675
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Critical Review on the Analytical Mechanistic Steps in the Evaluation of Antioxidant Activity

ORCID Icon &
Pages 214-236 | Published online: 16 Jan 2018

References

  • Gülçin, İ. Antioxidant Activity of Food Constituents: An Overview. Arch. Toxicol. 2011, 86, 345.
  • Halliwell, B. Commentary Oxidative Stress, Nutrition and Health. Experimental Strategies for Optimization of Nutritional Antioxidant Intake in Humans. Free Radical Res. 1996, 25, 57.
  • Lü, J.-M.; Lin, P. H.; Yao, Q.; Chen, C. Chemical and Molecular Mechanisms of Antioxidants: Experimental Approaches and Model Systems. J. Cell. Mol. Med. 2010, 14, 840.
  • Alho, H.; Leinonen, J. Total Antioxidant Activity Measured by Chemiluminescence Methods. In Methods in Enzymology, Academic Press, 1999, 299, 3.
  • Duh, P.-D. Antioxidant Activity of Burdock (Arctium Lappa Linné): Its Scavenging Effect on Free-Radical and Active Oxygen. J. Am. Oil Chem. Soc. 1998, 75, 455.
  • Diplock, A. T.; Charuleux, J.-L.; Crozier-Willi, G.; Kok, F. J.; Rice-Evans, C.; Roberfroid, M.; Stahl, W.; Viña-Ribes, J. Functional Food Science and Defence Against Reactive Oxidative Species. Br. J. Nutr. 1998, 80, S77.
  • Cai, Y.-J.; Dai, J.-Q.; Fang, J.-G.; Ma, L.-P.; Hou, L.-F.; Yang, L.; Liu, Z.-L. Antioxidative and Free Radical Scavenging Effects of Ecdysteroids from Serratula Strangulata. Can. J. Physiol. Pharmacol. 2002, 80, 1187.
  • Amarowicz, R.; Pegg, R. B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J. A. Free-Radical Scavenging Capacity and Antioxidant Activity of Selected Plant Species from the Canadian Prairies. Food Chem. 2004, 84, 551.
  • Rice-Evans, C.; Miller, N. Measurement of the Antioxidant Status of Dietary Constituents, Low Density Lipoproteins and Plasma. Prostaglandins, Leukot. Essent. Fatty Acids 1997, 57, 499.
  • Alam, M. N.; Bristi, N. J.; Rafiquzzaman, M. Review on In Vivo and In Vitro Methods Evaluation of Antioxidant Activity. Saudi Pharm. J. 2013, 21, 143.
  • Amorati, R.; Valgimigli, L. Advantages and Limitations of Common Testing Methods for Antioxidants. Free Radical Res. 2015, 49, 633.
  • Xiong, N.; Long, X.; Xiong, J.; Jia, M.; Chen, C.; Huang, J.; Ghoorah, D.; Kong, X.; Lin, Z.; Wang, T. Mitochondrial Complex I Inhibitor Rotenone-Induced Toxicity and Its Potential Mechanisms in Parkinson's Disease Models. Crit. Rev. Toxicol. 2012, 42, 613.
  • Cooper, C. E.; Brown, G. C. The Inhibition of Mitochondrial Cytochrome Oxidase by the Gases Carbon Monoxide, Nitric Oxide, Hydrogen Cyanide and Hydrogen Sulfide: Chemical Mechanism and Physiological Significance. J. Bioenerg. Biomembr. 2008, 40, 533.
  • Starkov, A. A. Measurement of Mitochondrial ROS Production. In Protein Misfolding and Cellular Stress in Disease and Aging: Concepts and Protocols, P. Bross, N. Gregersen, Eds.; Humana Press: Totowa, NJ, 2010; 245.
  • Anthérieu, S.; Azzi, P. B.-E.; Dumont, J.; Abdel-Razzak, Z.; Guguen-Guillouzo, C.; Fromenty, B.; Robin, M.-A.; Guillouzo, A. Oxidative Stress Plays a Major Role in Chlorpromazine-Induced Cholestasis in Human HepaRG Cells. Hepatol. 2013, 57, 1518.
  • Quinlan, C. L.; Orr, A. L.; Perevoshchikova, I. V.; Treberg, J. R.; Ackrell, B. A.; Brand, M. D. Mitochondrial Complex II Can Generate Reactive Oxygen Species at High Rates in Both the Forward and Reverse Reactions. J. Biol. Chem. 2012, 287, 27255.
  • Turrens, J. F.; Alexandre, A.; Lehninger, A. L. Ubisemiquinone is the Electron Donor for Superoxide Formation by Complex III of Heart Mitochondria. Arch. Biochem. Biophys. 1985, 237, 408.
  • Mandavilli, B. S.; Santos, J. H.; Van Houten, B. Mitochondrial DNA Repair and Aging. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2002, 509, 127.
  • Susanna Hipelli; Elstner, E. F. OH-Radical-Type Reactive Oxygen Species: A Short Review on the Mechanisms of OH-Radical and Peroxynitrite Toxicity. Z- Naturforsch 1997, 52c, 555.
  • Lipinski, B.; Pretorius, E. Hydroxyl Radical-Modified Fibrinogen as a Marker of Thrombosis: The Role of Iron. Hematol. 2012, 17, 241.
  • Kanti Das, T.; Wati, M. R.; Fatima-Shad, K. Oxidative Stress Gated by Fenton and Haber Weiss Reactions and Its Association With Alzheimer's Disease. Arch Neurosci. 2015, 2, e20078.
  • Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacognosy Rev. 2010, 4, 118.
  • Morán, J. M.; Ortiz-Ortiz, M. A.; Ruiz-Mesa, L. M.; Fuentes, J. M. Nitric Oxide in Paraquat-Mediated Toxicity: A Review. J. Biochem. Mol. Toxicol. 2010, 24, 402.
  • Schülke, S.; Dreidax, D.; Malik, A.; Burmester, T.; Nevo, E.; Band, M.; Avivi, A.; Hankeln, T., Living with Stress: Regulation of Antioxidant Defense Genes in the Subterranean, Hypoxia-Tolerant Mole Rat, Spalax. Gene 2012, 500, 199.
  • Kelley, E. E.; Khoo, N. K. H.; Hundley, N. J.; Malik, U. Z.; Freeman, B. A.; Tarpey, M. M. Hydrogen Peroxide is the Major Oxidant Product of Xanthine Oxidase. Free Radical Biol. Med. 2010, 48, 493.
  • Buonocore, G.; Perrone, S.; Tataranno, M. L. Oxygen Toxicity: Chemistry and Biology of Reactive Oxygen Species. Semin. Fetal Neonatal Med. 2010, 15, 186.
  • Froudarakis, M.; Hatzimichael, E.; Kyriazopoulou, L.; Lagos, K.; Pappas, P.; Tzakos, A. G.; Karavasilis, V.; Daliani, D.; Papandreou, C.; Briasoulis, E. Revisiting Bleomycin from Pathophysiology to Safe Clinical Use. Crit. Rev. Oncol./Hematol. 2013, 87, 90.
  • Jung, K.; Reszka, R. Mitochondria as Subcellular Targets for Clinically Useful Anthracyclines. Adv. Drug Deliv. Rev. 2001, 49, 87.
  • Liochev, S. I. Commentary: The Role of Iron-Sulfur Clusters in In Vivo Hydroxyl Radical Production. Free Radical Res. 1996, 25, 369.
  • Vásquez-Vivar, J.; Kalyanaraman, B.; Kennedy, M. C. Mitochondrial Aconitase Is a Source of Hydroxyl Radical: An electron spin resoance investigation. J. Biol. Chem. 2000, 275, 14064.
  • Timmermann, F. Tocopherole — Antioxidative Wirkung bei Fetten und Ölen. Lipid/Fett 1990, 92, 201.
  • Burton, G. W.; Ingold, K. U. Autoxidation of Biological Molecules. 1. Antioxidant Activity of Vitamin E and Related Chain-Breaking Phenolic Antioxidants In Vitro. J. Am. Chem. Soc. 1981, 103, 6472.
  • Andjelković, M.; Van Camp, J.; De Meulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R., Iron-Chelation Properties of Phenolic Acids Bearing Catechol and Galloyl Groups. Food Chem. 2006, 98, 23.
  • Mitsuda, H.; Yasumoto, K.; Iwami, K. Antioxidative Action of Indole Compounds during the Autoxidation of Linoleic Acid. Eiyo To Shokuryo 1966, 19, 210.
  • Cai, Y.-Z.; Mei, S.; Jie, X.; Luo, Q.; Corke, H. Structure–Radical Scavenging Activity Relationships of Phenolic Compounds From Traditional Chinese Medicinal Plants. Life Sci. 2006, 78, 2872.
  • İlhami, G.; Mshvildadze, V.; Gepdiremen, A.; Elias, R. The Antioxidant Activity of a Triterpenoid Glycoside Isolated from the Berries of Hedera Colchica: 3-O-(β-d-Glucopyranosyl)-Hederagenin. Phytother. Res. 2006, 20, 130.
  • Gülçin, İ.; Elmastaş, M.; Aboul-Enein, H. Y. Determination of Antioxidant and Radical Scavenging Activity of Basil (Ocimum Basilicum L. Family Lamiaceae) Assayed by Different Methodologies. Phytother. Res. 2007, 21, 354.
  • Gülçin, İ. Comparison of In Vitro Antioxidant and Antiradical Activities of L-Tyrosine and L-Dopa. Amino Acids 2006, 32, 431.
  • Lichtenstein, A. H. Nutrient Supplements and Cardiovascular Disease: A Heartbreaking Story. J. Lipid Res. 2009, 50, S429.
  • Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J. A.; Deemer, E. K. Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays:  A Comparative Study. J. Agricul. Food Chem. 2002, 50, 3122.
  • Roy, Molay K; Koide, M.; Rao, Theertham P.; Okubo, T.; Ogasawara, Y.; Juneja, Lekh R. ORAC and DPPH Assay Comparison to Assess Antioxidant Capacity of Tea Infusions: Relationship Between Total Polyphenol and Individual Catechin Content. Int. J. Food Sci. Nutr. 2010, 61, 109.
  • Číž, M.; Čížová, H.; Denev, P.; Kratchanova, M.; Slavov, A.; Lojek, A. Different Methods for Control and Comparison of the Antioxidant Properties of Vegetables. Food Cont. 2010, 21, 518.
  • Grajeda-Iglesias, C.; Salas, E.; Barouh, N.; Baréa, B.; Panya, A.; Figueroa-Espinoza, M. C. Antioxidant Activity of Protocatechuates Evaluated by DPPH, ORAC, and CAT Methods. Food Chem. 2016, 194, 749.
  • Prieto, M. A.; Vázquez, J. A.; Murado, M. A. Crocin Bleaching Antioxidant Assay Revisited: Application to Microplate to Analyse Antioxidant and Pro-Oxidant Activities. Food Chem. 2015, 167, 299.
  • Lage, M. Á. P.; García, M. A. M.; Álvarez, J. A. V.; Anders, Y.; Curran, T. P. A New Microplate Procedure for Simultaneous Assessment of Lipophilic and Hydrophilic Antioxidants and Pro-Oxidants, Using Crocin and β-Carotene Bleaching Methods in a Single Combined Assay: Tea Extracts as a Case Study. Food Res. Int. 2013, 53, 836.
  • Zou, T.-B.; He, T.-P.; Li, H.-B.; Tang, H.-W.; Xia, E.-Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Mol. 2016, 21, 72.
  • Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E. K.; Gallagher, E. Polyphenol Composition and In Vitro Antioxidant Activity of Amaranth, Quinoa Buckwheat and Wheat as Affected by Sprouting and Baking. Food Chem. 2010, 119, 770.
  • Gülçin, İ. Antioxidant Activity of Food Constituents: An Overview. Arch. Toxicol. 2012, 86, 345.
  • Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agricul. Food Chem. 2016, 64, 997.
  • Ozyurt, D.; Demirata, B.; Apak, R. Modified Cerium(IV)-Based Antioxidant Capacity (CERAC) Assay with Selectivity Over Citric Acid and Simple Sugars. J. Food Compos. Anal. 2010, 23, 282.
  • Meng, Q.; Li, G.; Luo, B.; Wang, L.; Lu, Y.; Liu, W. Screening and Isolation of Natural Antioxidants from Ziziphora Clinopodioides Lam. With High Performance Liquid Chromatography Coupled to a Post-Column Ce(iv) Reduction Capacity Assay. RSC Adv. 2016, 6, 62378.
  • Fu, L.; Xu, B.-T.; Xu, X.-R.; Gan, R.-Y.; Zhang, Y.; Xia, E.-Q.; Li, H.-B. Antioxidant Capacities and Total Phenolic Contents of 62 Fruits. Food Chem. 2011, 129, 345.
  • Yang, Z.; Zhai, W., Identification and Antioxidant Activity of Anthocyanins Extracted from the Seed and Cob of Purple Corn (Zea mays L.). Innovative Food Sci. Emerg. Technol. 2010, 11, 169.
  • Mocan, A.; Schafberg, M.; Crişan, G.; Rohn, S., Determination of Lignans and Phenolic Components of Schisandra Chinensis (Turcz.) Baill. Using HPLC-ESI-ToF-MS and HPLC-Online TEAC: Contribution of Individual Components to Overall Antioxidant Activity and Comparison with Traditional Antioxidant Assays. J. Funct. Foods 2016, 24, 579.
  • Mishra, K.; Ojha, H.; Chaudhury, N. K. Estimation of Antiradical Properties of Antioxidants Using DPPH Assay: A Critical Review and Results. Food Chem. 2012, 130, 1036.
  • Carmona-Jiménez, Y.; García-Moreno, M. V.; Igartuburu, J. M.; Garcia Barroso, C. Simplification of the DPPH Assay for Estimating the Antioxidant Activity of Wine and Wine by-Products. Food Chem. 2014, 165, 198.
  • Wollinger, A.; Perrin, É.; Chahboun, J.; Jeannot, V.; Touraud, D.; Kunz, W. Antioxidant Activity of Hydro Distillation Water Residues from Rosmarinus Officinalis L. Leaves Determined by DPPH Assays. Comp Rendus Chim. 2016, 19, 754.
  • Fung, A.; Hamid, N.; Lu, J., Fucoxanthin Content and Antioxidant Properties of Undaria Pinnatifida. Food Chem. 2013, 136, 1055.
  • Martins, A. C.; Bukman, L.; Vargas, A. M. M.; Barizão, É. O.; Moraes, J. C. G.; Visentainer, J. V.; Almeida, V. C. The Antioxidant Activity of Teas Measured by the FRAP Method Adapted to the FIA System: Optimising the Conditions Using the Response Surface Methodology. Food Chem. 2013, 138, 574.
  • Karadirek, Ş.; Kanmaz, N.; Balta, Z.; Demirçivi, P.; Üzer, A.; Hızal, J.; Apak, R. Determination of Total Antioxidant Capacity of Humic Acids Using CUPRAC, Folin–Ciocalteu, Noble Metal Nanoparticle- and Solid–Liquid Extraction-Based Methods. Talanta 2016, 153, 120.
  • Muller, C. H.; Lee, T. K. Y.; Montaño, M. A. Improved Chemiluminescence Assay for Measuring Antioxidant Capacity of Seminal Plasma. In Spermatogenesis: Methods and Protocols, D. T. Carrell, K. I. Aston, Eds.; Humana Press: Totowa, NJ, 2013; 363.
  • Oliveira, S. d.; d. Souza, G. A.; Eckert, C. R.; Silva, T. A.; Sobral, E. S.; Fávero, O. A.; Ferreira, M. J. P.; Romoff, P.; Baader, W. J., Evaluation of Antiradical Assays Used in Determining the Antioxidant Capacity of Pure Compounds and Plant Extracts. Química Nova 2014, 37, 497.
  • Tabart, J.; Franck, T.; Kevers, C.; Pincemail, J.; Serteyn, D.; Defraigne, J.-O.; Dommes, J. Antioxidant and Anti-Inflammatory Activities of Ribes Nigrum Extracts. Food Chem. 2012, 131, 1116.
  • Gorbi, S.; Avio, G. C.; Benedetti, M.; Totti, C.; Accoroni, S.; Pichierri, S.; Bacchiocchi, S.; Orletti, R.; Graziosi, T.; Regoli, F. Effects of Harmful Dinoflagellate Ostreopsis cf. Ovata Exposure on Immunological, Histological and Oxidative Responses of Mussels Mytilus Galloprovincialis. Fish & Shellfish Immunol. 2013, 35, 941.
  • Moore, J.; Yin, J.-J.; Yu, L. Novel Fluorometric Assay for Hydroxyl Radical Scavenging Capacity (HOSC) Estimation. J. Agricul. Food Chem. 2006, 54, 617.
  • Ou, B.; Hampsch-Woodill, M.; Flanagan, J.; Deemer, E. K.; Prior, R. L.; Huang, D. Novel Fluorometric Assay for Hydroxyl Radical Prevention Capacity Using Fluorescein as the Probe. J. Agricul. Food Chem. 2002, 50, 2772.
  • Coudray, C.; Favier, A. Determination of Salicylate Hydroxylation Products as an In Vivo Oxidative Stress Marker. Free Radical Biol. Med. 2000, 29, 1064.
  • Thomas, C.; Mackey, M. M.; Diaz, A. A.; Cox, D. P. Hydroxyl Radical is Produced Via the Fenton Reaction in Submitochondrial Particles Under Oxidative Stress: Implications for Diseases Associated with Iron Accumulation. Redox Rep. 2009, 14, 102.
  • Zhao, G.-R.; Xiang, Z.-J.; Ye, T.-X.; Yuan, Y.-J.; Guo, Z.-X. Antioxidant Activities of Salvia Miltiorrhiza and Panax Notoginseng. Food Chem. 2006, 99, 767.
  • Tatzber, F.; Griebenow, S.; Wonisch, W.; Winkler, R. Dual Method for the Determination of Peroxidase Activity and Total Peroxides-Iodide Leads to a Significant Increase of Peroxidase Activity in Human Sera. Anal. Biochem. 2003, 316, 147.
  • Shahidi, F.; Kamil, J.; Jeon, Y.-J.; Kim, S.-K. Antioxidant Role of Chitosan in a Cooked COD (Gadus morhua) Model System. J. Food Lipids 2002, 9, 57.
  • Dorman, H. J. D.; Bachmayer, O.; Kosar, M.; Hiltunen, R. Antioxidant Properties of Aqueous Extracts from Selected Lamiaceae Species Grown in Turkey. J. Agricul. Food Chem. 2004, 52, 762.
  • Daglia, M.; Racchi, M.; Papetti, A.; Lanni, C.; Govoni, S.; Gazzani, G. In Vitro and Ex Vivo Antihydroxyl Radical Activity of Green and Roasted Coffee. J. Agricul.Food Chem. 2004, 52, 1700.
  • Zou, Y.; Lu, Y.; Wei, D. Antioxidant Activity of a Flavonoid-Rich Extract of Hypericum perforatum L. In Vitro. J. Agricul. Food Chem. 2004, 52, 5032.
  • Papastergiadis, A.; Mubiru, E.; Van Langenhove, H.; De Meulenaer, B. Malondialdehyde Measurement in Oxidized Foods: Evaluation of the Spectrophotometric Thiobarbituric Acid Reactive Substances (TBARS) Test in Various Foods. J. Agricul. Food Chem. 2012, 60, 9589.
  • Floriano-Sánchez, E.; Villanueva, C.; Noel Medina-Campos, O.; Rocha, D.; Javier Sánchez-González, D.; Cárdenas-Rodríguez, N.; Pedraza-Chaverrí, J. Nordihydroguaiaretic Acid is a Potent In Vitro Scavenger of Peroxynitrite, Singlet Oxygen, Hydroxyl Radical, Superoxide Anion and Hypochlorous acid and Prevents In Vivo Ozone-Induced Tyrosine Nitration in Lungs. Free Radical Res. 2006, 40, 523.
  • Haces, M. L.; Hernández-Fonseca, K.; Medina-Campos, O. N.; Montiel, T.; Pedraza-Chaverri, J.; Massieu, L. Antioxidant Capacity Contributes to Protection of Ketone Bodies Against Oxidative Damage Induced During Hypoglycemic Conditions. Exp. Neurol. 2008, 211, 85.
  • Wardman, P. Fluorescent and Luminescent Probes for Measurement of Oxidative and Nitrosative Species in Cells and Tissues: Progress, Pitfalls, and Prospects. Free Radical Biol. Med. 2007, 43, 995.
  • Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicine, OUP Oxford: Oxford, 2015.
  • Akashi, K.; Nishimura, N.; Ishida, Y.; Yokota, A. Potent Hydroxyl Radical-Scavenging Activity of Drought-Induced Type-2 Metallothionein in Wild Watermelon. Biochem. Biophys. Res. Commun. 2004, 323, 72.
  • Myhre, O.; Vestad, T. A.; Sagstuen, E.; Aarnes, H.; Fonnum, F. The Effects of Aliphatic (n-Nonane), Naphtenic (1,2,4-Trimethylcyclohexane), and Aromatic (1,2,4-Trimethylbenzene) Hydrocarbons on Respiratory Burst in Human Neutrophil Granulocytes. Toxicol. Appl. Pharmacol. 2000, 167, 222.
  • Botchway, S. W.; Crisostomo, A. G.; Parker, A. W.; Bisby, R. H. Near Infrared Multiphoton-Induced Generation and Detection of Hydroxyl Radicals in a Biochemical System. Arch. Biochem. Biophys. 2007, 464, 314.
  • de Avellar, I. G. J.; Magalhães, M. M. M.; Silva, A. B.; Souza, L. L.; Leitão, A. C.; Hermes-Lima, M. Reevaluating the Role of 1,10-Phenanthroline in Oxidative Reactions Involving Ferrous Ions and DNA Damage. Biochim. et Biophys. Acta (BBA) – Gen. Sub. 2004, 1675, 46.
  • Goldstein, S.; Meyerstein, D.; Czapski, G. The Fenton Reagents. Free Radical Biol. Med. 1993, 15, 435.
  • LeBel, C. P.; Ischiropoulos, H.; Bondy, S. C. Evaluation of the Probe 2',7'-Dichlorofluorescin as an Indicator of Reactive Oxygen Species Formation and Oxidative Stress. Chem. Res. Toxicol. 1992, 5, 227.
  • Zhu, H.; Bannenberg, G. L.; Moldéus, P.; Shertzer, H. G. Oxidation Pathways for the Intracellular Probe 2′,7′-Dichlorofluorescin. Arch. Toxicol., 1994, 68, 582.
  • Schopfer, P.; Plachy, C.; Frahry, G. Release of Reactive Oxygen Intermediates (Superoxide Radicals, Hydrogen Peroxide, and Hydroxyl Radicals) and Peroxidase in Germinating Radish Seeds Controlled by Light, Gibberellin, and Abscisic Acid. Plant Physiol. 2001, 125, 1591.
  • Paździoch-Czochra, M.; Wideńska, A. Spectrofluorimetric Determination of Hydrogen Peroxide Scavenging Activity. Anal. Chim. Acta 2002, 452, 177.
  • Myhre, O.; Andersen, J. M.; Aarnes, H.; Fonnum, F. Evaluation of the Probes 2′,7′-Dichlorofluorescin Diacetate, Luminol, and Lucigenin as Indicators of Reactive Species Formation. Biochem. Pharmacol. 2003, 65, 1575.
  • Yoshida, H.; Yanai, H.; Namiki, Y.; Fukatsu-Sasaki, K.; Furutani, N.; Tada, N. Neuroprotective Effects of Edaravone: A Novel Free Radical Scavenger in Cerebrovascular Injury. CNS Drug Rev. 2006, 12, 9.
  • Horobin, R. W.; Rashid, F. Interactions of Molecular Probes with Living Cells and Tissues. Part 1. Some General Mechanistic Proposals, Making Use of a Simplistic Chinese Box Model. Histochemistry, 94:205.
  • Li, Y.; Jiang, B.; Zhang, T.; Mu, W.; Liu, J. Antioxidant and Free Radical-Scavenging Activities of Chickpea Protein Hydrolysate (CPH). Food Chem. 2008, 106, 444.
  • Okado-Matsumoto, A.; Fridovich, I. Assay of Superoxide Dismutase: Cautions Relevant to the Use of Cytochrome c, a Sulfonated Tetrazolium, and Cyanide. Anal. Biochem. 2001, 298, 337.
  • Aleryani, S.; Milo, E.; Rose, Y.; Kostka, P. Superoxide-Mediated Decomposition of BiologicalS-Nitrosothiols. J. Biol. Chem. 1998, 273, 6041.
  • Aruoma, O. I.; Murcia, A.; Butler, J.; Halliwell, B. Evaluation of the Antioxidant and Prooxidant Actions of Gallic Acid and Its Derivatives. J. Agric. Food Chem. 1993, 41, 1880.
  • Lavelli, V.; Hippeli, S.; Peri, C.; Elstner, E. F. Evaluation of Radical Scavenging Activity of Fresh and Air-Dried Tomatoes by Three Model Reactions. J. Agric. Food Chem. 1999, 47, 3826.
  • Foti, M.; Ruberto, G. Kinetic Solvent Effects on Phenolic Antioxidants Determined by Spectrophotometric Measurements. J. Agric. Food Chem. 2001, 49, 342.
  • Ou, B.; Hampsch-Woodill, M.; Prior, R. L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619.
  • Wolfe, K. L.; Liu, R. H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007, 55, 8896.
  • Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J. A.; Prior, R. L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 2002, 50, 4437.
  • Kohri, S.; Fujii, H.; Oowada, S.; Endoh, N.; Sueishi, Y.; Kusakabe, M.; Shimmei, M.; Kotake, Y. An Oxygen Radical Absorbance Capacity-Like Assay that Directly Quantifies the Antioxidant's Scavenging Capacity Against AAPH-Derived Free Radicals. Anal. Biochem. 2009, 386, 167.
  • López-Alarcón, C.; Lissi, E. A Novel and Simple ORAC Methodology Based on the Interaction of Pyrogallol Red with Peroxyl Radicals. Free Radical Res. 2006, 40, 979.
  • Frankel, E. N.; Meyer, A. S. The Problems of Using One-Dimensional Methods to Evaluate Multifunctional Food and Biological Antioxidants. J. Sci. Food Agric. 2000, 80, 1925.
  • Rubio, C. P.; Hernández-Ruiz, J.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Ceron, J. J. Spectrophotometric Assays for Total Antioxidant Capacity (TAC) in Dog Serum: An Update. BMC Vet. Res. 2016, 12, 166.
  • Nagaraja, P.; Aradhana, N.; Suma, A.; Chamaraja, N. A.; Shivakumar, A.; Ramya, K. V. Amaranth Dye in the Evaluation of Bleaching of Cerium (IV) by Antioxidants: Application in Food and Medicinal Plants. Spectrochim. Acta Part A: Mol. Biomol. Spectros. 2012, 95, 505.
  • Nagaraja, P.; Suma, A.; Aradhana, N.; Shivakumar, A.; Avinash, K.; Krishna, H. Quantification of Antioxidants in Medicinal Plants and Foodstuffs Using Ce(IV) with Indigo Carmine as Chromogenic Probe. Food Anal. Methods 2011, 5, 909.
  • Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.; Bektaşoğlu, B.; Berker, K.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496.
  • Pisoschi, A. M.; Cheregi, M. C.; Danet, A. F. Total Antioxidant Capacity of Some Commercial Fruit Juices: Electrochemical and Spectrophotometrical Approaches. Molecules 2009, 14, 480.
  • Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Comp. Anal. 2006, 19, 669.
  • Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radical Biol. Med. 1996, 20, 933.
  • Arnao, M. B. Some Methodological Problems in the Determination of Antioxidant Activity Using Chromogen Radicals: A Practical Case. Trends Food Sci. Technol. 2000, 11, 419.
  • Magalhães, L. M.; Segundo, M. A.; Reis, S.; Lima, J. L. F. C. Methodological Aspects About In Vitro Evaluation of Antioxidant Properties. Anal. Chim. Acta 2008, 613, 1.
  • Arts, M. J. T. J.; Haenen, G. R. M. M.; Voss, H.-P.; Bast, A. Antioxidant Capacity of Reaction Products Limits the Applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) Assay. Food Chem. Toxicol. 2004, 42, 45.
  • Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different In Vitro Assays. J. Nutr. 2003, 133, 2812.
  • Sánchez-Moreno, C. Review: Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems. Food Sci. Technol. Int. 2002, 8, 121.
  • Fernández-Pachón, M. S.; Villaño, D.; García-Parrilla, M. C.; Troncoso, A. M. Antioxidant Activity of Wines and Relation with Their Polyphenolic Composition. Anal. Chim. Acta 2004, 513, 113.
  • Nagaraja, P.; Aradhana, N.; Suma, A.; Shivakumar, A.; Chamaraja, N. A. Quantification of Antioxidants by Using Chlorpromazine Hydrochloride: Application of the Method to Food and Medicinal Plant Samples. Anal. Sci. 2014, 30, 251.
  • Işıl Berker, K.; Güçlü, K.; Tor, İ.; Demirata, B.; Apak, R. Total Antioxidant Capacity Assay Using Optimized Ferricyanide/Prussian Blue Method. Food Anal. Methods 2010, 3, 154.
  • Berker, K.; Güçlü, K.; Tor, İ.; Demirata, B.; Apak, R. Total Antioxidant Capacity Assay Using Optimized Ferricyanide/Prussian Blue Method. Food Anal. Methods 2009, 3, 154.
  • Gülçin, İ.; Oktay, M.; Küfrevioğlu, Ö. İ.; Aslan, A. Determination of Antioxidant Activity of Lichen Cetraria Islandica (L) Ach. J. Ethnopharmacol. 2002, 79, 325.
  • Borisenko, G. G.; Martin, I.; Zhao, Q.; Amoscato, A. A.; Tyurina, Y. Y.; Kagan, V. E. Glutathione Propagates Oxidative Stress Triggered by Myeloperoxidase in HL-60 Cells: Evidence for Glutathionyl Radical-Induced Peroxidation of Phospholipids and Cytotoxicity. J. Biol. Chem. 2004, 279, 23453.
  • Huang, D.; Ou, B.; Prior, R. L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841.
  • Li, B.; Gutierrez, P. L.; Blough, N. V. Trace Determination of Hydroxyl Radical in Biological Systems. Anal. Chem. 1997, 69, 4295.
  • Vladimirov, Y. A.; Proskurnina, E. V. Free Radicals and Cell Chemiluminescence. Biochemistry 2010, 74, 1545.
  • Aradhana, N. Development of Analytical Methods for the Assay of Antioxidants in Food and Medicinal Samples. University of Mysore:Mysore, 2014; Vol. 1.
  • Aboul-Enein, H. Y.; Kładna, A.; Kruk, I.; Lichszteld, K.; Michalska, T.; Olgen, S. Scavenging of Reactive Oxygen Species by Novel Indolin-2-One and Indoline-2-Thione Derivatives. Biopolymers 2005, 78, 171.
  • Calliste, C.-A.; Trouillas, P.; Allais, D.-P.; Simon, A.; Duroux, J.-L. Free Radical Scavenging Activities Measured by Electron Spin Resonance Spectroscopy and B16 Cell Antiproliferative Behaviors of Seven Plants. J. Agric. Food Chem. 2001, 49, 3321.
  • Lussignoli, S.; Fraccaroli, M.; Andrioli, G.; Brocco, G.; Bellavite, P. A Microplate-Based Colorimetric Assay of the Total Peroxyl Radical Trapping Capability of Human Plasma. Anal. Biochem. 1999, 269, 38.
  • Ordoudi, S. A.; Tsimidou, M. Z. Crocin Bleaching Assay Step by Step:  Observations and Suggestions for an Alternative Validated Protocol. J. Agric. Food Chem. 2006, 54, 1663.
  • Bors, W.; Michel, C.; Saran, M. Inhibition of the Bleaching of the Carotenoid Crocin a Rapid Test for Quantifying Antioxidant Activity. Biochim. et Biophys. Acta (BBA) – Lipids Lipid Metabol. 1984, 796, 312.
  • Liebler, D. C.; McClure, T. D. Antioxidant Reactions of β-Carotene:  Identification of Carotenoid−Radical Adducts. Chem. Res. Toxicol. 1996, 9, 8.
  • Singleton, V. L.; Orthofer, R.; R. M. Lamuela-Raventós, Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology, Academic Press, 1999, 299, pp 152.
  • Shahidi, F.; Liyana-Pathirana, C. M.; Wall, D. S. Antioxidant Activity of White and Black Sesame Seeds and Their Hull Fractions. Food Chem. 2006, 99, 478.
  • Berker, K. I.; Ozdemir Olgun, F. A.; Ozyurt, D.; Demirata, B.; Apak, R. Modified Folin–Ciocalteu Antioxidant Capacity Assay for Measuring Lipophilic Antioxidants. J. Agric. Food Chem. 2013, 61, 4783.
  • Ozyurt, D.; Demirata, B.; Apak, R. Determination of Total Antioxidant Capacity by a New Spectrofluorometric Method Based on Ce(IV) Reduction: Ce(III) Fluorescence Probe for CERAC Assay. J. Fluoresc. 2011, 21, 2069.
  • Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555.
  • Regoli, F.; Winston, G. W. Quantification of Total Oxidant Scavenging Capacity of Antioxidants for Peroxynitrite, Peroxyl Radicals, and Hydroxyl Radicals. Toxicol. Appl. Pharmacol. 1999, 156, 96.
  • Winston, G. W.; Regoli, F.; Dugas, A. J.; Jr; Fong, J. H.; Blanchard, K. A. A Rapid Gas Chromatographic Assay for Determining Oxyradical Scavenging Capacity of Antioxidants and Biological Fluids. Free Radical Biol. Med. 1998, 24, 480.
  • Deshpande, S. R.; Satyanarayana, K.; Rao, M. N. A.; Pai, K. V. Nitric Oxide Modulators: An Emerging Class of Medicinal Agents. Indian J. Pharmaceut. Sci. 2012, 74, 487.
  • Gutteridge, J. M. C.; Maidt, L.; Poyer, L. Superoxide Dismutase and Fenton Chemistry. Reaction of Ferric-EDTA Complex and Ferric-Bipyridyl Complex with Hydrogen Peroxide Without the Apparent Formation of Iron(II). Biochem. J. 1990, 269, 169.
  • Garcia-campana, A. M.; Beayens, W. R. G. Chemiluminiscence in Analytical Chemistry, Marcel Dekker: New york, 2001.
  • Kobayashi, H.; Gil-Guzman, E.; Mahran, A. M.; Sharma, R. K.; Nelson, D. R.; Jr, A. J. T.; Agarwal, A. Quality Control of Reactive Oxygen Species Measurement by Luminol-Dependent Chemiluminescence Assay. J. Androl. 2001, 22, 568.
  • Oldenburg, B.; van Kats-Renaud, H.; Koningsberger, J. C.; van Berge Henegouwen, G. P.; van Asbeck, B. S. Chemiluminescence in Inflammatory Bowel Disease Patients: A Parameter of Inflammatory Activity. Clin. Chim. Acta 2001, 310, 151.
  • Liochev, S. I.; Fridovich, I. Lucigenin (Bis-N-methylacridinium) as a Mediator of Superoxide Anion Production. Arch. Biochem. Biophys. 1997, 337, 115.
  • Ma, Z.; Zhao, B.; Yuan, Z. Application of Electrochemical and Spin Trapping Techniques in the Investigation of Hydroxyl radicals. Anal. Chim. Acta 1999, 389, 213.
  • Adcock, J. L.; Francis, P. S.; Barnett, N. W. Acidic Potassium Permanganate as a Chemiluminescence Reagent—A Review. Anal. Chim. Acta 2007, 601, 36.
  • Anastos, N.; Barnett, N. W.; Hindson, B. J.; Lenehan, C. E.; Lewis, S. W. Comparison of Soluble Manganese(IV) and Acidic Potassium Permanganate Chemiluminescence Detection Using Flow Injection and Sequential Injection Analysis for the Determination of Ascorbic Acid in Vitamin C Tablets. Talanta 2004, 64, 130.
  • Gómez-Taylor Corominas, B.; Catalá Icardo, M.; Lahuerta Zamora, L.; García Mateo, J. V.; Martínez Calatayud, J. A Tandem-Flow Assembly for the Chemiluminometric Determination of Hydroquinone. Talanta 2004, 64, 618.
  • Costin, J. W.; Barnett, N. W.; Lewis, S. W.; McGillivery, D. J. Monitoring the Total Phenolic/Antioxidant Levels in Wine Using Flow Injection Analysis with Acidic Potassium Permanganate Chemiluminescence Detection. Anal. Chim. Acta 2003, 499, 47.
  • Francis, P. S.; Costin, J. W.; Conlan, X. A.; Bellomarino, S. A.; Barnett, J. A.; Barnett, N. W. A Rapid Antioxidant Assay Based on Acidic Potassium Permanganate Chemiluminescence. Food Chem. 2010, 122, 926.
  • Hindson, B. J.; Barnett, N. W. Analytical Applications of Acidic Potassium Permanganate as a Chemiluminescence Reagent. Anal. Chim. Acta 2001, 445, 1.
  • Hindson, C. M.; Francis, P. S.; Hanson, G. R.; Adcock, J. L.; Barnett, N. W. Mechanism of Permanganate Chemiluminescence. Anal. Chem. 2010, 82, 4174.
  • Yin, X.-B.; Dong, S.; Wang, E. Analytical Applications of the Electrochemiluminescence of Tris (2,2′-Bipyridyl) Ruthenium and Its Derivatives. TrAC Trends Anal. Chem. 2004, 23, 432.
  • Richter, M. M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003.
  • Gorman, B. A.; Francis, P. S.; Barnett, N. W. Tris(2,2'-Bipyridyl) Ruthenium (ii) Chemiluminescence. Analyst 2006, 131, 616.
  • Miao, W. Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev. 2008, 108, 2506.
  • Gámiz-Gracia, L.; García-Campaña, A. M.; Huertas-Pérez, J. F.; Lara, F. J. Chemiluminescence Detection in Liquid Chromatography: Applications to Clinical, Pharmaceutical, Environmental and Food Analysis—A Review. Anal. Chim. Acta 2009, 640, 7.
  • Nana, C. G.; Jian, W.; Xi, C.; Pinga, D. J.; Feng, Z. Z.; Qing, C. H. The Enhanced Electrogenerated Chemiluminescence of Ru(bpy) by Glutathione on a Glassy Carbon Electrode Modified with Some Porphine Compounds. Analyst 2000, 125, 2294.
  • Brown, A. J.; Lenehan, C. E.; Francis, P. S.; Dunstan, D. E.; Barnett, N. W. Soluble Manganese(IV) as a Chemiluminescence Reagent for the Determination of Opiate Alkaloids, Indoles and Analytes of Forensic Interest. Talanta 2007, 71, 1951.
  • Spasojević, I.; Liochev, S. I.; Fridovich, I. Lucigenin: Redox Potential in Aqueous Media and Redox Cycling with O2− Production1. Arch. Biochem. Biophys. 2000, 373, 447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.