/13693780701753800.
  • Martin, A. N., et al. Human Breath Analysis: Methods for Sample Collection and Reduction of Localized Background Effects. Analytical and bioanalytical chemistry. 2010. 396, (2), 739–750. doi:10.1007/s00216-009-3217-7.
  • Prado, C.; Marın, P.; Periago, J. Application of Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry to The Determination of Volatile Organic Compounds in End-Exhaled Breath Samples. Journal of Chromatography A. 2003. 1011. (1), 125–134.
  • Grote, C.; Pawliszyn, J. Solid-Phase Microextraction for the Analysis of Human Breath. Analytical chemistry. 1997. 69, (4), 587–596. doi:10.1021/ac960749l.
  • Peng, G., et al. Diagnosing Lung Cancer in Exhaled Breath Using Gold Nanoparticles. Nature nanotechnology. 2009. 4, (10), 669–673. doi:10.1038/nnano.2009.235.
  • Gaspar, E. M., et al. Organic Metabolites in Exhaled Human Breath—A Multivariate Approach for Identification of Biomarkers in Lung Disorders. Journal of Chromatography A. 2009. 1216, (14), 2749–2756. doi:10.1016/j.chroma.2008.10.125.
  • Menezes, H. C.; Amorim, L. C.; Cardeal, Z. L. Sampling of Benzene in Environmental and Exhaled Air by Solid-Phase Microextraction and Analysis by Gas Chromatography–Mass Spectrometry. Analytical and bioanalytical chemistry. 2009. 395(8), p. 2583. doi:10.1007/s00216-009-3206-x.
  • Kramer, R., et al. A Rapid Method for Breath Analysis in Cystic Fibrosis Patients. European Journal of Clinical Microbiology & Infectious Diseases. 2015. 34, (4), 745–751. doi:10.1007/s10096-014-2286-5.
  • Savelev, S. U., et al. Individual Variation in 3-Methylbutanal: A Putative Link Between Human Leukocyte Antigen and Skin Microflora. Journal of chemical ecology. 2008. 34, (9), 1253–1257. doi:10.1007/s10886-008-9524-1.
  • Gallagher, M., et al. Analyses of Volatile Organic Compounds from Human Skin. British Journal of Dermatology. 2008. 159, (4), 780–791. doi:10.1111/j.1365-2133.2008.08748.x.
  • Zhang, Z.-M., et al. The Study of Fingerprint Characteristics of the Emanations from Human Arm Skin Using the Original Sampling System by Spme-Gc/Ms. Journal of Chromatography B. 2005. 822, (1), 244–252.
  • Riazanskaia, S., et al. The Analytical Utility of Thermally Desorbed Polydimethylsilicone Membranes for in-Vivo Sampling of Volatile Organic Compounds in and on Human Skin. Analyst. 2008. 133, (8), 1020–1027. doi:10.1039/b802515k.
  • Ruzsanyi, V., et al. Ion Mobility Spectrometry for Detection of Skin Volatiles. Journal of Chromatography B. 2012. 911, 84–92. doi:10.1016/j.jchromb.2012.10.028.
  • Mochalski, P., et al. Emission Rates of Selected Volatile Organic Compounds from Skin of Healthy Volunteers. Journal of Chromatography B. 2014. 959, 62–70. doi:10.1016/j.jchromb.2014.04.006.
  • Dormont, L., et al. New Methods for Field Collection of Human Skin Volatiles and Perspectives for their Application in the Chemical Ecology of Human–Pathogen–Vector Interactions. Journal of Experimental Biology, 2013. 216, (15), 2783–2788. doi:10.1242/jeb.085936.
  • Jiang, R., et al. A non-invasive method for in vivo skin volatile compounds sampling. Analytica chimica acta. 2013. 804, 111–119. doi:10.1016/j.aca.2013.09.056.
  • Prada, P. A.; Curran, A. M.; Furton, K. G. The Evaluation of Human Hand Odor Volatiles on Various Textiles: A Comparison Between Contact and Noncontact Sampling Methods. Journal of forensic sciences. 2011. 56, (4), 866–881. doi:10.1111/j.1556-4029.2011.01762.x.
  • DeGreeff, L. E.; Furton, K. G. Collection and Identification of Human Remains Volatiles by Non-Contact, Dynamic Airflow Sampling and Spme-Gc/Ms Using Various Sorbent Materials. Analytical and bioanalytical chemistry. 2011. 401, (4), 1295–1307. doi:10.1007/s00216-011-5167-0.
  • Bessonneau, V., et al. In Vivo Solid Phase Microextraction Sampling of Human Saliva for Non-Invasive and on-Site Monitoring. Analytica chimica acta. 2015. 856, 35–45. doi:10.1016/j.aca.2014.11.029.
  • Ishizaki, A.; Uemura, A.; Kataoka, H. A Sensitive Method to Determine Melatonin in Saliva by Automated Online in-Tube Solid-Phase Microextraction Coupled with Stable Isotope-Dilution Liquid Chromatography-Tandem Mass Spectrometry. Analytical Methods. 2017. 9, (21), 3134–3140. doi:10.1039/C7AY00622E.
  • Schubert, J. K., et al. Determination of Antibiotic Drug Concentrations in Circulating Human Blood by Means of Solid Phase Micro-Extraction. Clinica Chimica Acta. 2007. 386, (1), 57–62.
  • Du, F.; Alam, M. N.; Pawliszyn, J. Aptamer-Functionalized Solid Phase Microextraction–Liquid Chromatography/Tandem Mass Spectrometry for Selective Enrichment and Determination of Thrombin. Analytica chimica acta. 2014. 845, 45–52. doi:10.1016/j.aca.2014.08.018.
  • Sun, Z., et al. Toward Biomarker Development in Large Clinical Cohorts: An Integrated High-Throughput 96-Well-Plate-Based Sample Preparation Workflow for Versatile Downstream Proteomic Analyses. Analytical chemistry. 2016. 88, (17), 8518–8525. doi:10.1021/acs.analchem.6b01333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.