1,038
Views
33
CrossRef citations to date
0
Altmetric
Review Articles

Analysis of Antisense Oligonucleotides and Their Metabolites with the Use of Ion Pair Reversed-Phase Liquid Chromatography Coupled with Mass Spectrometry

ORCID Icon, , &
Pages 256-270 | Published online: 05 Jan 2019

References

  • Erb, R.; Leithner, K.; Bernkop-Schnürch, A.; Oberacher, H. Phosphorothioate Oligonucleotide Quantification by μ-Liquid Chromatography-Mass Spectrometry. AAAPS J. 2012, 14, 728–737. DOI: 10.1208/s12248-012-9381-2.
  • Stephenson, M. L.; Zamecnik, P. C. Inhibition of Rous Sarcoma Viral RNA Translation by a Specific Oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 285–288. DOI: 10.1073/pnas.75.1.285.
  • Zamecnik, P. C.; Stephenson, M. L. Inhibition of Rous Sarcoma Virus Replication and Cell Transformation by a Specific Oligodeoxynucleotide. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 280–284. DOI: 10.1073/pnas.75.1.280.
  • Stein, C. A.; Castanotto, D. FDA-Approved Oligonucleotide Therapies in 2017. Mol. Ther. 2017, 25, 1069–1067. DOI: 10.1016/j.ymthe.2017.03.023.
  • Dean, N. M.; Bennett, C. F. Antisense Oligonucleotide-Based Therapeutics for Cancer. Oncogene 2003, 22, 9087–9096. DOI: 10.1038/sj.onc.1207231.
  • Mustonen, E.-K.; Palomaki, T.; Pasanen, M. Oligonucleotide-Based Pharmaceuticals: Non-Clinical and Clinical Safety Signals and Non-Clinical Testing Strategies. Regul. Toxicol. Pharmacol. 2017, 90, 328–341. DOI: 10.1016/j.yrtph.2017.09.028.
  • McGinnis, A. C.; Chen, B.; Bartlett, M. G. Chromatographic Methods for the Determination of Therapeutic Oligonucleotides. J. Chromatogr. B. 2012, 883–884, 76–94. DOI: 10.1016/j.jchromb.2011.09.007.
  • Bennet, C. F.; Swayze, E. E. RNA Targeting Therapeutics: Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 259–293. DOI: 10.1146/annurev.pharmtox.010909.105654.
  • Urban, E.; Noe, C. R. Structural Modifications of Antisense Oligonucleotides. Farmaco 2003, 58, 243–258. doi: 10.1016/S0014-827X(03)00022-3.
  • Studzińska, S. Review on Investigations of Antisense Oligonucleotides with the Use of Mass Spectrometry. Talanta 2018, 176, 329–343. doi: 10.1016/j.talanta.2017.08.025.
  • Thayer, J. R.; Wu, Y.; Hansen, E.; Angelino, M. D.; Rao, S. Separation of Oligonucleotide Phosphorothioate Diastereoisomers by Pellicular Anion-Exchange Chromatography. J. Chromatogr. A. 2011, 1218, 802–808. DOI: 10.1016/j.chroma.2010.12.051.
  • Dias, N.; Stein, C. A. Antisense Oligonucleotides: Basic Concepts and Mechanisms. Mol. Cancer Ther. 2002, 1, 347–355.
  • Studzińska, S.; Krzemińska, K.; Szumski, M.; Buszewski, B. Application of a Cholesterol Stationary Phase in the Analysis of Phosphorothioate Oligonucleotides by Means of Ion Pair Chromatography Coupled with Tandem Mass Spectrometry. Talanta 2016, 154, 270–277. DOI: 10.1016/j.talanta.2016.03.082.
  • Okafo, G.; Levin, D. S.; Elder, D. Oligonucleotide Biopolymers – Future Challenges for Chromatography. Chromatogr. Today 2011, 4–8.
  • Nickerson, D. A.; Kaiser, R.; Lappin, S.; Stewart, J.; Hood, L.; Landegren, U. Automated DNA Diagnostics Using an ELISA-Based Oligonucleotide Ligation Assay. Genetics 1990, 87, 8923–8927. DOI: 10.1073/pnas.87.22.8923.
  • Effenhauser, C. S.; Paulus, A.; Manz, A.; Widmer, H. M. High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device. Anal. Chem. 1994, 66, 2949–2953. DOI: 10.1021/ac00090a024.
  • Cohen, A. S.; Najarian, D. R.; Paulus, A.; Guttman, A.; Smith, J. A.; Karger, B. L. Rapid Separation and Purification of Oligonucleotides by High-Performance Capillary Gel Electrophoresis. Genetics 1988, 85, 9660–9663. DOI: 10.1073/pnas.85.24.9660.
  • Louis, J. M.; Martin, R. G.; Clore, G. M.; Gronenborn, A. M. Preparation of Uniformly Isotope-Labeled DNA Oligonucleotides for NMR Spectroscopy. J. Biol. Chem. 1998, 273, 2374–2378. DOI: 10.1074/jbc.273.4.2374.
  • Biba, M.; Welch, C. J.; Foley, J. P. Investigation of a New Core–Shell Particle Column for Ion-Pair Reversed-Phase Liquid Chromatography Analysis of Oligonucleotides. J. Pharm. Biomed. Anal. 2014, 96, 54–57. DOI: 10.1016/j.jpba.2014.03.029.
  • Lin, Z. J.; Li, W.; Dai, G. Application of LC–MS for Quantitative Analysis and Metabolite Identification of Therapeutic Oligonucleotides. J. Pharm. Biomed. Anal. 2007, 44, 330–341. DOI: 10.1016/j.jpba.2007.01.042.
  • Deleavey, G. F.; Damha, M. J. Designing Chemically Modified Oligonucleotides for Targeted Gene Silencing. Chem. Biol. 2012, 19, 937–953. doi: 10.1016/j.chembiol.2012.07.011.
  • Majlessi, M.; Nelson, N. C.; Becker, M. M. Advantages of 2’-O-Methyl Oligoribonucleotide Probes for Detecting RNA Targets. Nucleic Acids Res. 1998, 26, 2224–2229. DOI: 10.1093/nar/26.9.2224.
  • Jackson, A. L.; Linsley, P. S. Noise Amidst the Silence: Off-Target Effects of siRNAs? Trends Genet. 2004, 20, 521–524. DOI: 10.1016/j.tig.2004.08.006.
  • Gilar, M.; Fountain, K. J.; Budman, Y.; Holyoke, J. L.; Davoudi, H.; Gebler, J. C. Characterization of Therapeutic Oligonucleotides Using Liquid Chromatography with on-Line Mass Spectrometry Detection. Oligonucleoties 2003, 13, 229–243. DOI: 10.1089/154545703322460612.
  • Pieles, U.; Zürcher, W.; Schär, M.; Moser, H. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry: A Powerful Tool for the Mass and Sequence Analysis of Natural and Modified Oligonucleotides. Nucl. Acids Res. 1993, 21, 3191–3196. DOI: 10.1093/nar/21.14.3191.
  • Nordhoff, E.; Schürenberg, M.; Thiele, G.; Lübbert, C.; Kloeppel, K.-D.; Theiss, D.; Lehrach, H.; Gobom, J. Sample Preparation Protocols for MALDI-MS of Peptides and Oligonucleotides Using Prestructured Sample Supports. Int. J. Mass Spectrom. 2003, 226, 163–180. DOI: 10.1016/S1387-3806(02)00978-8.
  • Chen, W.-Y.; Chen, Y.-C. MALDI MS Analysis of Oligonucleotides: Desalting by Functional Magnetite Beads Using Microwave-Assisted Extraction. Anal. Chem. 2007, 79, 8061–8066. DOI: 10.1021/ac0709450.
  • Deng, P.; Chen, X.; Zhang, G.; Zhong, D. Bioanalysis of an Oligonucleotide and its Metabolites by Liquid Chromatography–Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2010, 52, 571–579. DOI: 10.1016/j.jpba.2010.01.040.
  • Wheller, R.; Summerfield, S.; Barfield, M. Comparison of Accurate Mass LC–MS and MRM LC–MS/MS for the Quantification of a Therapeutic Small Interfering RNA. Int. J. Mass Spectrom. 2013, 345–347, 45–53. DOI: 10.1016/j.ijms.2012.09.012.
  • Andrews, C. L.; Harsch, A.; Vouros, P. Analysis of the in Vitro Digestion of Modified DNA to Oligonucleotides by LC–MS and LC–MS/MS. Int. J. Mass Spectrom. 2004, 231, 169–177. DOI: 10.1016/j.ijms.2003.10.005.
  • Cen, Y.; Li, X.; Liu, D.; Pan, F.; Cai, Y.; Li, B.; Peng, W.; Wu, C.; Jiang, W.; Zhou, H. Development and Validation of LC-MS/MS Method for the Detection and Quantification of CpG Oligonucleotides 107 (CpG ODN107) and its Metabolites in Mice Plasma. J. Pharm. Biomed. Anal. 2012, 70, 447–455. doi: 10.1016/j.jpba.2012.06.022.
  • Chen, B.; Mason, S. F.; Bartlett, M. G. The Effect of Organic Modifiers on Electrospray Ionization Charge-State Distribution and Desorption Efficiency for Oligonucleotides. J. Am. Soc. Mass Spectrom. 2013, 24, 257–264. DOI: 10.1007/s13361-012-0509-5.
  • Fritz, H.-J.; Belagaje, R.; Brown, E. L.; Fritz, R. H.; Jones, R. A.; Lees, R. G.; Khorana, H. G. High-Pressure Liquid Chromatography in Polynucleotide Synthesis. J. Am. Chem. Soc. 1978, 17, 1257–1267. DOI: 10.1021/bi00600a020.
  • Apffel, A.; Chakel, J. A.; Fischer, S.; Lichtenwalter, K.; Hancock, W. S. Analysis of Oligonucleotides by HPLC-Electrospray Ionization Mass Spectrometry. Anal. Chem. 1997, 69, 1320–1325. DOI: 10.1021/ac960916h.
  • Levin, D. S.; Shepperd, B. T.; Gruenloh, C. J. Combining Ion Pairing Agents for Enhanced Analysis of Oligonucleotide Therapeutics by Reversed Phase-Ion Pairing Ultra Performance Liquid Chromatography (UPLC). J. Chromatogr. B 2011, 879, 1587–1595. DOI: 10.1016/j.jchromb.2011.03.051.
  • Cecchi, T. Ion-Pair Chromatography and Related Techniques; CRC Press: Boca Raton, FL, 2010.
  • Anacleto, C.; Ouye, R.; Schoenbrunner, N. Orthogonal Ion Pairing Reversed Phase Liquid Chromatography Purification of Oligonucleotides with Bulky Fluorophores. J. Chromatogr. A. 2014, 1329, 78–82. DOI: 10.1016/j.chroma.2013.12.072.
  • Studzińska, S.; Rola, R.; Buszewski, B. The Impact of Ion-Pairing Reagents on the Selectivity and Sensitivity in the Analysis of Modified Oligonucleotides in Serum Samples by Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2017, 138, 146–152. DOI: 10.1016/j.jpba.2017.02.014.
  • Huber, C. G.; Oefner, P. J.; Bonn, G. K. High-Resolution Liquid Chromatography of Oligonucleotides on Nonporous Alkylated Styrene-Divinylbenzene Copolymers. Anal. Biochem. 1993, 212, 351–358. DOI: 10.1006/abio.1993.1340.
  • Gilar, M. Analysis and Purification of Synthetic Oligonucleotides by Reversed-Phase High-Performance Liquid Chromatography with Photodiode Array and Mass Spectrometry Detection. Anal. Biochem. 2001, 298, 196–206. DOI: 10.1006/abio.2001.5386.
  • Dickman, M. J. Effects of Sequence and Structure in the Separation of Nucleic Acids Using Ion Pair Reverse Phase Liquid Chromatography. J. Chromatogr. A. 2005, 1076, 83–89. DOI: 10.1016/j.chroma.2005.04.018.
  • Gilar, M.; Fountain, K. J.; Budman, Y.; Neue, U. D.; Yardley, K. R.; Rainville, P. D.; Russell Ii, R. J.; Gebler, J. C. Ion-Pair Reversed-Phase High-Performance Liquid Chromatography Analysis of Oligonucleotides: Retention Prediction. J. Chromatogr. A. 2002, 958, 167–182. DOI: 10.1016/S0021-9673(02)00306-0.
  • Gong, L. Comparing Ion-Pairing Reagents and Counter Anions for Ion-Pair Reversed-Phase Liquid Chromatography/Electrospray Ionization Mass Spectrometry Analysis of Synthetic Oligonucleotides. Rapid Commun. Mass Spectrom. 2015, 29, 2402–2410. DOI: 10.1002/rcm.7409.
  • Huber, C. G.; Krajete, A. Comparison of Direct Infusion and on-Line Liquid Chromatography/Electrospray Ionization Mass Spectrometry for the Analysis of Nucleic Acids. J. Mass Spectrom. 2000, 35, 870–877. DOI: 10.1002/1096-9888(200007)35:7 < 870::AID-JMS11 > 3.0.CO;2-D.
  • Sharma, V. K.; Glick, J.; Vouros, P. Reversed-Phase Ion-Pair Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry for Separation, Sequencing and Mapping of Sites of Base Modification of Isomeric Oligonucleotide Adducts Using Monolithic Column. J. Chromatogr. A. 2012, 1245, 65–74. DOI: 10.1016/j.chroma.2012.05.003.
  • Gong, L.; McCullagh, J. S. O. Comparing Ion-Pairing Reagents and Sample Dissolution Solvents for Ion-Pairing Reversed-Phase Liquid Chromatography/Electrospray Ionization Mass Spectrometry Analysis of Oligonucleotides. Rapid Commun. Mass Spectrom. 2014, 28, 339–350. DOI: 10.1002/rcm.6773.
  • McGinnis, A. C.; Grubb, E. C.; Bartlett, M. G. Systematic Optimization of Ion-Pairing Agents and Hexafluoroisopropanol for Enhanced Electrospray Ionization Mass Spectrometry of Oligonucleotides. Rapid Commun. Mass Spectrom. 2013, 27, 2655–2664. DOI: 10.1002/rcm.6733.
  • Null, A. P.; Nepomuceno, A. I.; Muddiman, D. C. Implications of Hydrophobicity and Free Energy of Solvation for Characterization of Nucleic Acids by Electrospray Ionization Mass Spectrometry. Anal. Chem. 2003, 75, 1331–1339. DOI: 10.1021/ac026217o.
  • Chen, B.; Bartlett, M. G. Evaluation of Mobile Phase Composition for Enhancing Sensitivity of Targeted Quantification of Oligonucleotides Using Ultra-High Performance Liquid Chromatography and Mass Spectrometry: Application to Phosphorothioate Deoxyribonucleic Acid. J. Chromatogr. A. 2013, 1288, 73–81. DOI: 10.1016/j.chroma.2013.03.003.
  • Fountain, K. J.; Gilar, M.; Gebler, J. C. Analysis of Native and Chemically Modified Oligonucleotides by Tandem Ion-Pair Reversed-Phase High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 646–653. DOI: 10.1002/rcm.959.
  • Smith, M.; Beck, T. Quantitation of a Low Level Coeluting Impurity Present in a Modified Oligonucleotide by Both LC–MS and NMR. J. Pharm. Biomed. Anal. 2016, 118, 34–40. DOI: 10.1016/j.jpba.2015.10.019.
  • Basiri, B.; Hattum, H. V.; Dongen, W. D. V.; Murph, M. M.; Bartlett, M. G. The Role of Fluorinated Alcohols as Mobile Phase Modifiers for LC-MS Analysis of Oligonucleotides. J. Am. Soc. Mass Spectrom. 2017, 28, 190–199. doi: 10.1007/s13361-016-1500-3.
  • Peng, L.; Jing, W.; Yun-Hua, G.; Wu, L.-Q.; Ling-Hui, S.; Bo-Qiang, F. Analysis of Fluorescent Dye-Labeled Oligonucleotides by Ion-Pair Reversed-Phase High-Performance Liquid Chromatography. Chinese J. Anal. Chem. 2009, 37, 1722–1726. DOI: 10.1016/S1872-2040(08)60149-8.
  • Fritz, H.-J.; Belagaje, R.; Brown, E. L.; Fritz, R. H.; Jones, R. A.; Lees, R. G.; Khorana, H. G. High-Pressure Liquid Chromatography in Polynucleotide Synthesis. Biochemistry 1978, 17, 1257–1267. DOI: 10.1021/bi00600a020.
  • Li, Q.; Lynen, F.; Wang, J.; Li, H.; Xu, G.; Sandra, P. Comprehensive Hydrophilic Interaction and Ion-Pair Reversed-Phase Liquid Chromatography for Analysis of di- to Deca-Oligonucleotides. J. Chromatogr. A. 2012, 1255, 237–243. DOI: 10.1016/j.chroma.2011.11.062.
  • Franzoni, S.; Vezzelli, A.; Turtoro, A.; Solazzo, L.; Greco, A.; Tassone, P.; Martino, M. T. D.; Breda, M. Development and Validation of a Bioanalytical Method for Quantification of LNA-i-miR-221, a 13-Mer Oligonucleotide, in Rat Plasma Using LC–MS/MS. J. Pharm. Biomed. Anal. 2018, 150, 300–307. DOI: 10.1016/j.jpba.2017.12.027.
  • Dillen, L.; Sips, L.; Greway, T.; Verhaeghe, T. Quantitative Analysis of Imetelstat in Plasma with LC-MS/MS Using Solid-phase or Hybridization Extraction. Bioanalysis 2017, 9, 1859–1872. DOI: 10.4155/bio-2017-0145.
  • Hemsley, M.; Ewles, M.; Goodwin, L. Development of a Bioanalytical Method for Quantification of a 15-mer Oligonucleotide at Sub-ng/ml Concentrations Using LC-MS/MS. Bioanalysis 2012, 4, 1457–1469. DOI: 10.4155/bio.12.117.
  • Zimmermann, A.; Greco, R.; Walker, I.; Horak, J.; Cavazzini, A.; Lämmerhofer, M. Synthetic Oligonucleotide Separations by Mixed-Mode Reversed-Phase/Weak Anion-Exchange Liquid Chromatography. J. Chromatogr. A. 2014, 1354, 43–55. DOI: 10.1016/j.chroma.2014.05.048.
  • Biba, M.; Jiang, E.; Mao, B.; Zewge, D.; Foley, J. P.; Welch, C. J. Factors Influencing the Separation of Oligonucleotides Using Reversed-Phase/Ion-Exchange Mixed-Mode High Performance Liquid Chromatography Columns. J. Chromatogr. A. 2013, 1304, 69–77. DOI: 10.1016/j.chroma.2013.06.050.
  • Dai, G.; Wei, X.; Liu, Z.; Liu, S.; Marcucci, G.; Chan, K. K. Characterization and Quantification of Bcl-2 Antisense G3139 and Metabolites in Plasma and Urine by Ion-Pair Reversed Phase HPLC Coupled with Electrospray Ion-Trap Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 825, 201–213. doi: 10.1016/j.jchromb.2005.05.049.
  • McCarthy, S. M.; Gilar, M.; Gebler, J. Reversed-Phase Ion-Pair Liquid Chromatography Analysis and Purification of Small Interfering RNA. Anal. Biochem. 2009, 390, 181–188. DOI: 10.1016/j.ab.2009.03.042.
  • Nwokeoji, A. O.; Kung, A.-W.; Kilby, P. M.; Portwood, D. E.; Dickman, M. J. Purification and Characterisation of dsRNA Using Ion Pair Reverse Phase Chromatography and Mass Spectrometry. J. Chromatogr. A. 2017, 1484, 14–25. doi: 10.1016/j.chroma.2016.12.062.
  • Tucker, J. L. Green Chemistry, a Pharmaceutical Perspective. Org. Process Res. Dev. 2006, 10, 315–319. DOI: 10.1021/op050227k.
  • Yu, R. Z.; Geary, R. S.; Monteith, D. K.; Matson, J.; Truong, L.; Fitchett, J.; Levin, A. A. Tissue Disposition of 2’-O-(2-Methoxy) Ethyl Modified Antisense Oligonucleotides in Monkeys. J. Pharm. Sci. 2004, 93, 48–59. DOI: 10.1002/jps.10473.
  • Turnpenny, P.; Rawal, J.; Schardt, T.; Lamoratta, S.; Mueller, H.; Weber, M.; Brady, K. Quantitation of Locked Nucleic Acid Antisense Oligonucleotides in Mouse Tissue Using a Liquid–Liquid Extraction LC–MS/MS Analytical Approach. Bioanalysis 2011, 3, 1911–1921. DOI: 10.4155/bio.11.100.
  • Zhang, W.; Leighl, N.; Zawisza, D.; Moore, M. J.; Chen, E. X. Determination of GTI-2040, a Novel Antisense Oligonucleotide, in Human Plasma by Using HPLC Combined with Solid Phase and Liquid–Liquid Extractions. J. Chromatogr. B. 2005, 829, 45–49. DOI: 10.1016/j.jchromb.2005.09.036.
  • Konieczka, P. The Role of and the Place of Method Validation in the Quality Assurance and Quality Control (QA/QC) System. Crit. Rev. Anal. Chem. 2007, 37, 173–190. DOI: 10.1080/10408340701244649.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.