1,188
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Biosensors for GMO Testing: Nearly 25 Years of Research

, &
Pages 391-405 | Published online: 22 Mar 2018

References

  • European Commission. Directive (EC) No 2001/18/EC on the Deliberate Release into the Environment of Genetically Modified Organisms and Repealing Council Directive 90/220/EEC.
  • Phillips, T. Genetically Modified Organisms (GMOs): Transgenic Crops and Recombinant DNA Technology. Nat. Educ. 2008, 1, 213.
  • Altpeter, F.; Springer, N. M.; Bartley, L. E.; Blechl, A. E.; Brutnell, T. P.; Citovsky, V.; Conrad, L. J.; Gelvin, S. B.; Jackson, D. P.; Kausch, A. P.; et al. Advancing Crop Transformation in the Era of Genome Editing. Plant Cell 2016, 28, 1510–1520. DOI: 10.1105/tpc.16.00196.
  • Clive, J. 20th Anniversary of the Global Commercialization of Biotech Crops (1996 to 2015) and Biotech Crop Highlights in 2015. Metro Manila, Philippines, 2015.
  • Ponti, L. Transgenic Crops and Sustainable Agriculture in the European Context. Bull. Sci. Technol. Soc. 2005, 25, 289–305. DOI: 10.1177/0270467605277292.
  • Dona, A.; Arvanitoyannis, I. S. Health Risks of Genetically Modified Foods. Crit. Rev. Food Sci. Nutr. 2009, 49, 164–175. DOI: 10.1080/10408390701855993.
  • European Commission. Regulation (EC) No 1829/2003 on Genetically Modified Food and Feed.
  • European Commission. Regulation (EC) No 1830/2003 Concerning the Traceability and Labelling of Genetically Modified Organisms and the Traceability of Food and Feed Products Produced from Genetically Modified Organisms and Amending Directive 2001/18/EC.
  • Rao, A. Q.; Bakhsh, A.; Kiani, S.; Shahzad, K.; Shahid, A. A.; Husnain, T.; Riazuddin, S. The Myth of Plant Transformation. Biotechnol. Adv. 2009, 27, 753–763. DOI: 10.1016/j.biotechadv.2009.04.028.
  • Lombardo, L.; Zelasco, S. Biotech Approaches to Overcome the Limitations of Using Transgenic Plants in Organic Farming. Sustainability 2016, 8, 497–503. DOI: 10.3390/su8050497.
  • Gelvin, S. B. Agrobacterium-Mediated Plant Transformation: The Biology Behind the “Gene-Jockeying” Tool. Microbiol. Mol. Biol. Rev. 2003, 67, 16–37. DOI: 10.1128/MMBR.67.1.16-37.2003.
  • Potenza, C.; Aleman, L.; Sengupta-Gopalan, C. Targeting Transgene Expression in Research, Agricultural, and Environmental Applications: Promoters Used in Plant Transformation. In Vitro Cell. Dev. Biol. Plant 2004, 40, 1–22. DOI: 10.1079/IVP2003477.
  • Manzanares-Palenzuela, C. L.; Martín-Fernandez, B.; Sánchez-Paniagua, M.; López-Ruiz, B. Electrochemical Genosensors as Innovative Tools for Detection of Genetically Modified Organisms. Trends Anal. Chem. 2015, 66, 19–31. DOI: 10.1016/j.trac.2014.10.006.
  • Holden, M. J.; Levine, M.; Scholdberg, T.; Haynes, R. J.; Jenkins, G. R. The Use of 35S and Tnos Expression Elements in the Measurement of Genetically Engineered Plant Materials. Anal. Bioanal. Chem. 2010, 396, 2175–2187. DOI: 10.1007/s00216-009-3186-x.
  • Fraiture, M. A.; Roosens, N. H. C.; Taverniers, I.; De Loose, M.; Deforce, D.; Herman, P. Biotech Rice: Current Developments and Future Detection Challenges in Food and Feed Chain. Trends Food Sci. Technol. 2016, 52, 66–79. DOI: 10.1016/j.tifs.2016.03.011.
  • Holst-Jensen, A.; Bertheau, Y.; de Loose, M.; Grohmann, L.; Hamels, S.; Hougs, L.; Morisset, D.; Pecoraro, S.; Pla, M.; den Bulcke, MV.; et al. Detecting Un-Authorized Genetically Modified Organisms (GMOs) and Derived Materials. Biotechnol. Adv. 2012, 30, 1318–1335. DOI: 10.1016/j.biotechadv.2012.01.024.
  • Lian, D. S.; Zeng, H. S. Capillary Electrophoresis Based on Nucleic Acid Detection as Used in Food Analysis. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1281–1295. DOI: 10.1111/1541-4337.12297.
  • Holst-Jensen, A.; Spilsberg, B.; Arulandhu, A. J.; Kok, E.; Shi, J.; Zel, J. Application of Whole Genome Shotgun Sequencing for Detection and Characterization of Genetically Modified Organisms and Derived Products. Anal. Bioanal. Chem. 2016, 408, 4595–4614. DOI: 10.1007/s00216-016-9549-1.
  • Querci, M.; Guy, V.; den, E.; Jermini, M. Overview, General Introduction on Genetically Modified Organisms (GMOs); EU Legislation Joint Research Centre (European Commission):Ispra, Italy, 2006.
  • Milavec, M.; Dobnik, D.; Yang, L.; Zhang, D.; Gruden, K.; Zel, J.. GMO Quantification: Valuable Experience and Insights for the Future. Anal. Bioanal. Chem. 2014, 406, 6485–6497. DOI: 10.1007/s00216-014-8077-0.
  • European Commision. Recommendation (EC) No 2004/787/EC on Technical Guidance for Sampling and Detection of Genetically Modified Organisms and Material Produced from Genetically Modified Organisms as or in Products in the Context of Regulation (EC) No 1830/2003.
  • Labuda, J.; Brett, A. M. O.; Evtugyn, G.; Fojta, M.; Mascini, M.; Ozsoz, M.; Palchetti, I.; Paleček, E.; Wang, J. Electrochemical Nucleic Acid-Based Biosensors: Concepts, Terms, and Methodology (IUPAC Technical Report). Pure Appl. Chem. 2010, 82, 1161–1187. DOI: 10.1351/PAC-REP-09-08-16.
  • Arugula, M. A.; Simonian, A. L. Biosensors for Detection of Genetically Modified Organisms in Food and Feed. In Genetically Modified Organisms in Food. Production, Safety, Regulation and Public Health; Ross Watson, R., Preedy, V. R. Eds.; Elsevier, 2016; pp. 97–110.
  • Kasry, A.; Borri, P.; Davies, P. R.; Harwood, A.; Thomas, N.; Lofas, S.; Dale, T. Comparison of Methods for Generating Planar DNA-Modified Surfaces for Hybridization Studies. ACS Appl. Mater. Interfaces 2009, 1, 1793–1798. DOI: 10.1021/am9003073.
  • Lucarelli, F.; Marrazza, G.; Mascini, M. Enzyme-Based Impedimetric Detection of PCR Products Using Oligonucleotide-Modified Screen-Printed Gold Electrodes. Biosens. Bioelectron. 2005, 20, 2001–2009. DOI: 10.1016/j.bios.2004.08.025.
  • Jiang, X.; Chen, K.; Han, H. Ultrasensitive Electrochemical Detection of Bacillus thuringiensis Transgenic Sequence Based on In Situ Ag Nanoparticles Aggregates Induced by Biotin–Streptavidin System. Biosens. Bioelectron. 2011, 28, 464–468. DOI: 10.1016/j.bios.2011.07.042.
  • Xu, G.; Jiao, K.; Fan, J.; Sun, W. Electrochemical Detection of Specific Gene Related to CaMV35S Using Methylene Blue and Ethylenediamine Modified Glassy Carbon Electrode. Acta Chim. Slov. 2006, 53, 486–491.
  • Ligaj, M.; Jasnowska, J.; Musiał, WG.; Filipiak, M. Covalent Attachment of Single-Stranded DNA to Carbon Paste Electrode Modified by Activated Carboxyl Groups. Electrochim. Acta 2006, 51, 5193–5198. DOI: 10.1016/j.electacta.2006.03.053.
  • Lien, T. T. N.; Lam, T. D.; An, V. T. H.; Hoang, T. V.; Quang, D. T.; Khieu, D. Q.; Tsukahara, T.; Lee, Y. H.; Kim, J. S. Multi-Wall Carbon Nanotubes (MWCNTs)-Doped Polypyrrole DNA Biosensor for Label-Free Detection of Genetically Modified Organisms by QCM and EIS. Talanta 2010, 80, 1164–1169. DOI: 10.1016/j.talanta.2009.09.002.
  • Yang, J.; Jiao, K.; Yangs, T. A DNA Electrochemical Sensor Prepared by Electrodepositing Zirconia on Composite Films of Single-Walled Carbon Nanotubes and Poly(2,6-Pyridinedicarboxylic Acid), and Its Application to Detection of the PAT Gene Fragment. Anal. Bioanal. Chem. 2007, 389, 913–921. DOI: 10.1007/s00216-007-1450-5.
  • Yang, T.; Zhang, W.; Du, M.; Jiao, K. A PDDA/poly(2,6-Pyridinedicarboxylic Acid)-CNTs Composite Film DNA Electrochemical Sensor and Its Application for the Detection of Specific Sequences Related to PAT Gene and NOS Gene. Talanta 2008, 75, 987–994. DOI: 10.1016/j.talanta.2007.12.049.
  • Jiang, C.; Yang, T.; Jiao, K.; Gao, H. A DNA Electrochemical Sensor with Poly-l-Lysine/Single-Walled Carbon Nanotubes Films and Its Application for the Highly Sensitive EIS Detection of PAT Gene Fragment and PCR Amplification of NOS Gene. Electrochim. Acta 2008, 53, 2917–2924. DOI: 10.1016/j.electacta.2007.11.015.
  • Yang, T.; Zhou, N.; Zhang, Y.; Zhang, W.; Jiao, K.; Li, G.. Synergistically Improved Sensitivity for the Detection of Specific DNA Sequences Using Polyaniline Nanofibers and Multi-Walled Carbon Nanotubes Composites. Biosens. Bioelectron. 2009, 24, 2165–2170. DOI: 10.1016/j.bios.2008.11.011.
  • Feng, Y.; Yang, T.; Zhang, W.; Jiang, C.; Jiao, K. Enhanced Sensitivity for Deoxyribonucleic Acid Electrochemical Impedance Sensor: Gold Nanoparticle/Polyaniline Nanotube Membranes. Anal. Chim. Acta 2008, 616, 144–151. DOI: 10.1016/j.aca.2008.04.022.
  • Ma, Y.; Jiao, K.; Yang, T.; Sun, D. Sensitive PAT Gene Sequence Detection by Nano-SiO2/p-Aminothiophenol Self-Assembled Films DNA Electrochemical Biosensor Based on Impedance Measurement. Sens. Actuator B: Chem. 2008, 131, 565–571. DOI: 10.1016/j.snb.2007.12.046.
  • Yang, J.; Yang, T.; Feng, Y.; Jiao, K. A DNA Electrochemical Sensor Based on Nanogold-Modified Poly-2,6-pyridinedicarboxylic Acid Film and Detection of PAT Gene Fragment. Anal. Biochem. 2007, 365, 24–30. DOI: 10.1016/j.ab.2006.12.039.
  • Zhang, W.; Yang, T.; Jiang, C.; Jiao, K. DNA Hybridization and Phosphinothricin Acetyltransferase Gene Sequence Detection Based on Zirconia/Nanogold Film Modified Electrode. Appl. Surf. Sci. 2008, 254, 4750–4756. DOI: 10.1016/j.apsusc.2008.01.102.
  • Duwensee, H.; Mix, M.; Broer, I.; Flechsig, G-U. Electrochemical Detection of Modified Maize Gene Sequences by Multiplexed Labeling with Osmium Tetroxide Bipyridine. Electrochem. Commun. 2009, 11, 1487–1491. DOI: 10.1016/j.elecom.2009.05.037.
  • Mix, M.; Rüger, J.; Krüger, S.; Broer, I.; Flechsig, G. U. Electrochemical Detection of 0.6% Genetically Modified Maize MON810 in Real Flour Samples. Electrochem. Commun. 2012, 22, 137–140. DOI: 10.1016/j.elecom.2012.06.019.
  • Fátima Barroso, M. F.; Freitas, M.; Oliveira, M. B.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M. J.; Delerue-Matos, C. 3D-Nanostructured Au Electrodes for the Event-Specific Detection of MON810 Transgenic Maize. Talanta 2015, 134, 158–164. DOI: 10.1016/j.talanta.201..10.017.
  • Liao, W. C.; Chuang, M. C.; Ho, J. A. Electrochemical Sensor for Multiplex Screening of Genetically Modified DNA: Identification of Biotech Crops by Logic-Based Biomolecular Analysis. Biosens. Bioelectron. 2013, 50, 414–420. DOI: 10.1016/j.bios.2013.06.044.
  • Sun, W.; Zhang, Y.; Hu, A.; Lu, Y.; Shi, F.; Lei, B.; Sun, Z. Electrochemical DNA Biosensor Based on Partially Reduced Graphene Oxide Modified Carbon Ionic Liquid Electrode for the Detection of Transgenic Soybean A2704–12 Gene Sequence. Electroanalytical 2013, 25, 1417–1424. DOI: 10.1002/elan.201300069.
  • Manzanares-Palenzuela, C. L.; Santos-Alvarez, N.; Lobo-Castañon, MJ.; López-Ruiz, B. Multiplex Electrochemical DNA Platform for Femtomolar-Level Quantification of Genetically Modified Soybean. Biosens. Bioelectron. 2015, 68, 259–265. DOI: 10.1016/j.bios.2015.01.007.
  • Manzanares-Palenzuela, C. L.; Mafra, I.; Costa, J.; Barroso, M. F.; de-los-Santos-Álvarez, N.; Delerue-Matos, C.; Oliveira, M. B. Electrochemical Magnetoassay Coupled to PCR as a Quantitative Approach to Detect the Soybean Transgenic Event GTS40–3-2 in Foods. Sens. Actuator B: Chem. 2016, 222, 1050–1057. DOI: 10.1016/j.snb.2015.09.013.
  • Manzanares-Palenzuela, C. L.; Fernandes, E. G. R.; Lobo-Castañon, M. J.; López-Ruiz, B.; Zucolotto, V. Impedance Sensing of DNA Hybridization onto Nanostructured Phthalocyanine-Modified Electrodes. Electrochim. Acta 2016, 21, 86–95. DOI: 10.1016/j.electacta.2016.10.140.
  • Manzanares-Palenzuela, C. L.; Martín-Clemente, J. P.; Lobo-Castañon, M. J.; López-Ruiz, B. Electrochemical Detection of Magnetically-Entrapped DNA Sequences from Complex Samples by Multiplexed Enzymatic Labelling: Application to a Transgenic Food/Feed Quantitative Survey. Talanta 2017, 164, 261–267. DOI: 10.1016/j.talanta.2016.11.040.
  • Carpini, G.; Lucarelli, F.; Marrazza, G.; Mascini, M. Oligonucleotide-Modified Screen-Printed Gold Electrodes for Enzyme-Amplified Sensing of Nucleic Acids. Biosens. Bioelectron. 2004, 20, 167–175. DOI: 10.1016/j.bios.2004.02.021.
  • Zhan, F.; Liao, X.; Gao, F.; Qiu, W.; Wang, Q. Electroactive Crown Ester-Cu2+ Complex with In-Situ Modification at Molecular Beacon Probe Serving as a Facile Electrochemical DNA Biosensor for the Detection of CaMV 35s. Biosens. Bioelectron. 2017, 92, 589–595. DOI: 10.1016/j.bios.2016.10.055.
  • Ulianas, A.; Heng, L. Y.; Ahmad, M.; Lau, H. Y.; Ishak, Z.; Ling, T. L. A Regenerable Screen-Printed DNA Biosensor Based on Acrylic Microsphere–Gold Nanoparticle Composite for Genetically Modified Soybean Determination. Sens. Actuator B: Chem. 2014, 190, 694–701. DOI: 10.1016/j.snb.2013.09.040.
  • Aghili, Z.; Nasirizadeh, N.; Divsalar, A.; Shoeibi, S.; Yaghmaei, P. A Nanobiosensor Composed of Exfoliated Graphene Oxide and Gold Nano-Urchins, for Detection of GMO Products. Biosens. Bioelectron. 2017, 95, 72–80. DOI: 10.1016/j.bios.2017.02.054.
  • Kerman, K.; Vestergaard, M.; Nagatani, N.; Takamura, Y.; Tamiya, E. Electrochemical Genosensor Based on Peptide Nucleic Acid-Mediated PCR and Asymmetric PCR Techniques: Electrostatic Interactions with a Metal Cation. Anal. Chem. 2006, 78, 2182–2189. DOI: 10.1021/ac051526a.
  • Mao-Qing, W.; Xiao-Yan, D.; Li-Yan, L.; Sun, Q.; Jiang, X. C. DNA Biosensor Prepared by Electrodeposited Pt-nanoparticles for the Detection of Specific Deoxyribonucleic Acid Sequence in Genetically Modified Soybean. Chinese J. Anal. Chem. 2008, 36, 890–894.
  • Sun, W.; Zhong, J.; Qin, P.; Jiao, K. Electrochemical Biosensor for the Detection of Cauliflower Mosaic Virus 35 S Gene Sequences Using Lead Sulfide Nanoparticles as Oligonucleotide Labels. Anal. Biochem. 2008, 377, 115–119. DOI: 10.1016/j.ab.2008.03.027.
  • Wang, S.; Liu, Q.; Li, H.; Li, Y.; Hao, N.Q.J; Zhu, W.; Wang, K. Fabrication of Label-Free Electrochemical Impedimetric DNA Biosensor for Detection of Genetically Modified Soybean by Recognizing CaMV 35S Promoter. J. Electroanal. Chem. 2016, 782, 19–25. DOI: 10.1016/j.jelechem.2016.09.05.
  • Xie, J. K.; Jiao, K.; Liu, H.; Wang, Q. X.; Liu, S. F.; Fu, X. DNA Electrochemical Sensor Based on PbSe Nanoparticle for the Sensitive Detection of CaMV35S Gene Sequence. Chinese J. Anal. Chem. 2008, 36, 874–878.
  • Dinh Tam, P. Genetically Modified Organism (GMO) Detection by Biosensor Based on SWCNT Material. Curr. Appl. Phys. 2015, 15, 397–401. DOI: 10.1016/j.cap.2015.01.017.
  • Li, Y.; Sun, L.; Liu, Q.; Han, E.; Hao, N.; Zhang, L.; Wang, S.; Cai, J.; Wang, K. Photoelectrochemical CaMV35S Biosensor for Discriminating Transgenic from Non-Transgenic Soybean Based on SiO2@CdTe Quantum Dots Core-Shell Nanoparticles as Signal Indicators. Talanta 2016, 161, 211–218. DOI: 10.1016/j.talanta.2016.08.047.
  • Tichoniuk, M.; Ligaj, M.; Filipiak, M. Application of DNA Hybridization Biosensor as a Screening Method for the Detection of Genetically Modified Food Components. Sensors 2008, 8, 2118–2135. DOI: 10.3390/s8042118.
  • Meric, B.; Kerman, K.; Marrazza, G.; Palchetti, I.; Mascini, M.; Ozsoz, M. Disposable Genosensor, A New Tool for the Detection of NOS-Terminator, A Genetic Element Present in GMOs. Food Control 2004, 15, 621–626. DOI: 10.1016/j.foodcont.2003.10.004.
  • Sun, W.; Zhong, J.; Zhang, B.; Jiao, K. Application of Cadmium Sulfide Nanoparticles as Oligonucleotide Labels for the Electrochemical Detection of NOS Terminator Gene Sequences. Anal. Bioanal. Chem. 2007, 389, 2179–2184. DOI: 10.1007/s00216-007-1661-9.
  • Zhu, L.; Zhao, R.; Wang, K.; Xiang, H.; Shang, Z.; Sun, W. Electrochemical Behaviors of Methylene Blue on DNA Modified Electrode and Its Application to the Detection of PCR Product from NOS Sequence. Sensors 2008, 8, 5649–5660. DOI: 10.3390/s8095649.
  • Ligaj, M.; Oczkowski, T.; Jasnowska1, J.; Musiał, G. W.; Filipiak, M. Electrochemical Genosensors for Detection of Monocytogenes and Genetically-Modified Components in Food and Genetically Modified Components in Food. Pol. J. Food Nutr. Sci. 2003, 12, 61–63.
  • Wang, J.; Qinling, S.; Tian, N.; Chen, L.; Ziqin, X.; Zheng, J. Electrochemical Detection of the Neomycin Phosphotransferase Gene (NPT-II) in Transgenic Plants with a Novel DNA Biosensor. J. Appl. Electrochem. 2009, 39, 935–945. DOI: 10.1007/s10800-008-9775-0.
  • Ren, Y.; Jiao, K.; Xu, G.; Sun, W.; Gao, H. An Electrochemical DNA Sensor Based on Electrodepositing Aluminum Ion Films on Stearic Acid-Modified Carbon Paste Electrode and Its Application for the Detection of Specific Sequences Related to Bar Gene and CP4 Epsps Gene. Electroanalytical 2005, 17, 2182–2189. DOI: 10.1002/elan.200503355.
  • Bonanni, A.; Esplandiu, M.; Del Valle, M. Impedimetric Genosensors Employing COOH-Modified Carbon Nanotube Screen-Printed Electrodes. Biosens. Bioelectron. 2009, 24, 2885–2891. DOI: 10.1016/j.bios.2009.02.023-.
  • Yang, T.; Zhou, N.; Li, Q.; Guan, Q.; Zhang, Q.; Jiao, K. Highly Sensitive Electrochemical Impedance Sensing of PEP Gene Based on Integrated Au–Pt Alloy Nanoparticles and Polytyramine. Colloids Surf. B Biointerfaces 2012, 97, 150–154. DOI: 10.1016/j.colsurfb.2012.04.007.
  • Zhou, N.; Yang, T.; Jiang, C.; Du, M.; Jiao, K. Highly Sensitive Electrochemical Impedance Spectroscopic Detection of DNA Hybridization Based on Au(nano)-CNT/PAN(nano) Films. Talanta 2009, 77, 1021–1026. DOI: 10.1016/j.talanta.2008.07.058.
  • Yang, J.; Wang, X.; Shi, H. An Electrochemical DNA Biosensor for Highly Sensitive Detection of Phosphinothricin Acetyltransferase Gene Sequence Based on Polyaniline-(Mesoporous Nanozirconia)/Poly-Tyrosine Film. Sens. Actuator B: Chem. 2012, 162, 178–183. DOI: 10.1016/j.snb.2011.12.064.
  • Bai, S. L.; Zhong, X.; Ma, L.; Zheng, W.; Fan, L. M.; Wei, N.; Deng, X. W. A Simple and Reliable Assay for Detecting Specific Nucleotide Sequences in Plants Using Optical Thin-Film Biosensor Chips. Plant J. 2007, 49, 354–366. DOI: 10.1111/j.1365-313X.2006.02951.x.
  • Bai, S.; Zhang, J.; Li, S.; Chen, H.; Terzaghi, W.; Zhang, X.; Chi, X.; Tian, J.; Luo, H.; Huang, W.; Chen, Y.; Zhang, Y. Detection of Six Genetically Modified Maize Lines Using Optical Thin-Film Biosensor Chips. J. Agric. Food Chem. 2010, 58, 8490–8494. DOI: 10.1021/jf100598k.
  • Feriotto, G.; Gardenghi, S.; Bianchi, N.; Gambari, R. Quantitation of Bt-176 Maize Genomic Sequences by Surface Plasmon Resonance-Based Biospecific Interaction Analysis of Multiplex Polymerase Chain Reaction (PCR). J. Agric. Food Chem. 2003, 51, 4640–4646. DOI: 10.1021/jf0341013.
  • Zhao, Z.; Chen, Y.; Xu, W.; Ma, M. Surface Plasmon Resonance Detection of Transgenic Cry1Ac Cotton (Gossypium spp.). J. Agric. Food Chem. 2013, 61, 2964–2969. DOI: 10.1021/jf3050439.
  • Kalogianni, D. P.; Koraki, T.; Christopoulos, T. K.; Ioannou, P. C. Nanoparticle-Based DNA Biosensor for Visual Detection of Genetically Modified Organisms. Biosens. Bioelectron. 2006, 21, 1069–1076. DOI: 10.1016/j.bios.2005.04.016.
  • Zhu, D.; Liu, J.; Tang, Y.; Xing, D. A Reusable DNA Biosensor for the Detection of Genetically Modified Organism Using Magnetic Bead-Based Electrochemiluminescence. Sens. Actuator B: Chem. 2010, 149, 221–225. DOI: 10.1016/j.snb.2010.05.047.
  • Feriotto, G.; Borgatti, M.; Mischiati, C.; Bianchi, N.; Gambari, R. Biosensor Technology and Surface Plasmon Resonance for Real-Time Detection of Genetically Modified Roundup Ready Soybean Gene Sequences. J. Agric. Food Chem. 2002, 50, 955–962. DOI: 10.1021/jf0109773.
  • Giakoumaki, E.; Minunni, M.; Tombelli, S.; Tothill, I. E.; Mascini, M.; Bogani, P.; Buiatti, M. Combination of Amplification and Post-Amplification Strategies to Improve Optical DNA Sensing. Biosens. Bioelectron. 2003, 19, 337–344. DOI: 10.1016/S0956-5663(03)00193-3.
  • Wang, R.; Minunni, M.; Tombelli, S.; Mascini, M. A New Approach for the Detection of DNA Sequences in Amplified Nucleic Acids by a Surface Plasmon Resonance Biosensor. Biosens. Bioelectron. 2004, 20, 598–605. DOI: 10.1016/j.bios.2004.03.013.
  • Wang, R.; Tombelli, S.; Minunni, M.; Spiriti, M. M.; Mascini, M. Immobilisation of DNA Probes for the Development of SPR-Based Sensing. Biosens. Bioelectron. 2004, 20, 967–974. DOI: 10.1016/j.bios.2004.06.013.
  • Guven, B.; Hakk Boyac, I.; Tamer, U.; Calik, P. A Rapid Method for Detection of Genetically Modified Organisms Based on Magnetic Separation and Surface-Enhanced Raman Scattering. Analyst 2012, 137, 202–208. DOI: 10.1039/c1an15629b.
  • Mariotti, E.; Minunni, M.; Mascini, M. Surface Plasmon Resonance Biosensor for Genetically Modified Organisms Detection. Anal. Chim. Acta 2002, 453, 165–172.
  • Chen, K.; Han, H.; Luo, Z.; Wang, Y.; Wang, X. A Practicable Detection System for Genetically Modified Rice by SERS-Barcoded Nanosensors. Biosens. Bioelectron. 2012, 34, 118–124. DOI: 10.1016/j.bios.2012.01.029.
  • Mannelli, I.; Minunni, M.; Tombelli, S.; Mascini, M. Quartz Crystal Microbalance (QCM) Affinity Biosensor for Genetically Modified Organisms (GMOs) Detection. Biosens. Bioelectron. 2003, 18, 129–140.
  • Minunni, M.; Tombelli, S.; Pratesi, S.; Mascini, M.; Piati, P.; Bogani, P.; Buiatti, M. A Piezoelectric Affinity Biosensor for Genetically Modified Organisms (GMOs) Detection. Anal. Lett. 2001, 34, 825–840. DOI: 10.1081/AL-100103595.
  • Karamollaoglu, I.; Avni-Öktem, H.; Mutlu, M. QCM-Based DNA Biosensor for Detection of Genetically Modified Organisms (GMOs). Biochem. Eng. J. 2009, 44, 142–150. DOI: 10.1016/j.bej.2008.11.011.
  • Minunni, M.; Tombelli, S.; Fonti, J.; Spiriti, M. M.; Mascini, M.; Bogani, P.; Buiatti, M. Detection of Fragmented Genomic DNA by PCR-Free Piezoelectric Sensing Using a Denaturation Approach. J. Am. Chem. Soc. 2005, 127, 7966–7967. DOI: 10.1021/ja051345q.
  • Boganni, P.; Minunni, M.; Spiriti, M. M.; Zavaglia, M.; Tombelli, S.; Buiatti, M.; Mascini, M. Transgenes Monitoring in an Industrial Soybean Processing Chain by DNA-Based Conventional Approached and Biosensors. Food Chem. 2009, 113, 658–664. DOI: 10.1016/j.foodchem.2008.07.056.
  • Stobiecka, M.; Cieśla, J. M.; Janowska, B.; Tudek, B.; Radecka, H. Piezoelectric Sensor for Determination of Genetically Modified Soybean Roundup Ready (R) in Samples not Amplified by PCR. Sensors 2007, 7, 1462–1479. DOI: 10.3390/s7081462.
  • Passamano, M.; Pighini, M. QCM DNA-Sensor for GMOs Detection. Sens. Actuator B: Chem. 2006, 118, 177–181. DOI: 10.1016/j.snb.2006.04.012.
  • Ahmed, M. U.; Saito, M.; Hossain, M. M.; Ramachandara Rao, S.; Furui, S.; Hino, A.; Takamura, Y.; Takagi, M.; Tamiya, E. Electrochemical Genosensor for the Rapid Detection of GMO Using Loop-Mediated Isothermal Amplification. Analyst 2009, 134, 966–972. DOI: 10.1039/b812569d.
  • Michelini, E.; Simoni, P.; Cevenini, L.; Mezzanotte, L.; Roda, A. New Trends in Bioanalytical Tools for the Detection of Genetically Modified Organisms: An Update. Anal. Bioanal. Chem. 2008, 392, 355–367. DOI: 10.1007/s00216-008-2193-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.