759
Views
1
CrossRef citations to date
0
Altmetric
Articles

Two-Dimensional Gas Chromatography Coupled With Mass Spectrometry in Food Analysis

ORCID Icon
Pages 252-278 | Published online: 19 Jan 2018

References

  • Koussissi, E.; Paterson, A.; Piggott, J. R. Sensory Flavour Discrimination of Greek Dry Red Wines. J. Sci. Food Agric. 2003, 83, 797–808. DOI:10.1002/jsfa.1414.
  • Arrhenius, S. P.; Mccloskey, L. P.; Sylvan, M. Chemical Markers for Aroma of Vitis vinifera Var. Chardonnay. J. Agric. Food Chem. 1996, 44, 1085–1090.
  • Carlucci, A.; Monteleone, E. Statistical Validation of Sensory Data: A Study on Wine. J. Sci. Food Agric. 2001, 81, 751–758. DOI:10.1002/jsfa.879.
  • Priser, C.; Etie, P. X.; Nicklaus, S.; Brun, O. Representative Champagne Wine Extracts for Gas Chromatography Olfactometry Analysis. 1997, 8561, 3511–3514.
  • Lobo, A. P.; Tascon, N. F.; Madera, R. R.; Valles, B. S. Sensory and Foaming Properties of Sparkling Cider. J. Agric. Food Chem. 2005, 53, 10051–10056. DOI:10.1021/jf0514524.
  • Petersen, K. D.; Jahreis, G.; Busch-Stockfisch, M.; Fritsche, J. Chemical and Sensory Assessment of Deep-Frying Oil Alternatives for the Processing of French Fries. Eur. J. Lipid Sci. Tech. 2013, 115, 935–945. DOI:10.1002/ejlt.201200375.
  • Hernandez-Gomez, L.; Ubeda-Iranzo, J.; Gracia-Romero, E.; Briones-Perez, A. Comparative Production of Different Melon Distillates: Chemical and Sensory Analyses. Food Chem. 2005, 90, 115–125. DOI:10.1016/j.foodchem.2004.03.033.
  • Morales, M. T.; Alonso, M. V.; Rios, J. J.; Aparicio, R. Virgin Olive Oil Aroma : Relationship Between Volatile Compounds and Sensory Attributes by Chemometrics. J. Agric. Food Chem. 1995, 43, 2925–2931. doi:10.1021/jf00059a029.
  • Osawa, C. C.; Gonçalves, L. A. G.; Da Silva, M. A. A. P. Odor Significance of the Volatiles Formed During Deep-Frying With Palm Olein. J. Am. Oil. Chem. Soc. 2013, 90, 183–189. DOI:10.1007/s11746-012-2150-7.
  • Aparicio, R.; Morales, M. T.; Alonso, M. V. Relationship Between Volatile Compounds and Sensory Attributes of Olive Oils by the Sensory Wheel. J. Am. Oil. Chem. Soc. 1996, 73, 1253–1264. DOI:10.1007/BF02525454.
  • Falqué, E.; Ferreira, A. C.; Hogg, T.; Guedes-Pinho, P. Determination of Aromatic Descriptors of Touriga Nacional Wines by Sensory Descriptive Analysis. Flavour Fragr. J. 2004, 19, 298–302. DOI:10.1002/ffj.1355.
  • Kao, J.; Hammond, E. G.; White, P. J. Volatile Compounds Produced During Deodorization of Soybean Oil and Their Flavor Significance. J. Am. Oil. Chem. Soc. 1998, 75(9), 1103–1107. DOI:10.1007/s11746-998-0120-x.
  • Soufleros, E.; Pissa, I.; Petridis, D.; Lygerakis, M.; Mermelas, K.; Boukouvalas, G.; Tsimitakis, E. Instrumental Analysis of Volatile and Other Compounds of Greek Kiwi Wine; Sensory Evaluation and Optimisation of Its Composition. Food Chem. 2001, 75, 487–500. DOI:10.1016/S0308-8146(01)00207-2.
  • Xu-Yan, D.; Ping-Ping, L.; Fang, W.; Mu-lan, J.; Ying-Zhong, Z.; Guang-Ming, L.; Hong, C.; Yuan-Di, Z. The Impact of Processing on the Profile of Volatile Compounds in Sesame Oil. Eur. J. Lipid Sci. Tech. 2012, 114, 277–286. DOI:10.1002/ejlt.201100059.
  • Lozano, J.; Santos, J. P.; Arroyo, T.; Aznar, M.; Cabellos, J. M.; Gil, M.; Horrillo, M. C. Correlating E-Nose Responses to Wine Sensorial Descriptors and Gas Chromatography-Mass Spectrometry Profiles Using Partial Least Squares Regression Analysis. Sens. Actuators B 2007, 127, 267–276. DOI:10.1016/j.snb.2007.07.053.
  • Ebeler, S. E.; Terrien, M. B.; Butzke, C. E. Analysis of Brandy Aroma by Solid-Phase Microextraction and Liquid–Liquid Extraction. J. Sci. Food Agric. 2000, 630, 625–630. DOI:10.1002/(SICI)1097-0010(200004)80:5%3c625::AID-JSFA584%3e3.0.CO;2-5.
  • Wardencki, W.; Chmiel, T.; Dymerski, T.; Biernacka, P.; Plutowska, B. Application of Gas Chromatography, Mass Spectrometry and Olfactometry for Quality Assessment of Selected Food Products. Ecol. Chem. Eng. S 2009, 16, 287–300.
  • García-Rodríguez, D.; Cela-Torrijos, R.; Lorenzo-Ferreira, R. A.; Carro-Díaz, A. M. Analysis of Pesticide Residues in Seaweeds Using Matrix Solid-Phase Dispersion and Gas Chromatography-Mass Spectrometry Detection. Food Chem. 2012, 135, 259–267. DOI:10.1016/j.foodchem.2012.04.088.
  • Rupert, J.; Zachariasova, M.; Hajšlová, J. Advances in High-Resolution Mass Spectrometry Based On Metabolomics Studies For Food – A Review. Food Addit. Contam. A 2015, 32, 1685–1708. DOI:10.1080/19440049.2015.1084539.
  • Gong, Z. G.; Wu, J. H. X.; Xu, Y. J. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics. CRC Cr. Rev. Anal. Chem. 2017, 47, 325–331. DOI:10.1080/10408347.2017.1289836.
  • Byliński, H.; Gębicki, J.; Dymerski, T.; Namieśnik, J. Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry. CRC Cr. Rev. Anal. Chem. 2017, 47, 340–358. doi:10.1080/10408347.2017.1298986.
  • Milne, G. W. A.; Lacey, M. J.; Arsenault, G. P. Modern Ionization Techniques in Mass Spectrometry. CRC Cr. Rev. Anal. Chem. 1974, 4, 45–81.
  • Tessarolo, N. S.; dos Santos, L. R. M.; Silva, R. S. F.; Azevedo, D. A. Chemical Characterization of Bio-Oils Using Comprehensive Two-Dimensional Gas Chromatography With Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2013, 1279, 68–75. doi:10.1016/j.chroma.2012.12.052.
  • Herrero, M.; Ibáñez, E.; Cifuentes, A.; Bernal, J. Multidimensional Chromatography in Food Analysis. J. Chromatogr. A 2009, 1216, 7110–7129. DOI:10.1016/j.chroma.2009.08.014.
  • Liu, Z.; Phillips, J. B. Comprehensive Two-Dimensional Gas Chromatography Using an On-Column Thermal Modulator Interface. J. Chromatogr. Sci. 1991, 29, 227–231. DOI:10.1093/chromsci/29.6.227.
  • Dallüge, J.; Vreuls, R. J. J.; Beens, J.; Brinkman, U. A. T. Optimization and Characterization of Comprehensive Two-Dimensional Gas Chromatography With Time-Of-Flight Mass Spectrometric Detection (GC×GC-TOF MS). J. Sep. Sci. 2002, 25, 201–214. DOI:10.1002/1615-9314(20020301)25:4%3c201::AID-JSSC201%3e3.0.CO;2-B.
  • Dimandja, J. M. D.; Stanfill, S. B.; Grainger, J.; Patterson, D. G. Application of Comprehensive Two-Dimensional Gas Chromatography (GC X GC) to the Qualitative Analysis of Essential Oils. HRC J. High Resolut. Chromatogr. 2000, 23, 208–214. DOI:10.1002/(SICI)1521-4168(20000301)23:3%3c208::AID-JHRC208%3e3.0.CO;2-I.
  • Shellie, R.; Marriott, P. J. Comprehensive Two-Dimensional Gas Chromatography With Fast Enantioseparation. Anal. Chem. 2002, 74, 5426–5430. DOI:10.1021/ac025803e.
  • Dymerski, T.; Chmiel, T.; Mostafa, A.; Sliwinska, M.; Wisniewska, P.; Wardencki, W.; Namiesnik, J.; Górecki, T. Botanical And Geographical Origin Characterization of Polish Honeys by Headspace SPME-GCxGC-TOFMS. Curr. Org. Chem. 2013, 17, 853–870. DOI:10.2174/1385272811317080011.
  • Xiao, Z.; Yu, D.; Niu, Y.; Chen, F.; Song, S.; Zhu, J.; Zhu, G. Characterization of Aroma Compounds of Chinese Famous Liquors by Gas Chromatography-Mass Spectrometry and Flash GC Electronic-Nose. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 945–946, 92–100. DOI:10.1016/j.jchromb.2013.11.032.
  • Zhu, S.; Lu, X.; Ji, K.; Guo, K.; Li, Y.; Wu, C.; Xu, G. Characterization of Flavor Compounds in Chinese Liquor Moutai by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry. Anal. Chim. Acta. 2007, 597, 340–348. DOI:10.1016/j.aca.2007.07.007.
  • Capone, S.; Tufariello, M.; Francioso, L.; Montagna, G.; Casino, F.; Leone, A.; Siciliano, P. Aroma Analysis by GC/MS and Electronic Nose Dedicated to Negroamaro and Primitivo Typical Italian Apulian Wines. Sens. Actuators, B Chem. 2013, 179, 259–269. DOI:10.1016/j.snb.2012.10.142.
  • Bosch-Fusté, J.; Riu-Aumatell, M.; Guadayol, J. M.; Caixach, J.; López-Tamames, E.; Buxaderas, S. Volatile Profiles of Sparkling Wines Obtained by Three Extraction Methods and Gas Chromatography-Mass Spectrometry (GC-MS) Analysis. Food Chem. 2007, 105, 428–435. DOI:10.1016/j.foodchem.2006.12.053.
  • Welke, J. E.; Manfroi, V.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C.; Zini, C. A. Differentiation of Wines According to Grape Variety Using Multivariate Analysis of Comprehensive Two-Dimensional Gas Chromatography With Time-of-Flight Mass Spectrometric Detection Data. Food Chem. 2013, 141, 3897–3905. DOI:10.1016/j.foodchem.2013.06.100.
  • Sánchez-Palomo, E.; Díaz-Maroto, M. C.; Pérez-Coello, M. S. Rapid Determination of Volatile Compounds in Grapes by HS-SPME Coupled With GC-MS. Talanta 2005, 66, 1152–1157. DOI:10.1016/j.talanta.2005.01.015.
  • Robinson, A. L.; Boss, P. K.; Heymann, H.; Solomon, P. S.; Trengove, R. D. Development of a Sensitive Non-Targeted Method for Characterizing the Wine Volatile Profile Using Headspace Solid-Phase Microextraction Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2011, 1218, 504–517. DOI:10.1016/j.chroma.2010.11.008.
  • Gan, H. H.; Yan, B.; Linforth, R. S. T.; Fisk, I. D. Development and Validation of an APCI-MS/GC–MS Approach for the Classification and Prediction of Cheddar Cheese Maturity. Food Chem. 2016, 190, 442–447. DOI:10.1016/j.foodchem.2015.05.096.
  • Gogus, F.; Ozel, M. Z.; Lewis, A. C. Analysis of the Volatile Components of Cheddar Cheese by Direct Thermal Desorption-GCx GC-TOF/MS. J. Sep. Sci. 2006, 29, 1217–1222. DOI:10.1002/jssc.200500400.
  • Simionato, J. I.; Garcia, J. C.; Dos Santos, G. T.; Oliveira, C. C.; Visentainer, J. V.; De Souza, N. E. Validation of the Determination of Fatty Acids in Milk by Gas Chromatography. J. Braz. Chem. Soc. 2010, 21, 520–524. DOI:10.1590/S0103-50532010000300018.
  • Hytylinen, T.; Kallio, M.; Lehtonen, M.; Lintonen, S.; Perjoki, P.; Jussila, M.; Riekkola, M. L. Comprehensive Two-Dimensional Gas Chromatography in the Analysis of Dietary Fatty Acids. J. Sep. Sci. 2004, 27, 459–467. DOI:10.1002/jssc.200301674.
  • Francesca, I.; Patrizia, P.; Luca, C.; Federico, M.; Annalisa, R. Analysis of Volatile Compounds in Powdered Milk for Infant Nutrition by Direct Desorption (CIS4-TDU) and GC-MS. Talanta 2015, 141, 195–199. DOI:10.1016/j.talanta.2015.04.026.
  • Cordero, C.; Cagliero, C.; Liberto, E.; Nicolotti, L.; Rubiolo, P.; Sgorbini, B.; Bicchi, C. High Concentration Capacity Sample Preparation Techniques to Improve the Informative Potential of Two-Dimensional Comprehensive Gas Chromatography-Mass Spectrometry: Application to Sensomics. J. Chromatogr. A 2013, 1318, 1–11. DOI:10.1016/j.chroma.2013.09.065.
  • Rutkowska, J.; Bialek, M.; Adamska, A.; Zbikowska, A. Differentiation of Geographical Origin of Cream Products in Poland According to Their Fatty Acid Profile. Food Chem. 2015, 178, 26–31. DOI:10.1016/j.foodchem.2015.01.036.
  • Jeleń, H. H.; Gracka, A. Analysis of Black Pepper Volatiles by Solid Phase Microextraction-Gas Chromatography: A Comparison of Terpenes Profiles With Hydrodistillation. J. Chromatogr. A. 2015, 1418, 200–209. DOI:10.1016/j.chroma.2015.09.065.
  • Cardeal, Z. L.; Gomes da Silva, M. D. R.; Marriott, P. J. Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometric Analysis of Pepper Volatiles. Rapid Commun. Mass Spectrom. 2006, 20, 2823–2836. DOI:10.1002/rcm.2665.
  • Qi, M.; Armstrong, D. W. Dicationic Ionic Liquid Stationary Phase for GC-MS Analysis of Volatile Compounds in Herbal Plants. Anal. Bioanal. Chem. 2007, 388, 889–899. DOI:10.1007/s00216-007-1290-3.
  • Crocoll, C.; Asbach, J.; Novak, J.; Gershenzon, J.; Degenhardt, J. Terpene Synthases of Oregano (Origanum vulgare L.) and Their Roles in the Pathway and Regulation of Terpene Biosynthesis. Plant Mol. Biol. 2010, 73, 587–603. DOI:10.1007/s11103-010-9636-1.
  • Omar, J.; Alonso, I.; Olivares, M.; Vallejo, A.; Etxebarria, N. Optimization of Comprehensive Two-Dimensional Gas-Chromatography (GC × GC) Mass Spectrometry for the Determination of Essential Oils. Talanta 2012, 88, 145–151. DOI:10.1016/j.talanta.2011.10.023.
  • Rao, L. J.; Singh, M.; Raghavan, B.; Abraham, K. O. Rosemary (Rosmarinus officinalis L.): Impact of Drying on Its Flavor Quality. J. Food Qual. 1998, 21, 107–115. DOI:10.1111/j.1745-4557.1998.tb00508.x.
  • Xu, X. M.; Yu, C.; Han, J. L.; Li, J. P.; El-Sepai, F.; Zhu, Y.; Huang, B. F.; Cai, Z. X.; Wu, H. W.; Ren, Y. P. Multi-Residue Analysis of Pesticides in Tea by Online SEC-GC/MS. J. Sep. Sci. 2011, 34, 210–216. DOI:10.1002/jssc.201000489.
  • Schurek, J.; Portolés, T.; Hajslova, J.; Riddellova, K.; Hernández, F. Application of Head-Space Solid-Phase Microextraction Coupled to Comprehensive Two-Dimensional Gas Chromatography–Time-of-Flight Mass Spectrometry for the Determination of Multiple Pesticide Residues in Tea Samples. Anal. Chim. Acta. 2008, 24, 163–172. DOI:10.1016/j.aca.2008.01.007.
  • Lee, J.; Chambers, D. H.; Chambers IV, E.; Adhikari, K.; Yoon, Y. Volatile Aroma Compounds in Various Brewed Green Teas. Molecules 2013, 18, 10024–10041. DOI:10.3390/molecules180810024.
  • Zhu, Y.; Lv, H. P.; Dai, W. D.; Guo, L.; Tan, J. F.; Zhang, Y.; Yu, F. L.; Shao, C. Y.; Peng, Q. H.; Lin, Z. Separation of Aroma Components in Xihu Longjing Tea Using Simultaneous Distillation Extraction With Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry. Sep. Purif. Technol. 2016, 164, 146–154. DOI:10.1016/j.seppur.2016.03.028.
  • Bressanello, D.; Liberto, E.; Cordero, C.; Rubiolo, P.; Pellegrino, G.; Ruosi, M. R.; Bicchi, C. Coffee Aroma: Chemometric Comparison of the Chemical Information Provided by Three Different Samplings Combined With GCMS to Describe the Sensory Properties in Cup. Food Chem. 2017, 214, 218–226. DOI:10.1016/j.foodchem.2016.07.088.
  • Tranchida, P. Q.; Purcaro, G.; Conte, L.; Dugo, P.; Dugo, G.; Mondello, L. Enhanced Resolution Comprehensive Two-Dimensional Gas Chromatography Applied to the Analysis of Roasted Coffee Volatiles. J. Chromatogr. A 2009, 1216, 7301–7306. DOI:10.1016/j.chroma.2009.06.056.
  • Qiao, Y.; Bi, J. X.; Zhang, Y.; Zhang, Y.; Fan, G.; Xiao, L. Y.; Si, Y. P. Characterization of Aroma Active Compounds in Fruit Juice and Peel Oil of Jinchen Sweet Orange Fruit (Citrus sinensis (L.) Osbeck) by GC-MS and GC-O. Molecules 2008, 13, 1333–1344. DOI:10.3390/molecules13061333.
  • Mastello, R. B.; Capobiango, M.; Chin, S.-T.; Monteiro, M.; Marriott, P. J. Identification of Odour-Active Compounds of Pasteurised Orange Juice Using Multidimensional Gas Chromatography Techniques. Food Res. Int. 2015, 75, 281–288. DOI:10.1016/j.foodres.2015.06.014.
  • Cunha, S. C.; Fernandes, J. O.; Alves, A.; Oliveira, M. B. P. P. Fast Low-Pressure Gas Chromatography-Mass Spectrometry Method for the Determination of Multiple Pesticides in Grapes, Musts and Wines. J. Chromatogr. A 2009, 1216, 119–126. DOI:10.1016/j.chroma.2008.11.015.
  • Banerjee, K.; Patil, S. H.; Dasgupta, S.; Oulkar, D. P.; Patil, S. B.; Savant, R.; Adsule, P. G. Optimization of Separation and Detection Conditions for the Multiresidue Analysis of Pesticides in Grapes by Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2008, 1190, 350–357. DOI:10.1016/j.chroma.2008.03.017.
  • De Boishebert, V.; Giraudel, J. L.; Montury, M. Characterization of Strawberry Varieties by SPME-GC-MS and Kohonen Self-Organizing Map. Chemom. Intell. Lab. Syst. 2006, 80, 13–23. DOI:10.1016/j.chemolab.2005.05.003.
  • Williams, A.; Ryan, D.; Olarte Guasca, A.; Marriott, P.; Pang, E. Analysis of Strawberry Volatiles Using Comprehensive Two-Dimensional Gas Chromatography With Headspace Solid-Phase Microextraction. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2005, 817, 97–107. DOI:10.1016/j.jchromb.2004.05.021.
  • Ramos, J. J.; González, M. J.; Ramos, L. Comparison of Gas Chromatography-Based Approaches After Fast Miniaturised Sample Preparation for the Monitoring of Selected Pesticide Classes in Fruits. J. Chromatogr. A 2009, 1216, 7307–7313. DOI:10.1016/j.chroma.2009.05.013.
  • Zhou, A.; McFeeters, R. F. Volatile Compounds in Cucumbers Fermented in Low-Salt Conditions. J. Agric. Food Chem. 1998, 46, 2117–2122. DOI:10.1021/jf9704726.
  • Johanningsmeier, S. D.; McFeeters, R. F. Detection of Volatile Spoilage Metabolites in Fermented Cucumbers Using Nontargeted, Comprehensive 2-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry (GCGC-TOFMS). J. Food Sci. 2011, 76, 168–177. DOI:10.1111/j.1750-3841.2010.01918.x.
  • Ma, C.; Wang, H.; Lu, X.; Li, H.; Liu, B.; Xu, G. Analysis of Artemisia annua L. Volatile Oil By Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry. J Chromatogr A. 2007, 1150, 50–3. DOI:10.1016/j.chroma.2006.08.080.
  • Barrek, S.; Paisse, O.; Grenier-Loustalot, M. F. Determination of Residual Pesticides in Olive Oil by GC-MS and HPLC-MS After Extraction by Size-Exclusion Chromatography. Anal. Bioanal. Chem. 2003, 376, 355–359. DOI:10.1007/s00216-003-1917-y.
  • Vaz-Freire, L. T.; da Silva, M. D. R. G.; Freitas, A. M. C. Comprehensive Two-Dimensional Gas Chromatography for Fingerprint Pattern Recognition in Olive Oils Produced by Two Different Techniques in Portuguese Olive Varieties Galega Vulgar, Cobranosa E Carrasquenha. Anal. Chim. Acta. 2009, 633, 263–270. DOI:10.1016/j.aca.2008.11.057.
  • Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Dynamic Headspace/GC-MS to Control the Aroma Fingerprint of Extra-Virgin Olive Oil From the Same and Different Olive Varieties. Food Control 2012, 25, 684–695. DOI:10.1016/j.foodcont.2011.12.005.
  • Purcaro, G.; Cordero, C.; Liberto, E.; Bicchi, C.; Conte, L. S. Toward a Definition of Blueprint of Virgin Olive Oil by Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A. 2014, 1334, 101–111. DOI:10.1016/j.chroma.2014.01.067.
  • Adahchour, M.; Vreuls, R. J. J.; van der Heijden, A.; Brinkman, U. A. T. Trace-Level Determination of Polar Flavour Compounds in Butter by Solid-Phase Extraction and Gas Chromatography-Mass Spectrometry. J. Chromatogr. A. 1999, 844, 295–305. DOI:10.1016/S0021-9673(99)00351-9.
  • Mondello, L.; Casilli, A.; Tranchida, P. Q.; Costa, R.; Chiofalo, B.; Dugo, P.; Dugo, G. Evaluation of Fast Gas Chromatography and Gas Chromatography-Mass Spectrometry in the Analysis of Lipids. J. Chromatogr. A. 2004, 1035, 237–247. DOI:10.1016/j.chroma.2004.02.058.
  • Ratel, J.; Engel, E. Determination of Benzenic and Halogenated Volatile Organic Compounds in Animal-Derived Food Products by One-Dimensional and Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry. J. Chromatogr. A. 2009, 1216, 7889–7898. DOI:10.1016/j.chroma.2009.09.012.
  • Indraningsih, S. Detection of Dioxins Trichloro Dibenzo-P-Dioxins and Trichloro Dibenzofurans in Beef with Gas Chromatography Tandem Mass Spectrometry. J. Anim. Vet. Sci. JITV 2015, 19, 302–314.
  • Planche, C.; Ratel, J.; Mercier, F.; Blinet, P.; Debrauwer, L.; Engel, E. Assessment of Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry Based Methods for Investigating 206 Dioxin-Like Micropollutants in Animal-Derived Food Matrices. J. Chromatogr. A 2015, 1392, 74–81. DOI:10.1016/j.chroma.2015.02.054.
  • Marsh, G.; Athanasiadou, M.; Bergman, Å.; Asplund, L. Identification of Hydroxylated and Methoxylated Polybrominated Diphenyl Ethers in Baltic Sea Salmon (Salmo salar) Blood. Environ. Sci. Technol. 2004, 38, 10–18. DOI:10.1021/es034671j.
  • Hoh, E.; Lehotay, S. J.; Pangallo, K. C.; Mastovska, K.; Ngo, H. L.; Reddy, C. M.; Vetter, W. Simultaneous Quantitation of Multiple Classes of Organohalogen Compounds in Fish Oils with Direct Sample Introduction Comprehensive Two-Dimensional Gas Chromatography and Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 2009, 57, 2653–2660. DOI:10.1021/jf900462p.
  • Tadeusz, W.; Tambor, K.; Rybak-Chmielewska, H.; Kedzia, B. Identification of Honey Volatile Components by Solid Phase Microextraction (SPME) and Gas Chromatography/Mass Spectrometry (GC/MS). J. Apic. Sci. 2006, 50, 115.
  • Čajka, T.; Hajšlová, J.; Cochran, J.; Holadová, K.; Klimánková, E. Solid Phase Microextraction–Comprehensive Two-Dimensional Gas Chromatography–Time-Of-Flight Mass Spectrometry for the Analysis of Honey Volatiles. J. Sep. Sci. 2007, 30, 534–546. DOI:10.1002/jssc.200600413.
  • Falasconi, M.; Pardo, M.; Sberveglieri, G.; Battistutta, F.; Piloni, M.; Zironi, R. Study of White Truffle Aging With SPME-GC-MS and the Pico2-Electronic Nose. Sens. Actuators, B Chem. 2005, 106, 88–94. DOI:10.1016/j.snb.2004.05.041.
  • Costa, R.; Fanali, C.; Pennazza, G.; Tedone, L.; Dugo, L.; Santonico, M.; Sciarrone, D.; Cacciola, F.; Cucchiarini, L.; Dachà, M.; Mondello, L. Screening of Volatile Compounds Composition of White Truffle During Storage by GCxGC-(FID/MS) and Gas Sensor Array Analyses. LWT – Food Sci. Technol. 2015, 60, 905–913. DOI:10.1016/j.lwt.2014.09.054.
  • Gao, X.; Williams, S. J.; Woodman, O. L.; Marriott, P. J. Comprehensive Two-Dimensional Gas Chromatography, Retention Indices and Time-of-Flight Mass Spectra of Flavonoids and Chalcones. J. Chromatogr. A. 2010, 1217, 8317–8326. DOI:10.1016/j.chroma.2010.10.093.
  • Alasalvar, C.; Odabasi, A. Z.; Demir, N.; Balaban, M. O.; Shahidi, F.; Cadwallader, K. R. Volatiles and Flavor of Five Turkish Hazelnut Varieties as Evaluated by Descriptive Sensory Analysis, Electronic Nose, and Dynamic Headspace Analysis/Gas Chromatography-Mass Spectrometry. J. Food Sci. 2004, 69, 99–106.
  • Cordero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Schieberle, P.; Reichenbach, S. E.; Tao, Q. Profiling Food Volatiles by Comprehensive Two-Dimensional Gas Schromatography Coupled With Mass Spectrometry: Advanced Fingerprinting Approaches for Comparative Analysis of the Volatile Fraction of Roasted Hazelnuts (Corylus avellana L.) from Different Ori. J. Chromatogr. A. 2010, 1217, 5848–5858. DOI:10.1016/j.chroma.2010.07.006.
  • Liu, Z.; Phillips, J. B. Comprehensive Two-Dimensional Gas Chromatography Using an On-Column Thermal Modulator Interface. J. Chromatogr. Sci. 1991, 29, 227–231. DOI:10.1093/chromsci/29.6.227.
  • Liu, Z.; Phillips, J. B. Sample Introduction Into a 5-Μm I.d. Capillary Gas Chromatography Column Using an On-Column Thermal Desorption Modulator. J. Microcolumn Sep. 1989, 1, 159–162. DOI:10.1002/mcs.1220010310.
  • Phillips, J. B.; Luu, D.; Pawliszyn, J. B.; Carle, G. C. Multiplex Gas Chromatography by Thermal Modulation of a Fused Silica Capillary Column. Anal. Chem. 1985, 57, 2779–2787. DOI:10.1021/ac00291a010.
  • de Geus, H.-J.; de Boer, J.; Brinkman, U. A. T. Development of a Thermal Desorption Modulator for Gas Chromatography. J. Chromatogr. A. 1997, 767, 137–151. DOI:10.1016/S0021-9673(97)00038-1.
  • Lee, A. L.; Lewis, A. C.; Bartle, K. D.; McQuaid, J. B.; Marriott, P. J. A. Comparison of Modulating Interface Technologies in Comprehensive Two-Dimensional Gas Chromatography (GC×GC). J. Microcolumn Sep. 2000, 12, 187–193. DOI:10.1002/(SICI)1520-667X(2000)12:4%3c187::AID-MCS3%3e3.0.CO;2-P.
  • Burger, B. V; Snyman, T.; Burger, W. J. G.; Rooyen, W. F. Van. Thermal Modulator Array for Analyte Modulation and Comprehensive Two-Dimensional Gas Chromatography Short Communication. J. Sep. Sci. 2003, 26, 123–128. DOI:10.1002/jssc.200390002.
  • Phillips, J. B.; Ledford, E. B. Thermal Modulation: A Chemical Instrumentation Component of Potential Value in Improving Portability. F. Anal. Chem. Technol. 1996, 1, 23–29. DOI:10.1002/(SICI)1520-6521(1996)1:1%3c23::AID-FACT4%3e3.0.CO;2-F.
  • Phillips, J. B.; Beens, J. Comprehensive Two-Dimensional Gas Chromatography: A Hyphenated Method With Strong Coupling Between the Two Dimensions. J. Chromatogr. A 1999, 856, 331–347. DOI:10.1016/S0021-9673(99)00815-8.
  • Marriott, P.J.; Kinghorn, R.M. Longitudinally Modulated Cryogenic System. A Generally Applicable Approach to Solute Trapping and Mobilization in Gas Chromatography. Anal. Chem. 1997, 69, 2582–2588 DOI:10.1021/ac961310w.
  • Górecki, T.; Harynuk, J.; Panić, O. The Evolution of Comprehensive Two-Dimensional Gas Chromatography (GC×GC). J. Sep. Sci. 2004, 27, 359–379. DOI:10.1002/jssc.200301650.
  • Adahchour, M.; Beens, J.; Brinkman, U. A. T. Single-Jet, Single-Stage Cryogenic Modulator for Comprehensive Two-Dimensional Gas Chromatography (GC × GC). Analyst 2003, 128, 213–216. DOI:10.1039/b212657p.
  • Hyötyläinen, T.; Kallio, M.; Hartonen, K.; Jussila, M.; Palonen, S.; Riekkola, M.-L. Modulator Design for Comprehensive Two-Dimensional Gas Chromatography: Quantitative Analysis of Polyaromatic Hydrocarbons and Polychlorinated Biphenyls. Anal. Chem. 2002, 74(17), 4441–4446. DOI:10.1021/ac0201528.
  • Harynuk, J.; Górecki, T. Design Considerations for a GC×GC System. J. Sep. Sci. 2002, 25, 304–310. DOI:10.1002/1615-9314(20020401)25:5/6%3c304::AID-JSSC304%3e3.0.CO;2-P.
  • Harynuk, J.; Górecki, T. New Liquid Nitrogen Cryogenic Modulator for Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A. 2003, 1019, 53–63. DOI:10.1016/j.chroma.2003.08.097.
  • Libardoni, M.; Waite, J.H.; Sacks, R. Electrically Heated, Air-Cooled Thermal Modulator and At-Column Heating for Comprehensive Two-Dimensional Gas Chromatography. Anal. Chem. 2005, 77, 2786–2794. DOI:10.1021/ac040161b.
  • Libardoni, M.; Hasselbrink, E.; Waite, J. H.; Sacks, R. At-Column Heating and a Resistively Heated, Liquid-Cooled Thermal Modulator for a Low-Resource Bench-Top GC×GC. J. Sep. Sci. 2006, 29, 1001–1008. DOI:10.1002/jssc.200500298.
  • Libardoni, M.; Fix, C.; Waite, J. H.; Sacks, R. Design and Performance Evaluation of a Two-Stage Resistively-Heated Thermal Modulator for GC × GC. Anal. Methods 2010, 2, 936. DOI:10.1039/c0ay00090f.
  • Paul, D.; Kurabayashi, K. First-Principle Modeling and Characterization of Thermal Modulation in Comprehensive Two-Dimensional Gas Chromatography Using a Microfabricated Device. Sens. Actuator. B. 2016, 231, 135–146. DOI:10.1016/j.snb.2016.02.132.
  • Collin, W. R.; Nuñovero, N.; Paul, D.; Kurabayashi, K.; Zellers, E. T. Comprehensive Two-Dimensional Gas Chromatographic Separations With a Temperature Programmed Microfabricated Thermal Modulator. J. Chromatogr. A. 2016, 1444, 114–122. DOI:10.1016/j.chroma.2016.03.072.
  • Luong, J.; Guan, X.; Xu, S.; Gras, R.; Shellie, R. A. Thermal Independent Modulator for Comprehensive Two-Dimensional Gas Chromatography. Anal. Chem. 2016, 88, 8428–8432. DOI:10.1021/acs.analchem.6b02525.
  • Jacobs, M. R.; Edwards, M.; Górecki, T.; Nesterenko, P. N.; Shellie, R. A. Evaluation of a Miniaturised Single-Stage Thermal Modulator for Comprehensive Two-Dimensional Gas Chromatography of Petroleum Contaminated Soils. J. Chromatogr. A. 2016, 1463, 162–168. DOI:10.1016/j.chroma.2016.08.009.
  • Muscalu, A. M.; Edwards, M.; Górecki, T.; Reiner, E. J. Evaluation of a Single-Stage Consumable-Free Modulator for Comprehensive Two-Dimensional Gas Chromatography: Analysis of Polychlorinated Biphenyls, Organochlorine Pesticides and Chlorobenzenes. J. Chromatogr. A 2015, 1391, 93–101. DOI:10.1016/j.chroma.2015.02.074.
  • Mostafa, A.; Górecki, T. Development and Design of a Single-Stage Cryogenic Modulator for Comprehensive Two-Dimensional Gas Chromatography. Anal. Chem. 2016, 88, 5414–5423. DOI:10.1021/acs.analchem.6b00767.
  • Bruckner, C. A.; Prazen, B. J.; Synovec, R. E. Comprehensive Two-Dimensional High-Speed Gas Chromatography With Chemometric Analysis. Anal. Chem. 1998, 70, 2796–2804. DOI:10.1021/ac980164m.
  • Seeley, J. V.; Kramp, F.; Hicks, C. J. Comprehensive Two-Dimensional Gas Chromatography Via Differential Flow Modulation. Anal. Chem. 2000, 72, 4346–4352. DOI:10.1021/ac000249z.
  • Sinha, A. E.; Johnson, K. J.; Prazen, B. J.; Lucas, S. V.; Fraga, C. G.; Synovec, R. E. Comprehensive Two-Dimensional Gas Chromatography of Volatile and Semi-Volatile Components Using a Diaphragm Valve-Based Instrument. J. Chromatogr. A. 2003, 983, 195–204. DOI:10.1016/S0021-9673(02)01651-5.
  • Bueno, P. A.; Seeley, J. V. Flow-Switching Device for Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A. 2004, 1027, 3–10. DOI:10.1016/j.chroma.2003.10.033.
  • Seeley, J.V.; Micyus, N. J.; McCurry, J.D.; Seeley, S.K. Comprehensive Two-Dimensional Gas Chromatography With a Simple Fluidic Modulator. Am. Lab. 2006, 38, 24–26.
  • Poliak, M.; Fialkov, A. B.; Amirav, A. Pulsed Flow Modulation Two-Dimensional Comprehensive Gas Chromatography–Tandem Mass Spectrometry With Supersonic Molecular Beams. J. Chromatogr. A. 2008, 1210, 108–114. DOI:10.1016/j.chroma.2008.09.039.
  • Poliak, M.; Kochman, M.; Amirav, A. Pulsed Flow Modulation Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A. 2008, 1186, 189–195. DOI:10.1016/j.chroma.2007.09.030.
  • Harynuk, J.; Górecki, T. Comprehensive Two-Dimensional Gas Chromatography in Stop-Flow Mode. J. Sep. Sci. 2004, 27, 431–441. DOI:10.1002/jssc.200301649.
  • Seeley, J.V.; Micyus, N. J.; Bandurski, S.V.; Seeley, S.K.; McCurry, J.D. Microfluidic Deans Switch for Comprehensive Two-Dimensional Gas Chromatography. Anal. Chem. 2007, 79, 1840–1847. DOI:10.1021/ac061881g.
  • Wang, F.C.Y. New Valve Switching Modulator for Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A. 2008, 1188, 274–280. DOI:10.1016/j.chroma.2008.02.104.
  • Krupčík, J.; Gorovenko, R.; Špánik, I.; Sandra, P.; Armstrong, D. W. Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography With Simultaneous Flame Ionization and Quadrupole Mass Spectrometric Detection. J. Chromatogr. A. 2013, 1280, 104–111. DOI:10.1016/j.chroma.2013.01.015.
  • Tranchida, P. Q.; Franchina, F. A.; Dugo, P.; Mondello, L. Flow-Modulation Low-Pressure Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A. 2014, 1372, 236–244. DOI:10.1016/j.chroma.2014.10.097.
  • Cordero, C.; Rubiolo, P.; Cobelli, L.; Stani, G.; Miliazza, A.; Giardina, M.; Firor, R.; Bicchi, C. Potential of the Reversed-Inject Differential Flow Modulator for Comprehensive Two-Dimensional Gas Chromatography in the Quantitative Profiling and Fingerprinting of Essential Oils of Different Complexity. J. Chromatogr. A 2015, 1417, 79–95. DOI:10.1016/j.chroma.2015.09.027.
  • Tranchida, P. Q.; Maimone, M.; Franchina, F. A.; Bjerk, T. R.; Zini, C. A.; Purcaro, G.; Mondello, L. Four-Stage (Low-)Flow Modulation Comprehensive Gas Chromatography–Quadrupole Mass Spectrometry for the Determination of Recently-Highlighted Cosmetic Allergens. J. Chromatogr. A 2016, 1439, 144–151. DOI:10.1016/j.chroma.2015.12.002.
  • Zhu, S.; Lu, X.; Ji, K.; Guo, K.; Li, Y.; Wu, C.; Xu, G. Characterization of Flavor Compounds in Chinese Liquor Moutai by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry. Anal. Chim. Acta 2007, 597, 340–348. DOI:10.1016/j.aca.2007.07.007.
  • Ryan, D.; Shellie, R.; Tranchida, P.; Casilli, A.; Mondello, L.; Marriott, P. Analysis of Roasted Coffee Bean Volatiles by Using Comprehensive Two-Dimensional Gas Chromatography–Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2004, 1054, 57–65. DOI:10.1016/S0021-9673(04)01408-6.
  • Shellie, R. A.; Marriott, P. J.; Huie, C. W. Comprehensive Two-Dimensional Gas Chromatography (GC X GC) and GC X GC-Quadrupole MS Analysis of Asian and American Ginseng. J. Sep. Sci. 2003, 26, 1185–1192. DOI:10.1002/jssc.200301404.
  • Adahchour, M.; van Stee, L. L. P.; Beens, J.; Vreuls, R. J. J.; Batenburg, M. A.; Brinkman, U. A. T. Comprehensive Two-Dimensional Gas Chromatography With Time-of-Flight Mass Spectrometric Detection for the Trace Analysis of Flavour Compounds in Food. J. Chromatogr. A 2003, 1019, 157–172. DOI:10.1016/S0021-9673(03)01131-2.
  • Danielsson, C.; Wiberg, K.; Korytár, P.; Bergek, S.; Brinkman, U. A. T.; Haglund, P. Trace Analysis of Polychlorinated Dibenzo-P-Dioxins, Dibenzofurans and Who Polychlorinated Biphenyls in Food Using Comprehensive Two-Dimensional Gas Chromatography With Electron-Capture Detection. J. Chromatogr. A 2005, 1086, 61–70. DOI:10.1016/j.chroma.2004.11.071.
  • Purcaro, G.; Morrison, P.; Moret, S.; Conte, L. S.; Marriott, P. J. Determination of Polycyclic Aromatic Hydrocarbons in Vegetable Oils Using Solid-Phase Microextraction-Comprehensive Two-Dimensional Gas Chromatography Coupled With Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2007, 1161, 284–291. DOI:10.1016/j.chroma.2007.05.105.
  • Chin, S. T.; Eyres, G. T.; Marriott, P. J. Identification of Potent Odourants in Wine and Brewed Coffee Using Gas Chromatography-Olfactometry and Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A. 2011, 1218, 7487–7498. DOI:10.1016/j.chroma.2011.06.039.
  • Chin, S. T.; Eyres, G. T.; Marriott, P. J. Application of Integrated Comprehensive/Multidimensional Gas Chromatography With Mass Spectrometry and Olfactometry for Aroma Analysis in Wine and Coffee. Food Chem. 2015, 185, 355–361. DOI:10.1016/j.foodchem.2015.04.003.
  • Khummueng, W.; Trenerry, C.; Rose, G.; Marriott, P. J. Application of Comprehensive Two-Dimensional Gas Chromatography With Nitrogen-Selective Detection for the Analysis of Fungicide Residues in Vegetable Samples. J. Chromatogr. A 2006, 1131, 203–214. DOI:10.1016/j.chroma.2006.07.035.
  • Liu, X.; Mitrevski, B.; Li, D.; Li, J.; Marriott, P. J. Comprehensive Two-Dimensional Gas Chromatography With Flame Photometric Detection Applied to Organophosphorus Pesticides in Food Matrices. Microchem. J. 2013, 111, 25–31. DOI:10.1016/j.microc.2012.07.013.
  • Schurek, J.; Portolés, T.; Hajslova, J.; Riddellova, K.; Hernández, F. Application of Head-Space Solid-Phase Microextraction Coupled to Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry for the Determination of Multiple Pesticide Residues in Tea Samples. Anal. Chim. Acta. 2008, 611, 163–172. DOI:10.1016/j.aca.2008.01.007.
  • Cordero, C.; Bicchi, C.; Rubiolo, P. Group-Type and Fingerprint Analysis of Roasted Food Matrices (Coffee And Hazelnut Samples) by Comprehensive Two-Dimensional Gas Chromatography. J. Agric. Food Chem. 2008, 56, 7655–7666. DOI:10.1021/jf801001z.
  • Brokl, M.; Soria, A. C.; Ruiz-Matute, A. I.; Sanz, M. L. M. L. M. L.; Ramos, L. Separation of Disaccharides by Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry. Application to Honey Analysis. J. Agric. Food Chem. 2010, 58, 11561–11567. DOI:10.1021/jf102646n.
  • Welke, J. E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Alcaraz Zini, C. Characterization of the Volatile Profile of Brazilian Merlot Wines Through Comprehensive Two Dimensional Gas Chromatography Time-of-Flight Mass Spectrometric Detection. J. Chromatogr. A. 2012, 1226, 124–139. DOI:10.1016/j.chroma.2012.01.002.
  • Welke, J. E.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C. Quantitative Analysis of Headspace Volatile Compounds Using Comprehensive Two-Dimensional Gas Chromatography And Their Contribution to the Aroma of Chardonnay Wine. Food Res. Int. 2014, 59, 85–99. DOI:10.1016/j.foodres.2014.02.002.
  • Carlin, S.; Vrhovsek, U.; Franceschi, P.; Lotti, C.; Bontempo, L.; Camin, F.; Toubiana, D.; Zottele, F.; Toller, G.; Fait, A.; Mattivi, F. Regional Features of Northern Italian Sparkling Wines, Identified Using Solid-Phase Micro Extraction and Comprehensive Two-Dimensional Gas Chromatography Coupled With Time-of-Flight Mass Spectrometry. Food Chem. 2016, 208, 68–80. DOI:10.1016/j.foodchem.2016.03.112.
  • Rocha, S. M.; Coelho, E.; Zrostlíková, J.; Delgadillo, I.; Coimbra, M. A. Comprehensive Two-Dimensional Gas Chromatography With Time-of-Flight Mass Spectrometry of Monoterpenoids as a Powerful Tool for Grape Origin Traceability. J.Chromatograph. A. 2007, 1161, 292–299. DOI:10.1016/j.chroma.2007.05.093.
  • Soares, R. D.; Welke, J. E.; Nicolli, K. P.; Zanus, M.; Caramão, E. B.; Manfroi, V.; Zini, C. A. Monitoring the Evolution of Volatile Compounds Using Gas Chromatography During the Stages of Production of Moscatel Sparkling Wine. Food Chem. 2015, 183, 291–304. DOI:10.1016/j.foodchem.2015.03.013.
  • Dugo, G.; Franchina, F. A.; Scandinaro, M. R.; Bonaccorsi, I.; Cicero, N.; Tranchida, P. Q.; Mondello, L. Elucidation of The Volatile Composition of Marsala Wines By Using Comprehensive Two-Dimensional Gas Chromatography. Food Chem. 2014, 142, 262–268. DOI:10.1016/j.foodchem.2013.07.061.
  • Purcaro, G.; Tranchida, P. Q.; Barp, L.; Moret, S.; Conte, L. S.; Mondello, L. Detailed Elucidation of Hydrocarbon Contamination in Food Products by Using Solid-Phase Extraction and Comprehensive Gas Chromatography With Dual Detection. Anal. Chim. Acta. 2013, 773, 97–104. DOI:10.1016/j.aca.2013.03.002.
  • Kiefl, J.; Cordero, C.; Nicolotti, L.; Schieberle, P.; Reichenbach, S. E.; Bicchi, C. Performance Evaluation of Non-Targeted Peak-Based Cross-Sample Analysis for Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry Data and Application to Processed Hazelnut Profiling. J. Chromatogr. A 2012, 1243, 81–90. DOI:10.1016/j.chroma.2012.04.048.
  • Saucier, C.; Polidoro, A. dos S.; dos Santos, A. L.; Schneider, J. K.; Caramão, E. B.; Jacques, R. A. Comprehensive Two-Dimensional Gas Chromatography With Mass Spectrometry Applied to the Analysis of Volatiles in Artichoke (Cynara scolymus L.) Leaves. Ind. Crops Prod. 2014, 62, 507–514. DOI:10.1016/j.indcrop.2014.09.023.
  • Purcaro, G.; Tranchida, P. Q.; Jacques, R. A.; Caramão, E. B.; Moret, S.; Conte, L.; Dugo, P.; Dugo, G.; Mondello, L. Characterization of the Yerba Mate (Ilex paraguariensis) Volatile Fraction Using Solid-Phase Microextraction-Comprehensive 2-D GC-MS. J. Sep. Sci. 2009, 32, 3755–3763. DOI:10.1002/jssc.200900343.
  • Li, C.; Wang, D.; Li, N.; Luo, Q.; Xu, X.; Wang, Z. Identifying Unknown By-Products in Drinking Water Using Comprehensive Two-Dimensional Gas Chromatography–Quadrupole Mass Spectrometry and In Silico Toxicity Assessment. Chemosphere 2016, 163, 535–543. DOI:10.1016/j.chemosphere.2016.08.053.
  • Silva, B. J. G.; Tranchida, P. Q.; Purcaro, G.; Queiroz, M. E. C.; Mondello, L.; Lanças, F. M. Evaluation of Comprehensive Two-Dimensional Gas Chromatography Coupled to Rapid Scanning Quadrupole Mass Spectrometry for Quantitative Analysis. J. Chromatogr. A 2012, 1255, 177–183. DOI:10.1016/j.chroma.2012.05.035.
  • Shao, Y.; Marriott, P.; Shellie, R.; Hügel, H. Solid-Phase Micro-Extraction-Comprehensive Two-Dimensional Gas Chromatography of Ginger (Zingiber officinale) Volatiles. Flavour Fragr. J. 2003, 18, 5–12. DOI:10.1002/ffj.1133.
  • Tranchida, P. Q. Comprehensive Two-Dimensional Gas Chromatography: A Perspective on Processes of Modulation. J. Chromatogr. A 2017. DOI:10.1016/j.chroma.2017.04.039.
  • Di, X.; Shellie, R. A.; Marriott, P. J.; Huie, C. W. Application of Headspace Solid-Phase Microextraction (HS-SPME) and Comprehensive Two-Dimensional Gas Chromatography (GC x GC) for the Chemical Profiling of Volatile Oils in Complex Herbal Mixtures. J. Sep. Sci. 2004, 27, 451–458. DOI:10.1002/jssc.200301642.
  • Adahchour, M.; Beens, J.; Vreuls, R. J. J.; Batenburg, A. M.; Brinkman, U. A. T. Comprehensive Two-Dimensional Gas Chromatography of Complex Samples by Using a “Reversed-Type” Column Combination: Application to Food Analysis. J. Chromatogr. A 2004, 1054, 47–55. DOI:10.1016/S0021-9673(04)01288-9.
  • Flores, G.; Ruiz Del Castillo, M. L.; Blanch, G. P.; Herraiz, M. Detection of the Adulteration of Olive Oils by Solid Phase Microextraction and Multidimensional Gas Chromatography. Food Chem. 2006, 97, 336–342. DOI:10.1016/j.foodchem.2005.04.021.
  • Stan, H.-J.; Mrowetz, D. Residue Analysis of Pesticides in Food by Two-Dimensional Gas Chromatography With Capillary Columns and Parallel Detection With Flame-Photometric and Electron-Capture Detection. J. Chromatogr. A 1983, 279, 173–187. DOI:10.1016/S0021-9673(01)93616-7.
  • Korytár, P.; Leonards, P. E.; de Boer, J.; Brinkman, U. A. T. High-Resolution Separation of Polychlorinated Biphenyls by Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A 2002, 958, 203–218. DOI:10.1016/S0021-9673(02)00327-8.
  • Chen, S.; Shi, L.; Shan, Z.; Hu, Q. Determination of Organochlorine Pesticide Residues in Rice And Human and Fish Fat by Simplified Two-Dimensional Gas Chromatography. Food Chem. 2007, 104, 1315–1319. DOI:10.1016/j.foodchem.2006.10.032.
  • Adahchour, M.; Beens, J.; Brinkman, U. A. T. Recent Developments in the Application of Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A 2008, 1186, 67–108. DOI:10.1016/j.chroma.2008.01.002.
  • Tranchida, P. Q.; Purcaro, G.; Maimone, M.; Mondello, L. Impact of Comprehensive Two-Dimensional Gas Chromatography With Mass Spectrometry on Food Analysis. J. Sep. Sci. 2016, 39, 149–161. DOI:10.1002/jssc.201500379.
  • Shellie, R.; Marriott, P. J. Comprehensive Two-Dimensional Gas Chromatography With Fast Enantioseparation. Anal. Chem. 2002, 74, 5426–5430. DOI:10.1021/ac025803e.
  • Dallüge, J.; Van Rijn, M.; Beens, J.; Vreuls, R. J. J. J.; Brinkman, U.A.T.T. Comprehensive Two-Dimensional Gas Chromatography With Time-of-Flight Mass Spectrometric Detection Applied to the Determination of Pesticides in Food Extracts. J. Chromatogr. A 2002, 965, 207–217. DOI:10.1016/S0021-9673(01)01324-3.
  • Adahchour, M.; Brandt, M.; Baier, H.-U. U.; Vreuls, R. J. J. R. J. J. R. J. J.; Batenburg, A. M.; Brinkman, U. A. T. Comprehensive Two-Dimensional Gas Chromatography Coupled to a Rapid-Scanning Quadrupole Mass Spectrometer: Principles And Applications. J. Chromatogr. A 2005, 1067, 245–254. DOI:10.1016/j.chroma.2004.09.094.
  • Franchina, F. A.; Zoccali, M.; Pantò, S.; Sciarrone, D. Mass spectrometry in Food Quality and Safety: An Overview of the Current Status. Comprehen. Anal. Chem. 2015, 68, 3–76.
  • Tranchida, P. Q.; Franchina, F. A.; Zoccali, M.; Pantò, S.; Sciarrone, D.; Dugo, P.; Mondello, L. Untargeted and Targeted Comprehensive Two-Dimensional GC Analysis Using A Novel Unified High-Speed Triple Quadrupole Mass Spectrometer. J. Chromatogr. A 2013, 1278, 153–159. DOI:10.1016/j.chroma.2012.12.066.
  • Pantò, S.; Sciarrone, D; Franchina, F.A.; Zoccali, M. Advanced Mass Spectrometry. Comprehen. Anal. Chem. 2015, 68, 77–129.
  • Marriott, P.; Shellie, R. Principles and Applications of Comprehensive Two-Dimensional Gas Chromatography. TrAC Trends Anal. Chem. 2002, 21, 573–583. DOI:10.1016/S0165-9936(02)00814-2.
  • Ye, Z. Q.; Weinberg, H. S.; Meyer, M. T.; Yang, W. C.; Mirzaei, H.; Liu, X.; Regnier, F. E. The Power of Hyphenated Chromatography/Time-of-Flight Mass Spectrometry in Public Health Laboratories. J. Agric. Food Chem. 2015, 63, 5163–5168.
  • Lemière, F. Interfaces for LC-MS. LC – MS. 2001, 12, 2–8.
  • Schmarr, H.-G.; Bernhardt, J. Profiling Analysis of Volatile Compounds From Fruits Using Comprehensive Two-Dimensional Gas Chromatography and Image Processing Techniques. J. Chromatogr. A 2010, 1217, 565–574. DOI:10.1016/j.chroma.2009.11.063.
  • Welke, J. E.; Manfroi, V.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C.; Zini, C. A.; Alcaraz Zini, C.; Zini, C. A. Differentiation of Wines According to Grape Variety Using Multivariate Analysis of Comprehensive Two-Dimensional Gas Chromatography With Time-of-Flight Mass Spectrometric Detection Data. Food Chem. 2013, 141, 3897–3905. DOI:10.1016/j.foodchem.2013.06.100.
  • Robinson, A. L.; Adams, D. O.; Boss, P. K.; Heymann, H.; Solomon, P. S.; Trengove, R. D. The Relationship Between Sensory Attributes and Wine Composition for Australian Cabernet Sauvignon Wines. Aust. J. Grape Wine Res. 2011, 17, 327–340. DOI:10.1111/j.1755-0238.2011.00155.x.
  • Robinson, A. L.; Boss, P. K.; Heymann, H.; Solomon, P. S.; Trengove, R. D. Influence of Yeast Strain, Canopy Management, and Site on the Volatile Composition and Sensory Attributes of Cabernet Sauvignon Wines From Western Australia. J. Agric. Food Chem. 2011, 59, 3273–3284. DOI:10.1021/jf104324d.
  • Welke, J. E.; Zanus, M.; Lazzarotto, M.; Pulgati, F. H.; Zini, C. A. Main Differences Between Volatiles of Sparkling and Base Wines Accessed Through Comprehensive Two Dimensional Gas Chromatography With Time-of-Flight Mass Spectrometric Detection and Chemometric Tools. Food Chem. 2014, 164, 427–437. DOI:10.1016/j.foodchem.2014.05.025.
  • Zhang, L.; Zeng, Z.; Zhao, C.; Kong, H.; Lu, X.; Xu, G. A. Comparative Study of Volatile Components in Green, Oolong and Black Teas by Using Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry and Multivariate Data Analysis. J. Chromatogr. A 2013, 1313, 245–252. DOI:10.1016/j.chroma.2013.06.022.
  • Zeng, Z. D; Hugel, H. M.; Marriott, P. J. Component Correlation Between Related Samples by Using Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry With Chemometric Tools. J. Chromatogr. A 2012, 1254, 98–106. DOI:10.1016/j.chroma.2012.07.032.
  • Hu, W.; Zhang, L.; Li, P.; Wang, X.; Zhang, Q.; Xu, B.; Sun, X.; Ma, F.; Ding, X. Characterization of Volatile Components in Four Vegetable Oils by Headspace Two-Dimensional Comprehensive Chromatography Time-of-Flight Mass Spectrometry. Talanta 2014, 129, 629–635. DOI:10.1016/j.talanta.2014.06.010.
  • Stanimirova, I.; Üstün, B.; Cajka, T.; Riddelova, K.; Hajslova, J.; Buydens, L. M. C.; Walczak, B. Tracing the Geographical Origin of Honeys Based on Volatile Compounds Profiles Assessment Using Pattern Recognition Techniques. Food Chem. 2010, 118(1), 171–176. DOI:10.1016/j.foodchem.2009.04.079.
  • Zini, C. A.; De Assis, T. F.; Ledford, E. B.; Dariva, C.; Fachel, J.; Christensen, E.; Pawliszyn, J. Correlations Between Pulp Properties of Eucalyptus Clones and Leaf Volatiles Using Automated Solid-Phase Microextraction. J. Agric. Food Chem. 2003, 51, 7848–7853. DOI:10.1021/jf034799k.
  • Ma, C.; Wang, H.; Lu, X.; Li, H.; Liu, B.; Xu, G. Analysis of Artemisia Annua L. Volatile Oil by Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2007, 1150, 50–53. DOI:10.1016/j.chroma.2006.08.080.
  • Vestner, J.; Malherbe, S.; Du Toit, M.; Nieuwoudt, H. H.; Mostafa, A.; Górecki, T.; Tredoux, A. G. J.; De Villiers, A. Investigation of the Volatile Composition of Pinotage Wines Fermented With Different Malolactic Starter Cultures Using Comprehensive Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry (GC×GC-TOF-MS). J. Agric. Food Chem. 2011, 59, 12732–12744. DOI:10.1021/jf2028208.
  • Bogusz, J.S.; Marco, P. H.; Valderrama, P.; Damasceno, F. C.; Aranda, M. S.; Zini, C. A.; Caramao, E. B.; Tavares Melo, A. M.; Filho, J. T.; Godoy, H. T. Analysis of Volatile Compounds in Capsicum spp. by Headspace Solid-Phase Microextraction and GC [Times] GC-TOFMS. Anal. Methods 2015, 7, 521–529. DOI:10.1039/C4AY01455C.
  • Takahashi, K.; Kabashima, F.; Tsuchiya, F. Comprehensive Two-Dimensional Gas Chromatography Coupled With Time-of-Flight Mass Spectrometry Reveals the Correlation Between Chemical Compounds in Japanese Sake and its Organoleptic Properties. J. Biosci. Bioeng. 2016, 121, 274–280. DOI:10.1016/j.jbiosc.2015.06.016.
  • Hantao, L. W.; Aleme, H. G.; Passador, M. M.; Furtado, E. L.; Ribeiro, F. A.; Poppi, R. J.; Augusto, F. Determination of Disease Biomarkers in Eucalyptus by Comprehensive Two-Dimensional Gas Chromatography and Multivariate Data Analysis. J. Chromatogr. A 2013, 1279, 86–91. DOI:10.1016/j.chroma.2013.01.013.
  • Schmarr, H. G.; Bernhardt.; Fischer, U.; Stephan, A.; Müller, P.; Durner, D. Two-Dimensional Gas Chromatographic Profiling as a Tool for a Rapid Screening of the Changes in Volatile Composition Occurring Due to Microoxygenation of Red Wines. Anal. Chim. Acta 2010, 672, 114–123. DOI:10.1016/j.aca.2010.05.002.
  • Ozel, M. Z.; Yanik, D. K.; Gogus, F.; Hamilton, J. F.; Lewis, A. C. Effect of Roasting Method and Oil Reduction on Volatiles of Roasted Pistacia terebinthus Using Direct Thermal Desorption-GCxGC-TOF/MS. LWT - Food Sci. Technol. 2014, 59, 283–288. DOI:10.1016/j.lwt.2014.05.004.
  • Onorevoli, B.; Machado, M. E.; Dariva, C.; Franceschi, E.; Krause, L. C.; Jacques, R. A.; Caramão, E. B. A One-Dimensional and Comprehensive Two-Dimensional Gas Chromatography Study of the Oil and the Bio-Oil of the Residual Cakes From the Seeds of Crambe abyssinica. Ind. Crops Prod. 2014, 52, 8–18. DOI:10.1016/j.indcrop.2013.09.034.
  • Soares, R. D.; Welke, J. E.; Nicolli, K. P.; Zanus, M.; Caramão, E. B.; Manfroi, V.; Zini, C. A. Monitoring the Evolution of Volatile Compounds Using Gas Chromatography During the Stages of Production of Moscatel Sparkling Wine. Food Chem. 2015, 183, 291–304. DOI:10.1016/j.foodchem.2015.03.013.
  • Aura, A. M.; Mattila, I.; Hyötyläinen, T.; Gopalacharyulu, P.; Cheynier, V.; Souquet, J. M.; Bes, M.; Le Bourvellec, C.; Guyot, S.; Orešič, M. Characterization of Microbial Metabolism of Syrah Grape Products in an In Vitro Colon Model Using Targeted and Non-Targeted Analytical Approaches. Eur. J. Nutr. 2013, 52, 833–846. DOI:10.1007/s00394-012-0391-8.
  • Petronilho, S.; Maraschin, M.; Delgadillo, I.; Coimbra, M. A.; Rocha, S. M. Sesquiterpenic Composition of The Inflorescences of Brazilian Chamomile (Matricaria recutita L.): Impact of the Agricultural Practices. Ind. Crops Prod. 2011, 34, 1482–1490. DOI:10.1016/j.indcrop.2011.05.005.
  • Yang, S.; Sadilek, M.; Synovec, R. E.; Lidstrom, M. E. Liquid Chromatography-Tandem Quadrupole Mass Spectrometry and Comprehensive Two-Dimensional Gas Chromatography-Time-Of-Flight Mass Spectrometry Measurement of Targeted Metabolites of Methylobacterium Extorquens AM1 Grown on Two Different Carbon Sources. J. Chromatogr. A 2009, 1216, 3280–3289. DOI:10.1016/j.chroma.2009.02.030.
  • Gogus, F.; Ozel, M. Z.; Kocak, D.; Hamilton, J. F.; Lewis, A. C. Analysis of Roasted and Unroasted Pistacia terebinthus Volatiles Using Direct Thermal Desorption-GCxGC-TOF/MS. Food Chem. 2011, 129, 1258–1264. DOI:10.1016/j.foodchem.2011.05.003.
  • Özel, M. Z.; Göǧüş, F.; Hamilton, J. F.; Lewis, A. C. Analysis of Volatile Components from Ziziphora taurica Subsp. Taurica by Steam Distillation, Superheated-Water Extraction, and Direct Thermal Desorption With GCGC-TOFMS. Anal. Bioanal. Chem. 2005, 382, 115–119. DOI:10.1007/s00216-005-3156-x.
  • Humston, E. M.; Knowles, J. D.; McShea, A.; Synovec, R. E. Quantitative Assessment of Moisture Damage for Cacao Bean Quality Using Two-Dimensional Gas Chromatography Combined With Time-of-Flight Mass Spectrometry and Chemometrics. J. Chromatogr. A 2010, 1217, 1963–1970. DOI:10.1016/j.chroma.2010.01.069.
  • Adahchour, M.; Wiewel, J.; Verdel, R.; Vreuls, R. J. J.; Brinkman, U. A. T. Improved Determination of Flavour Compounds in Butter by Solid-Phase (Micro)Extraction and Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A 2005, 1086, 99–106. DOI:10.1016/j.chroma.2005.05.094.
  • de Souza, P. P.; Cardeal, Zde. L.; Augusti, R.; Morrison, P.; Marriott, P. J. Determination of Volatile Compounds in Brazilian Distilled Cachaa by Using Comprehensive Two-Dimensional Gas Chromatography and Effects of Production Pathways. J. Chromatogr. A 2009, 1216, 2881–2890. DOI:10.1016/j.chroma.2008.10.061.
  • Cardeal, Z. L.; de Souza, P. P.; Silva, M. D. R. G. da; Marriott, P. J. Comprehensive Two-Dimensional Gas Chromatography for Fingerprint Pattern Recognition in Cachaca Production. Talanta 2008, 74, 793–799. DOI:10.1016/j.talanta.2007.07.021.
  • Hantao, L. W.; Toledo, B. R.; de Lima Ribeiro, A. F.; Pizetta, M.; Pierozzi, C. G.; Furtado, E. L.; Augusto, F. Comprehensive Two-Dimensional Gas Chromatography Combined to Multivariate Data Analysis for Detection of Disease-Resistant Clones of Eucalyptus. Talanta 2013, 116, 1079–1084. DOI:10.1016/j.talanta.2013.08.033.
  • Bordiga, M.; Rinaldi, M.; Locatelli, M.; Piana, G.; Travaglia, F.; Coïsson, J. D.; Arlorio, M. Characterization of Muscat Wines Aroma Evolution Using Comprehensive Gas Chromatography Followed by a Post-Analytic Approach to 2D Contour Plots Comparison. Food Chem. 2013, 140, 57–67. DOI:10.1016/j.foodchem.2013.02.051.
  • Bordiga, M.; Piana, G.; Coïsson, J. D.; Travaglia, F.; Arlorio, M. Headspace Solid-Phase Micro Extraction Coupled to Comprehensive Two-Dimensional With Time-of-Flight Mass Spectrometry Applied to the Evaluation of Nebbiolo-Based Wine Volatile Aroma During Ageing. Int. J. Food Sci. Technol. 2014, 49, 787–796. DOI:10.1111/ijfs.12366.
  • Ozel, M. Z.; Gogus, F.; Lewis, A. C. Subcritical Water Extraction of Essential Oils From Thymbra Spicata. Food Chem. 2003, 82, 381–386. DOI:10.1016/S0308-8146(02)00558-7.
  • Tranchida, P. Q.; Salivo, S.; Bonaccorsi, I.; Rotondo, A.; Dugo, P.; Mondello, L. Analysis of the Unsaponifiable Fraction of Lipids Belonging to Various Milk-Types by Using Comprehensive Two-Dimensional Gas Chromatography With Dual Mass Spectrometry/Flame Ionization Detection and With the Support of High Resolution Time-of-Flight Mass. J. Chromatogr. A 2013, 1313, 194–201. DOI:10.1016/j.chroma.2013.07.089.
  • Risticevic, S.; DeEll, J. R.; Pawliszyn, J. Solid Phase Microextraction Coupledn Apples: Implementation of Structured Separations for Optimization of Sample With Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry for High-Resolution Metabolite Profiling in Preparation. J. Chromatogr. A 2012, 1251, 208–218. DOI:10.1016/j.chroma.2012.06.052.
  • Leduc, F.; Tournayre, P.; Kondjoyan, N.; Mercier, F.; Malle, P.; Kol, O.; Berdagué, J. L.; Duflos, G. Evolution of Volatile Odorous Compounds During the Storage of European Seabass (Dicentrarchus labrax). Food Chem. 2012, 131, 1304–1311. DOI:10.1016/j.foodchem.2011.09.123.
  • Schmarr, H. G.; Keiser, J.; Krautwald, S. An Improved Method for the Analysis of 2-Aminoacetophenone in Wine Based on Headspace Solid-Phase Microextraction and Heart-Cut Multidimensional Gas Chromatography With Selective Detection by Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1477, 64–69. DOI:10.1016/j.chroma.2016.11.029.
  • Špánik, I.; Janáçová, A.; Šusterová, Z.; Jakubík, T.; Jánošková, N.; Novák, P.; Chlebo, R. Characterisation of VOC Composition of Slovak Monofloral Honeys by GC×GC-TOF-MS. Chem. Pap. 2012, 67, 127–134.
  • Perestrelo, R.; Barros, A. S.; Câmara, J. S.; Rocha, S. M. In-Depth Search Focused on Furans, Lactones, Volatile Phenols, and Acetals as Potential Age Markers of Madeira Wines by Comprehensive Two-Dimensional Gas Chromatography With Time-Of-Flight Mass Spectrometry Combined with Solid Phase Microextraction. J. Agric. Food Chem. 2011, 59, 3186–3204. DOI:10.1021/jf104219t.
  • Mondello, L.; Casilli, A.; Tranchida, P. Q.; Dugo, P.; Costa, R.; Festa, S.; Dugo, G. Comprehensive Multidimensional GC for the Characterization of Roasted Coffee Beans. J. Sep. Sci. 2004, 27, 442–450. DOI:10.1002/jssc.200301662.
  • Samykanno, K.; Pang, E.; Marriott, P. J. Chemical Characterisation of Two Australian-Grown Strawberry Varieties by Using Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry. Food Chem. 2013, 141, 1997–2005. DOI:10.1016/j.foodchem.2013.05.083.
  • Dymerski, T.; Namienik, J.; Leontowicz, H.; Leontowicz, M.; Vearasilp, K.; Martinez-Ayala, A. L.; Gonzlez-Aguilar, G. A.; Robles-Snchez, M.; Gorinstein, S. Chemistry and Biological Properties of Berry Volatiles by Two-Dimensional Chromatography, Fluorescence and Fourier Transform Infrared Spectroscopy Techniques. Food Res. Int. 2016, 83, 74–86. DOI:10.1016/j.foodres.2016.02.017.
  • Klimánková, E.; Holadová, K.; Hajšlová, J.; Čajka, T.; Poustka, J.; Koudela, M. Aroma Profiles of Five Basil (Ocimum basilicum L.) Cultivars Grown Under Conventional and Organic Conditions. Food Chem. 2008, 107, 464–472. DOI:10.1016/j.foodchem.2007.07.062.
  • Oliveira, L. F.; Braga, S. C. G. N.; Augusto, F.; Hashimoto, J. C.; Efraim, P.; Poppi, R. J. Differentiation of Cocoa Nibs From Distinct Origins Using Comprehensive Two-Dimensional Gas Chromatography and Multivariate Analysis. Food Res. Int. 2016, 90, 133–138. DOI:10.1016/j.foodres.2016.10.047.
  • Cordero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Reichenbach, S. E.; Tian, X.; Tao, Q. Targeted and Non-Targeted Approaches for Complex Natural Sample Profiling By GC×GC-qMS. J. Chromatogr. Sci. 2010, 48, 251–261. DOI:10.1093/chromsci/48.4.251.
  • Cardeal, Z. L.; Marriott, P. J. Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry Analysis and Comparison of Volatile Organic Compounds in Brazilian Cachaça and Selected Spirits. Food Chem. 2009, 112, 747–755. DOI:10.1016/j.foodchem.2008.06.057.
  • Shellie, R. A.; Marriott, P. J.; Huie, C. W. Comprehensive Two-Dimensional Gas Chromatography (GC×GC) and GC×GC-Quadrupole MS Analysis Of Asian and American Ginseng. J. Sep. Sci. 2003, 26, 1185–1192. DOI:10.1002/jssc.200301404.
  • Cordero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Schieberle, P.; Reichenbach, S. E.; Tao, Q. Profiling Food Volatiles By Comprehensive Two-Dimensional Gas Schromatography Coupled With Mass Spectrometry: Advanced Fingerprinting Approaches for Comparative Analysis of the Volatile Fraction of Roasted Hazelnuts (Corylus avellana L.) from Different Ori. J. Chromatogr. A 2010, 1217, 5848–5858. DOI:10.1016/j.chroma.2010.07.006.
  • Cardeal, Z. L.; Gomes Da Silva, M. D. R.; Marriott, P. J. Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometric Analysis of Pepper Volatiles. Rapid Commun. Mass Spectrom. 2006, 20, 2823–2836. DOI:10.1002/rcm.2665.
  • Cajka, T.; Hajslova, J.; Pudil, F.; Riddellova, K. Traceability of Honey Origin Based on Volatiles Pattern Processing by Artificial Neural Networks. J. Chromatogr. A 2009, 1216, 1458–1462. DOI:10.1016/j.chroma.2008.12.066.
  • Cordero, C.; Bicchi, C.; Rubiolo, P. Group-Type and Fingerprint Analysis of Roasted Food Matrices (Coffee And Hazelnut Samples) by Comprehensive Two-Dimensional Gas Chromatography. J. Agric. Food Chem. 2008, 56, 7655–7666. DOI:10.1021/jf801001z.
  • Dymerski, T.; Chmiel, T.; Mostafa, A.; Śliwińska, M.; Wiśniewska, P.; Wardencki, W.; Namieśnik, J.; Górecki, T. Botanical and Geographical Origin Characterization of Polish Honeys by Headspace SPME-GC× GC-TOFMS. Curr. Org. Chem. 2013, 17, 853–870. DOI:10.2174/1385272811317080011.
  • Brokl, M.; Soria, A. C.; Ruiz-Matute, A. I.; Sanz, M. L. M. L. M. L. M. L.; Ramos, L. Separation of Disaccharides by Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry. Application to Honey Analysis. J. Agric. Food Chem. 2010, 58, 11561–11567. DOI:10.1021/jf102646n.
  • Kupska, M.; Chmiel, T.; Jȩdrkiewicz, R.; Wardencki, W.; Namieśnik, J. Comprehensive Two-Dimensional Gas Chromatography for Determination of the Terpenes Profile of Blue Honeysuckle Berries. Food Chem. 2014, 152, 88–93. DOI:10.1016/j.foodchem.2013.11.129.
  • Mayadunne, R.; Nguyen, T. T.; Marriott, P. J. Amino Acid Analysis by Using Comprehensive Two-Dimensional Gas Chromatography. Anal. Bioanal. Chem. 2005, 382, 836–847. DOI:10.1007/s00216-005-3083-x.
  • Biedermann, M.; Grob, K. Comprehensive Two-Dimensional Gas Chromatography for Characterizing Mineral Oils in Foods and Distinguishing Them From Synthetic Hydrocarbons. J. Chromatogr. A 2015, 1375, 146–153. DOI:10.1016/j.chroma.2014.11.064.
  • Rochat, S.; Laumer, J. Y. de Saint; Chaintreau, A. Analysis of Sulfur Compounds From the In-Oven Roast Beef Aroma by Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A 2007, 1147, 85–94. DOI:10.1016/j.chroma.2007.02.039.
  • Pizzutti, I. R.; Vreuls, R. J. J.; de Kok, A.; Roehrs, R.; Martel, S.; Friggi, C. A.; Zanella, R. Design of a Compressed Air Modulator to be Used in Comprehensive Multidimensional Gas Chromatography and Its Application in the Determination of Pesticide Residues in Grapes. J. Chromatogr. A 2009, 1216, 3305–3311. DOI:10.1016/j.chroma.2009.01.088.
  • Mondello, L.; Casilli, A.; Quinto Tranchida, P.; Lo Presti, M.; Dugo, P.; Dugo, G.; Tranchida, P. Q.; Lo Presti, M.; Dugo, P.; Dugo, G. Comprehensive Gas Chromatography Coupled to Mass Spectrometry for the Separation of Pesticides in a Very Complex Matrix. Anal. Bioanal. Chem. 2007, 389, 1755–1763. DOI:10.1007/s00216-007-1412-y.
  • Zrostlíková, J.; Hajšlová, J.; Čajka, T.; Zrostlı́ková, J.; Hajšlová, J.; Čajka, T.; Zrostlíková, J.; Hajšlová, J.; Čajka, T. Evaluation of Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry for the Determination of Multiple Pesticide Residues in Fruit. J. Chromatogr. A 2003, 1019, 173–186. DOI:10.1016/S0021-9673(03)01302-5.
  • Purcaro, G.; Morrison, P.; Moret, S.; Conte, L. S.; Marriott, P. J. Determination of Polycyclic Aromatic Hydrocarbons in Vegetable Oils Using Solid-Phase Microextraction-Comprehensive Two-Dimensional Gas Chromatography Coupled With Time-Of-Flight Mass Spectrometry. J. Chromatogr. A 2007, 1161, 284–291. DOI:10.1016/j.chroma.2007.05.105.
  • Rocha, S. M.; Coelho, E.; Zrostlíková, J.; Delgadillo, I.; Coimbra, M. A. Comprehensive Two-Dimensional Gas Chromatography With Time-Of-Flight Mass Spectrometry of Monoterpenoids as a Powerful Tool For Grape Origin Traceability. J. Chromatogr. A 2007, 1161, 292–299. DOI:10.1016/j.chroma.2007.05.093.
  • Dasgupta, S.; Banerjee, K.; Patil, S. H.; Ghaste, M.; Dhumal, K. N.; Adsule, P. G. Optimization of Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry for Separation and Estimation of The Residues of 160 Pesticides and 25 Persistent Organic Pollutants in Grape And Wine. J. Chromatogr. A 2010, 1217, 3881–3889. DOI:10.1016/j.chroma.2010.04.003.
  • Jia, W.; Chu, X.; Zhang, F. Multiresidue Pesticide Analysis in Nutraceuticals From Green Tea Extracts by Comprehensive Two-Dimensional Gas Chromatography With Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2015, 1395, 160–166. DOI:10.1016/j.chroma.2015.03.071.
  • Perestrelo, R.; Petronilho, S.; Câmara, J. S.; Rocha, S. M. Comprehensive Two-Dimensional Gas Chromatography With Time-of-Flight Mass Spectrometry Combined With Solid Phase Microextraction as a Powerful Tool for Quantification of Ethyl Carbamate in Fortified Wines. The Case Study of Madeira Wine. J. Chromatogr. A 2010, 1217, 3441–3445. DOI:10.1016/j.chroma.2010.03.027.
  • Cai, L.; Koziel, J. A.; Dharmadhikari, M.; (Hans) van Leeuwen, J. Rapid Determination of Trans-Resveratrol in Red Wine by Solid-Phase Microextraction With on-Fiber Derivatization and Multidimensional Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2009, 1216, 281–287. DOI:10.1016/j.chroma.2008.11.050.
  • Geus, H. D; Aidos, I.; Boer, J. D; Luten, J. B. Characterisation of Fatty Acids in Biological Oil Samples Using Comprehensive Multidimensional Gas Chromatography. 2001, 910, 95–103.
  • Fanali, C.; Beccaria, M.; Salivo, S.; Tranchida, P.; Tripodo, G.; Farnetti, S.; Dugo, L.; Dugo, P.; Mondello, L. Non-Polar Lipids Characterization Of Quinoa (Chenopodium quinoa) Seed by Comprehensive Two-Dimensional Gas Chromatography With Flame Ionization/Mass Spectrometry Detection and Non-Aqueous Reversed-Phase Liquid Chromatography With Atmospheric Pressure Chem. J. Sep. Sci. 2015, 38, 3151–3160. DOI:10.1002/jssc.201500466.
  • Botezatu, A.; Pickering, G. J.; Kotseridis, Y. Development of a Rapid Method for the Quantitative Analysis of Four Methoxypyrazines in White and Red Wine Using Multi-Dimensional Gas Chromatography–Mass Spectrometry. Food Chem. 2014, 160, 141–147. DOI:10.1016/j.foodchem.2014.03.044.
  • Schmarr, H. G.; Ganss, S.; Koschinski, S.; Fischer, U.; Riehle, C.; Kinnart, J.; Potouridis, T.; Kutyrev, M. Pitfalls Encountered During Quantitative Determination of 3-Alkyl-2-Methoxypyrazines in Grape Must and Wine Using Gas Chromatography–Mass Spectrometry With Stable Isotope Dilution Analysis. Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2010, 1217, 6769–6777. DOI:10.1016/j.chroma.2010.06.049.
  • Hoh, E.; Lehotay, S. J.; Mastovska, K.; Huwe, J. K. Evaluation of Automated Direct Sample Introduction With Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry for the Screening Analysis of Dioxins in Fish Oil. J. Chromatogr. A 2008, 1201, 69–77. DOI:10.1016/j.chroma.2008.05.089.
  • Hernández, F.; Portolés, T.; Pitarch, E.; López, F. J. Gas Chromatography Coupled to High-Resolution Time-of-Flight Mass Spectrometry to Analyze Trace-Level Organic Compounds in The Environment, Food Safety and Toxicology. TrAC – Trends Anal. Chem. 2011, 30, 388–400. DOI:10.1016/j.trac.2010.11.007.
  • Dymerski, T.; Namieśnik, J.; Vearasilp, K.; Arancibia-Avila, P.; Toledo, F.; Weisz, M.; Katrich, E.; Gorinstein, S. Comprehensive Two-Dimensional Gas Chromatography and Three-Dimensional Fluorometry for Detection of Volatile and Bioactive Substances in Some Berries. Talanta 2015, 134, 460–467. DOI:10.1016/j.talanta.2014.11.061.
  • Santos, T. G.; Fukuda, K.; Kato, M. J.; Sartorato, A.; Duarte, M. C. T.; Ruiz, A. L. T. G.; de Carvalho, J. E.; Augusto, F.; Marques, F. A.; Sales Maia, B. H. L. N. Characterization of the Essential Oils of Two Species of Piperaceae by One- and Two-Dimensional Chromatographic Techniques With Quadrupole Mass Spectrometric Detection. Microchem. J. 2014, 115, 113–120. DOI:10.1016/j.microc.2014.02.014.
  • Capobiango, M.; Mastello, R. B.; Chin, S. T.; Oliveira, Ede. S.; Cardeal, Zde. L.; Marriott, P. J. Identification of Aroma-Active Volatiles in Banana Terra Spirit Using Multidimensional Gas Chromatography With Simultaneous Mass Spectrometry and Olfactometry Detection. J. Chromatogr. A 2015, 1388, 227–235. DOI:10.1016/j.chroma.2015.02.029.
  • Villire, A.; Arvisenet, G.; Lethuaut, L.; Prost, C.; Sérot, T. Selection of a Representative Extraction Method for the Analysis of Odourant Volatile Composition of French Cider by GC-MS-O and GC×GC-TOF-MS. Food Chem. 2012, 131, 1561–1568. DOI:10.1016/j.foodchem.2011.10.008.
  • Rivellino, S. R.; Hantao, L. W.; Risticevic, S.; Carasek, E.; Pawliszyn, J.; Augusto, F. Detection of Extraction Artifacts in the Analysis of Honey Volatiles Using Comprehensive Two-Dimensional Gas Chromatography. Food Chem. 2013, 141, 1828–1833. DOI:10.1016/j.foodchem.2013.05.003.
  • Purcaro, G.; Tranchida, P. Q.; Jacques, R. A.; Caramão, E. B.; Moret, S.; Conte, L.; Dugo, P.; Dugo, G.; Mondello, L. Characterization of the Yerba Mate (Ilex paraguariensis) Volatile Fraction Using Solid-Phase Microextraction-Comprehensive 2-D GC-MS. J. Sep. Sci. 2009, 32, 3755–3763. DOI:10.1002/jssc.200900343.
  • Cordero, C.; Zebelo, S. A.; Gnavi, G.; Griglione, A.; Bicchi, C.; Maffei, M. E.; Rubiolo, P. HS-SPME-GCxGC-qMS Volatile Metabolite Profiling of Chrysolina Herbacea Frass and Mentha spp. Leaves. Anal. Bioanal. Chem. 2012, 402, 1941–1952. DOI:10.1007/s00216-011-5600-4.
  • Breme, K.; Tournayre, P.; Fernandez, X.; Meierhenrich, U. J.; Brevard, H.; Joulain, D.; Berdagué, J. L. Characterization of Volatile Compounds of Indian Cress Absolute by GC-Olfactometry/Video-Sniff and Comprehensive Two-Dimensional Gas Chromatography. J. Agric. Food Chem. 2010, 58, 473–480. DOI:10.1021/jf902946v.
  • Wang, K.; Zhu, R.; Qu, R.; Li, Z. Comprehensive Two-Dimensional Gas Chromatography–Time-of-Flight Mass Spectrometry for the Analysis of Volatile Components in Neroli Essential Oil. Mendeleev Commun. 2012, 22, 45–46. DOI:10.1016/j.mencom.2012.01.018.
  • Humston, E. M.; Zhang, Y.; Brabeck, G. F.; McShea, A.; Synovec, R. E. Development of a GCxGC-TOFMS Method Using SPME to Determine Volatile Compounds in Cacao Beans. J. Sep. Sci. 2009, 32, 2289–2295. DOI:10.1002/jssc.200900143.
  • Nicolotti, L.; Cagliero, C.; Liberto, E.; Sgorbini, B.; Rubiolo, P.; Bicchi, C. Quantitative Fingerprinting by Headspace-Two-Dimensional Comprehensive Gas Chromatography-Mass Spectrometry of Solid Matrices: Some Challenging Aspects of the Exhaustive Assessment of Food Volatiles. Anal. Chim. Acta. 2013, 798, 115–125. DOI:10.1016/j.aca.2013.08.052.
  • Rochat, S.; Egger, J.; Chaintreau, A. Strategy for the Identification of Key Odorants: Application to Shrimp Aroma. J. Chromatogr. A. 2009, 1216, 6424–6432. DOI:10.1016/j.chroma.2009.07.014.
  • Oliveira, L.F.; Braga, S.C.; Filgueiras, P.R.; Augusto, F.; Poppi, R.J. Assessment of Robustness on Analysis Using Headspace Solid-Phase Microextraction and Comprehensive Two-Dimensional Gas Chromatography Through Experimental Designs. Talanta. 2014, 129, 303–308. DOI:10.1016/j.talanta.2014.05.038.
  • da Cunha, M.E.; Schneider, J.K.; Brasil, M.C.; Cardoso, C.A.; Monteiro, L.R.; Mendes, F.L.; Pinho, A.; Jacques, R. A.; Machado, M. E.; Freitas, L.S.; Caramão, E. B. Analysis of Fractions and Bio-Oil of Sugar Cane Straw by One-Dimensional and Two-Dimensional Gas Chromatography With Quadrupole Mass Spectrometry (GC×GC/qMS). Microchem. J. 2013, 110, 113–119. DOI:10.1016/j.microc.2013.03.004.
  • Baharum, S. N.; Bunawan, H.; Ghani, M. A.; Mustapha, W. A.; Noor, N. M. Analysis of the Chemical Composition of the Essential Oil of Polygonum minus Huds. Using Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry (GC-TOF MS). Molecules 2010, 15, 7006–7015. DOI:10.3390/molecules15107006.
  • Adahchour, M.; van Stee, L.P.; Beens, J.; Vreuls, R. J.; Batenburg, M.A.; Brinkman, U. A.T. Comprehensive Two-Dimensional Gas Chromatography With Time-of-Flight Mass Spectrometric Detection for the Trace Analysis of Flavour Compounds in Food. J. Chromatogr. A 2003, 1019, 157–172. DOI:10.1016/S0021-9673(03)01131-2.
  • Risticevic, S.; Pawliszyn, J. Solid-Phase Microextraction in Targeted and Nontargeted Analysis: Displacement and Desorption Effects. Anal. Chem. 2013, 85, 8987–8995. DOI:10.1021/ac4003112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.