903
Views
68
CrossRef citations to date
0
Altmetric
Review Articles

Analytical Methods for Stability Assessment of Nitrate Esters-Based Propellants

ORCID Icon & ORCID Icon
Pages 415-438 | Published online: 23 Jan 2019

References

  • Agrawal, J. P. High Energy Materials: propellants, Explosives and Pyrotechnics; John Wiley & Sons: Weinheim, Germany, 2010.
  • Akhavan, J. The Chemistry of Explosives; Royal Society of Chemistry: Cambridge, UK, 2004.
  • Teipel, U. Energetic Materials: Particle Processing and Characterization; John Wiley & Sons: Weinheim, Germany, 2006.
  • Gettwert, V.; Bohn, M. A.; Schubert, H. Propellants. Ullmann's Encyclopedia of Industrial Chemistry; Wiley- VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 1993.
  • Davenas, A. Solid Rocket Motor Design. Progr. Astronaut. Aeronaut. 1996, 170, 57–113.
  • Sutton, G. P.; Biblarz, O. Rocket Propulsion Elements; John Wiley & Sons: New Jersey, USA, 2016.
  • Shukla, M. K.; Boddu, V. M.; Steevens, J. A.; Damavarapu, R.; Leszczynski, J. Energetic Materials: From Cradle to Grave; Springer: Cham, Switzerland, 2017.
  • Rao, N. P.; Solanke, C.; Bihari, B. K.; Singh, P. P.; Bhattacharya, B. Evaluation of Mechanical Properties of Solid Propellants in Rocket Motors by Indentation Technique. Propellants Explos. Pyrotech. 2016, 41, 281–285.
  • Singh, G.; Kapoor, I.; Dubey, S. Bimetallic Nanoalloys: Preparation, Characterization and Their Catalytic Activity. J. Alloys Compd. 2009, 480, 270–274.
  • Chaturvedi, S.; Dave, P. N. Solid Propellants: AP/HTPB Composite Propellants. Arab J. Chem. 2015. Doi:10.1016/j.arabjc.2014.12.033.
  • Singh, G.; Kapoor, I. P. S.; Dubey, S. Nanocobaltite: Preparation, Characterization, and Their Catalytic Activity. Propellants Explos. Pyrotech. 2011, 36, 367–372.
  • Sforza, P. M. Theory of Aerospace Propulsion; Butterworth-Heinemann: MA, USA, 2016.
  • Bunyan, P.; Cunliffe, A.; Davis, A.; Kirby, F. The Degradation and Stabilisation of Solid Rocket Propellants. Polym. Degrad. Stab. 1993, 40, 239–250.
  • Zhou, S.; Yin, Q.; Lu, L.; Wang, Z.; Deng, G. Application of Near Infrared Spectroscopy in Fast Assay of Liquid Components in Single-Base Propellant Intermediates. Infrared Phys. Technol. 2017, 80, 11–20.
  • King, M. K. (1978.) Model for Steady-State Combustion of Unimodal Composite Solid Propellants; Technical report, AFSC.
  • Trache, D.; Khimeche, K.; Mezroua, A.; Benziane, M. Physicochemical Properties of Microcrystalline Nitrocellulose from Alfa Grass Fibres and Its Thermal Stability. J. Therm. Anal. Calorim. 2016, 124, 1485–1496.
  • Liau, Y.-C.; Yang, V. Analysis of RDX Monopropellant Combustion with Two-Phase Subsurface Reactions. J. Propuls. Power 1995, 11, 729–739.
  • Worrell, W. J.; Vaughan, B. R.; Archambault, J. D.; Fils-Aime, M.; Methods of preparing nitrocellulose based propellants and propellants made therefrom; U.S. Patent No. 9,395,164, Orbital ATK Inc., Washington, 2016.
  • Reese, D. A.; Groven, L. J.; Son, S. F. Formulation and Characterization of a New Nitroglycerin, Free Double Base Propellant. Propellants Explos. Pyrotech. 2014, 39, 205–210.
  • Ghosh, K.; Pant, C. S.; Sanghavi, R.; Adhav, S.; Singh, A. Studies on Triple Base Gun Propellant Based on Two Energetic Azido Esters. J. Energy Mate.r 2008, 27, 40–50.
  • Elbasuney, S.; Fahd, A.; Mostafa, H. E.; Mostafa, S. F.; Sadek, R. Chemical Stability, Thermal Behavior, and Shelf Life Assessment of Extruded Modified Double-Base Propellants. Def. Technol. 2018, 14, 70–76.
  • Fahd, A.; Mostafa, H. E.; Elbasuney, S. Certain Ballistic Performance and Thermal Properties Evaluation for Extruded Modified Double-Base Propellants. Cent. Eur. J. Energ. Mater. 2017, 14, 621–635.
  • Tang, Q.; Fan, X.; Li, J.; Bi, F.; Fu, X.; Zhai, L. Experimental and Theoretical Studies on Stability of New Stabilizers for N-methyl-P-Nitroaniline Derivative in CMDB Propellants. J. Hazard Mater. 2017, 327, 187–196.
  • Moser Jr, J. R.; Raun, R. L.; Shaw, D. D. Energetic compositions including nitrate esters and articles including such energetic compositions; U.S. Patent No. 8,778,103, Alliant Techsystems Inc., Arlington, Washington, 2014.
  • López-López, M.; de la Ossa, M. Á. F.; Galindo, J. S.; Ferrando, J. L.; Vega, A.; Torre, M.; García-Ruiz, C. New Protocol for the Isolation of Nitrocellulose from Gunpowders: Utility in Their Identification. Talanta 2010, 81, 1742–1749.
  • Tunnell, R. Overview and Appraisal of Analytical Techniques for Aging of Solid Rocket Propellants.In Chemical Rocket Propulsion; De Luca, L.; Shimada, T.; Sinditskii, V.; Calabro, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp 743–769.
  • Vogt, H.; Balej, J.; Bennett, J. E.; et al. Chlorine Oxides and Chlorine Oxygen Acids. Ullmann's Encyclopedia of Industrial Chemistry; Wiley- VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 1986.
  • López-López, M.; Merk, V.; García-Ruiz, C.; Kneipp, J. Surface-Enhanced Raman Spectroscopy for the Analysis of Smokeless Gunpowders and Macroscopic Gunshot Residues. Anal. Bioanal. Chem. 2016, 408, 4965–4973.
  • Davenas, A. Development of Modern Solid Propellants. J. Propuls. Power 2003, 19, 1108–1128.
  • Trache, D.; Khimeche, K. Study on the Influence of Ageing on Chemical and Mechanical Properties of N, N′-dimethyl-N, N′-Diphenylcarbamide Stabilized Propellants. J. Therm. Anal. Calorim. 2013, 111, 305–312.
  • Trache, D.; Tarchoun, A. F. Stabilizers for Nitrate Ester-Based Energetic Materials and Their Mechanism of Action: A State-of-the-Art Review. J. Mater. Sci. 2018, 53, 100–123.
  • Sućeska, M.; Mušanić, S. M.; Houra, I. F. Kinetics and Enthalpy of Nitroglycerin Evaporation from Double Base Propellants by Isothermal Thermogravimetry. Thermochim. Acta 2010, 510, 9–16.
  • Trache, D.; Mazroua, A.; Khimeche, K. Determination of chemical and mechanical properties of propellants during ageing. Proceedings of 42nd International Annual Conference of ICT, Karlsruhe, 2011; p. 83.
  • de Klerk, W. P. Assessment of Stability of Propellants and Safe Lifetimes. Propellants Explos. Pyrotech. 2015, 40, 388–393.
  • Lin, C.-P.; Li, J.-S.; Tseng, J.-M.; Mannan, M. S. Thermal Runaway Reaction for Highly Exothermic Material in Safe Storage Temperature. J. Loss Prev. Process. Ind. 2016, 40, 259–265.
  • Bohn, M. A.; Volk, F. Aging Behavior of Propellants Investigated by Heat Generation, Stabilizer Consumption, and Molar Mass Degradation. Propellants Explos. Pyrotech. 1992, 17, 171–178.
  • Sorensen, D.; Knott, D.; Bell, R. Two-Gram DTA as a Thermal Compatibility Tool. J. Therm. Anal. Calorim. 2008, 91, 305–309.
  • Moniruzzaman, M.; Bellerby, J. M.; Bohn, M. A. Activation Energies for the Decomposition of Nitrate Ester Groups at the Anhydroglucopyranose Ring Positions C2, C3 and C6 of Nitrocellulose Using the Nitration of a Dye as Probe. Polym. Degrad. Stab. 2014, 102, 49–58.
  • Vogelsanger, B. Chemical Stability, Compatibility and Shelf Life of Explosives. Chimia 2004, 58, 401–408.
  • Lindblom, T. Reactions in Stabilizer and between Stabilizer and Nitrocellulose in Propellants. Propellants Explos. Pyrotech. 2002, 27, 197–208.
  • Druet, L.; Asselin, M. A Review of Stability Test Methods for Gun and Mortar Propellants, II: Stability Testing and Surveillance. J. Energy Mater. 1988, 6, 215–254.
  • Lurie, B.; Svetlov, B.; Chernyshov, A. Primary process of the nitrate esters thermal decomposition. 9th Symposium on Chemical Problems Connected with the Stability of Explosives, Margretetorp, Sweden, August 1992.
  • Bohn, M. A. NC-based energetic materials-stability, decomposition, and ageing. In: Presentation on the meeting Nitrocellulose supply, Ageing and Characterization, Aldermaston, England. 2007.
  • Bohn, M. A. Prediction of in‐Service Time Period of Three Differently Stabilized Single Base Propellants. Prop. Explos. Pyrotech. 2009, 34, 252–266.
  • Chin, A.; Ellison, D. S.; Poehlein, S. K.; Ahn, M. K. Investigation of the Decomposition Mechanism and Thermal Stability of Nitrocellulose/Nitroglycerine Based Propellants by Electron Spin Resonance. Prop. Explos. Pyrotech. 2007, 32, 117–126.
  • Guo, S.; Wang, Q.; Sun, J.; Liao, X.; Wang, Z-s. Study on the Influence of Moisture Content on Thermal Stability of Propellant. J. Hazard Mater. 2009, 168, 536–541.
  • Judge, M. D. An Investigation of Composite Propellant Accelerated Ageing Mechanisms and Kinetics. Propellants Explos. Pyrotech. 2003, 28, 114–119.
  • Rodionova, O. Y.; Pomerantsev, A. L. Prediction of Rubber Stability by Accelerated Aging Test Modeling. J. Appl. Polym. Sci. 2005, 95, 1275–1284.
  • Kadiresh, P.; Sridhar, B. Experimental Evaluation and Simulation on Aging Characteristics of Aluminised AP-HTPB Composite Solid Propellant. Mater. Sci. Technol. 2008, 24, 406–412.
  • Kimura, J. Kinetic Mechanism on Thermal Degradation of a Nitrate Ester Propellant. Propellants Explos. Pyrotech. 1988, 13, 8–12.
  • Zayed, M.; El-Begawy, S. E.; Hassan, H. E. Enhancement of Stabilizing Properties of Double-Base Propellants Using Nano-Scale Inorganic Compounds. J. Hazard Mater. 2012, 227–228, 274–279.
  • Singh, H.; Gokhale, H. A New Stability Concept for Propellants. DSJ. 1985, 35, 417–423.
  • Zeng, J.; Qi, J.; Bai, F.; Yu, J. C. C.; Shih, W.-C. Analysis of Ethyl and Methyl Centralite Vibrational Spectra for Mapping Organic Gunshot Residues. Analyst 2014, 139, 4270–4278.
  • López-López, M.; García-Ruiz, C. Infrared and Raman Spectroscopy Techniques Applied to Identification of Explosives. Trends Anal. Chem. 2014, 54, 36–44.
  • Tabacof, A.; de Araújo Calado, V. M. Thermogravimetric Analysis and Differential Scanning Calorimetry for Investigating the Stability of Yellow Smoke Powders. J. Therm. Anal. Calorim. 2017, 128, 387–398.
  • Heil, M.; Wimmer, K.; Bohn, M. A. Characterization of Gun Propellants by Long-Term Mass Loss Measurements. Prop. Explos. Pyrotech. 2017, 42, 706–711.
  • Błądek, J.; Cudziło, S.; Pietrzyk, S.; Wilker, S. A Novel Method for Testing Propellant Stabilizers. Cent. Eur. J. Energy Mate. 2010, 7, 281–287.
  • Trache, D.; Khimeche, K. Study on the Influence of Ageing on Thermal Decomposition of Double Base Propellants and Prediction of Their in Use Time. Fire Mater. 2013, 37, 328–336.
  • Boers, M. N.; de Klerk, W. W. P. Lifetime Prediction of EC, DPA, Akardite II and MNA Stabilized Triple Base Propellants, Comparison of Heat Generation Rate and Stabilizer Consumption. Propellants Explos. Pyrotech. 2005, 30, 356–362.
  • Mušanić, S. M.; Sućeska, M. Dynamic Mechanical Properties of Artificially Aged Double Base Rocket Propellant and the Possibilities for the Prediction of Their Service Lifetime. Cent. Eur. J. Energy Mater. 2013, 10, 225–244.
  • Heng, S. Y.; Pan, T. X.; Kong, Y. H.; Liu, Z. R. The Nitroglycerin Content Distribution in the Coating of the Solid Propellant and the Service Life Prediction of the Charge. Propellants Explos. Pyrotech. 1991, 16, 31–35.
  • Lindblom, T. (Ed) Reactions in the System Nitro-Cellulose/Diphenylamine with Special Reference to the Formation of a Stabilizing Product Bonded to Nitro-Cellulose. Acta Universitatis Upsaliensis: Sweden, 2004.
  • Cerri, S.; Bohn, M. A.; Menke, K.; Galfetti, L. Aging of HTPB/Al/AP Rocket Propellant Formulations Investigated by DMA Measurements. Propellants Explos. Pyrotech. 2013, 38, 190–198.
  • Torry, S.; Earl, J.; Cunliffe, A.; Tod, D. Insensitive Munitions & Energetic Materials Technology Symposium, Atomic Weapons Establishment (AWE); Reading: Bristol, 2006.
  • Sui, X.; Wang, N.; Wan, Q.; Bi, S. Effects of Relaxed Modulus on the Structure Integrity of NEPE Propellant Grains during High Temperature Aging. Propellants Explos. Pyrotech. 2010, 35, 535–539.
  • Layton, L. Wasatch Operations; Morton Thiokol Inc: Brigham City, 1975.
  • Verneker, V. P.; Kishore, K.; Varadaraju, U. Chemical Changes during the Aging and Decomposition of Composite Solid Propellants. Combust. Flame 1982, 45, 137–146.
  • Farhadian, A. H.; Tehrani, M. K.; Keshavarz, M. H.; Karimi, M.; Darbani, S. M. R.; Rezayi, A. H. A Novel Approach for Investigation of Chemical Aging in Composite Propellants through Laser-Induced Breakdown Spectroscopy (LIBS). J. Therm. Anal. Calorim. 2016, 124, 279–286.
  • Katoh, K.; Ito, S.; Ogata, Y.; Kasamatsu, J-I.; Miya, H.; Yamamoto, M.; Wada, Y. Effect of Industrial Water Components on Thermal Stability of Nitrocellulose. J. Therm. Anal. Calorim. 2010, 99, 159–164.
  • Krumlinde, P.; Ek, S.; Tunestål, E.; Hafstrand, A. Synthesis and Characterization of Novel Stabilizers for Nitrocellulose‐Based Propellants. Prop. Explos. Pyrotech. 2017, 42, 78–83.
  • Fuchs, R.; Niehues, M. Stabilizer Depletion in Single Base Propellant from Unexploded Ordnance. Prop. Explos. Pyrotech. 2016, 41, 688–699.
  • Katoh, K.; Le, L.; Kumasaki, M.; Wada, Y.; Arai, M. Study on the Spontaneous Ignition Mechanism of Nitric Esters (II). Thermochim. Acta 2005, 431, 168–172.
  • Osada, H. Kayaku Chemistry; Maruzen: Tokyo:, 2003.
  • Katoh, K.; Le, L.; Kumasaki, M.; Wada, Y.; Arai, M. Study on the Spontaneous Ignition Mechanism of Nitric Esters (III). Thermochim. Acta 2005, 431, 173–176.
  • Volk, F. Decomposition behavior of nitroguanidine. In 6th Symposium on Chemical Problems Connected with Stabilization of Explosives, Sweden, 1982, 373–417.
  • Wu, W.; Chen, C.; Fu, X.; Ding, C.; Wang, G. The Correlation between Chemical Stability and Binder Network Structure in NEPE Propellant. Prop. Explos. Pyrotech. 2017, 42, 541–546.
  • Xie, W.; Zhao, Y.; Zhang, W.; Liu, Y.; Fan, X.; Wang, B.; He, W.; Yan, Q.-L. Sensitivity and Stability Improvements of NEPE Propellants by Inclusion of FOX‐7. Prop. Explos. Pyrotech. 2018, 43, 308–314.
  • Wang, N.; Wan, Q.; Sui, X.; Xiong, Y. Life Prediction of NEPE Propellants. Propellants Explos. Pyrotech. 2014, 39, 102–107.
  • Sovizi, M.; Hajimirsadeghi, S.; Naderizadeh, B. Effect of Particle Size on Thermal Decomposition of Nitrocellulose. J. Hazard Mater. 2009, 168, 1134–1139.
  • Tomaszewski, W.; Cieślak, K.; Zygmunt, A. Influence of Processing Solvents on Decomposition of Nitrocellulose in Smokeless Powders Studied by Heat Flow Calorimetry. Polym. Degrad. Stab. 2015, 111, 169–175.
  • Wilker, S.; Ticmanin, U.; Stottmeister, L. ??. 12th Symposium on chemical problems Connected with the Stability of Explosives, Karlsborgs Fästoring, Karlsborg, Sweden, 2001.
  • Sutton, G. P.; Biblarz, O. Rocket Propulsion Elements, seventh ed., Wiley & Sons: NY, Canada, 2001.
  • Fuente, J. L. dl.; Rodríguez, O. Dynamic Mechanical Study on the Thermal Aging of a Hydroxyl Terminated Polybutadiene Based Energetic Composite. J. Appl. Polym. Sci. 2003, 87, 2397–2405.
  • Asthana, S.; Divekar, C.; Singh, H. Studies on Thermal Stability, Autoignition and Stabilizer Depletion for Shelf Life of CMDB Propellants. J. Hazard Mater. 1989, 21, 35–46.
  • Lu, K.-T.; Li, J.-S.; Yeh, T.-F. The Study of Thermal Stability for the Single Base Propellant via the Accelerated Aging Process. J. Chung Cheng Inst. Technol. 2014, 43, 69–78.
  • NBP Explosives Stability Test Procedures and Requirements Using Stabilizer Depletion. NATO Allied Ordnance Publication (AOP) No 48.
  • Özüpek, Ş. Computational Procedure for the Life Assessment of Solid Rocket Motors. J. Spacecr. Rockets 2010, 47, 639–648.
  • Zhou, D-m.; Liu, X-y.; Sui, X.; Wei, Z-j.; Wang, N-f.Accelerated Aging and Structural Integrity Analysis Approach to Predict the Service Life of Solid Rocket Motor. In: 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum. 2015; pp 4240.
  • Bladek, J.; Miszczak, M. Testing the Chemical Stability of Smokeless Propellants. Chemia 1993, 38, 813–822.
  • Moradi, M.; Ferdowsi, M.; Tqian-Nasab, A.; Najafi, A. Microextraction of Methyl and Ethyl Centralites Using an Alkanol-Based Nanostructured Solvent Followed by High-Performance Liquid Chromatography. J. Iran. Chem. Soc. 2015, 12, 1595–1601.
  • Chaturvedi, S.; Dave, P. N.; Patel, N. N. Thermal Decomposition of AP/HTPB Propellants in Presence of Zn Nanoalloys. Appl. Nanosci. 2015, 5, 93–98.
  • Tunnell, R.; Dale, R.; King, I.; Tod, D. Using Thermal Methods to Understand the Interactions between a Rocket Propellant and Igniter Material. J. Therm. Anal. Calorim. 2018, 131, 379–395.
  • McDonald, B. Effect of humidity and temperature induced aging on the rheology of a nitrate ester plasticized/poly (glycol adipate)/solids loaded propellant. In 43rd International Conference of the Fraunhofer ICT, Karlruhe, June 2011.
  • Northrop, D. M. Gunshot Residue Analysis by Micellar Electrokinetic Capillary Electrophoresis: Assessment for Application to Casework. Part II. J. Forensic Sci. 2001, 46, 560–572.
  • Trache, D.; Abdelaziz, A.; Siouani, B. A Simple and Linear Isoconversional Method to Determine the Pre-Exponential Factors and the Mathematical Reaction Mechanism Functions. J. Therm. Anal. Calorim. 2017, 128, 335–348.
  • Bohn, M. A. Principles of Ageing of Double Base Propellants and its Assessment by Several Methods Following Propellant Properties. STO-MP-AVT-268, 2017.
  • Fryš, O.; Bajerová, P.; Eisner, A.; Mudruňková, M.; Ventura, K. Method Validation for the Determination of Propellant Components by Soxhlet Extraction and Gas Chromatography/Mass Spectrometry. J. Sep. Sci. 2011, 34, 2405–2410.
  • Fryš, O.; Česla, P.; Bajerová, P.; Adam, M.; Ventura, K. Optimization of Focused Ultrasonic Extraction of Propellant Components Determined by Gas Chromatography/Mass Spectrometry. Talanta 2012, 99, 316–322.
  • Marple, R. L.; LaCourse, W. R. A Platform for on-Site Environmental Analysis of Explosives Using High Performance Liquid Chromatography with UV Absorbance and Photo-Assisted Electrochemical Detection. Talanta 2005, 66, 581–590.
  • Kaur, V.; Kumar, A.; Malik, A. K.; Rai, P. SPME-HPLC: A New Approach to the Analysis of Explosives. J. Hazard Mater. 2007, 147, 691–697.
  • Ellison, S. L.; Hardcastle, W. A. Causes of Error in Analytical Chemistry: Results of a Web-Based Survey of Proficiency Testing Participants. Accred. Qual. Assur. 2012, 17, 453–464.
  • Ellison, S. L.; Rosslein, M.; Williams, A. Quantifying Uncertainty in Analytical Measurement; 2nd ed. St. Gallen (Switzerland): Eurachem/Citac, 2000.
  • Czichos, H.; Saito, T.; Smith, L. Springer Handbook of Materials Measurement Methods; Springer: Berlin, 2006.
  • Rasul, S.; Kajal, A. M.; Khan, A. Quantifying Uncertainty in Analytical Measurements. J. Bangladesh Acad. Sci. 2018, 41, 145–163.
  • Taverniers, I.; De Loose, M.; Van Bockstaele, E. Trends in Quality in the Analytical Laboratory. I. Traceability and Measurement Uncertainty of Analytical Results. Trends Anal. Chem. 2004, 23, 480–490.
  • González, A. G.; Herrador, M. Á. A Practical Guide to Analytical Method Validation, Including Measurement Uncertainty and Accuracy Profiles. Trends Anal. Chem. 2007, 26, 227–238.
  • Wilker, S.; Heeb, G.; Vogelsanger, B.; Petržílek, J.; Skladal, J. Triphenylamine – A ‘New’ Stabilizer for Nitrocellulose Based Propellants–Part I: Chemical Stability Studies. Prop. Explos. Pyrotech. 2007, 32, 135–148.
  • Bunyan, P. Accelerating rate calorimetry studies on experimental hybrid compositions. In 12th Symposium on the Chemical Problems Connected with the Stability of Explosives, 2001, 31–43.
  • de Klerk, W. P.; Boers, M. N. Sample Geometry as Critical Factor for Stability Research. Thermochim. Acta 2003, 401, 43–52.
  • Wilker, S.; Pantel, G.; Petrzilek, J.; Skladal, J. ??. Proceedings of 37th International Annual Conference of ICT, Fraunhofer-Institut fur Chemische Technologie, Karlsruhe, Berghausen, 2006.
  • Soliman, A. A. W.; El‐Damaty, A.; Awad, W. 2, 6-Diarylmethylene-Thiazolo [3, 2-a] Pyrimidine-3, 5, 7-Triones as Stabilizers for Double-Base Propellant. Propellants. Explos. Pyrotech. 1990, 15, 248–249.
  • Soliman, A. A.-W.; El-Damaty, A. 5-Phenyl-Cyclohexane-1, 3-Dione-4-Carboxanilide as Stabilizer for Double Base Propellant. Propellants. Explos. Pyrotech. 1984, 9, 137–138.
  • Liu, R.; Zhang, T.; Yang, L.; Zhou, Z. Dynamic Pressure Thermal Analysis of Double-Base Propellants Containing RDX. Centeurjchem. 2014, 12, 672–677.
  • NATO Standardization Agreement 4556 (STANAG 4556): 1998. Explosives: Vacuum Stability Test.
  • Shehata, A.; Hassan, M. Poly N-(4-Chlorophenyl), Poly N-(4-Methylphenyl) Acrylamides and the Copolymer of Their Monomers as Stabilizers for Nitrocellulose. Polym. Degrad. Stab. 2002, 77, 355–370.
  • Zayed, M.; Soliman, A.-W.; Hassan, M. Evaluation of Malonanilides as New Stabilizers for Double-Base Propellants. (I). J. Hazard Mater. 2000, 73, 237–244.
  • Zayed, M.; Mohamed, A. A.; Hassan, M. Stability Studies of Double-Base Propellants with Centralite and Malonanilide Stabilizers Using MO Calculations in Comparison to Thermal Studies. J. Hazard Mater. 2010, 179, 453–461.
  • de la Ossa, M. Á. F.; López-López, M.; Torre, M.; García-Ruiz, C. Analytical Techniques in the Study of Highly-Nitrated Nitrocellulose. Trends Anal. Chem. 2011, 30, 1740–1755.
  • Grythe, K. F.; Hansen, F. K.; Walderhaug, H. NMR Self-Diffusion and Viscosity of Polyurethane Formulations for Rocket Propellants. J. Phys. Chem. B 2004, 108, 12404–12412.
  • Lussier, L.-S.; Bergeron, E.; Gagnon, H. Study of the Daughter Products of Akardite-II. Prop. Explos. Pyrotech. 2006, 31, 253–262.
  • Jelisavac, L. Determination of Ethyl Centralite Stabilizer in a Double-Base Propellant by Gas Chromatography: linearity, Accuracy, Precision. Sci. Tech. Rev. 2007, 57, 87–93.
  • Tarasova, N.; Petrova, O.; Faizullin, D.; Davydova, M. FTIR-Spectroscopic Studies of the Fine Structure of Nitrocellulose Treated by Desulfovibrio Desulfuricans. Anaerobe 2005, 11, 312–314.
  • Laza, D.; Nys, B.; Kinder, J. D.; Mesmaeker, K. D.; Moucheron, C. Development of a Quantitative LC MS/MS Method for the Analysis of Common Propellant Powder Stabilizers in Gunshot Residue. J. Forensic Sci. 2007, 52, 842–850.
  • López-López, M.; Alegre, J. M. R.; García-Ruiz, C.; Torre, M. Determination of the Nitrogen Content of Nitrocellulose from Smokeless Gunpowders and Collodions by Alkaline Hydrolysis and Ion Chromatography. Anal Chim Acta 2011, 685, 196–203.
  • Deacon, P.; Kennedy, G.; Lewis, A.; Macdonald, A. ??. Proceedings of 30th International Annual Conference of ICT, Fraunhofer-Institut fur Chemische Technologie, Karlsruhe, Berghausen, 2001.
  • Deacon, P.; Macdonald, A.; Gill, P. An Update on the Round Robin Test to Evaluate the Nitrocellulose Size Exclusion Chromatography Method in STANAG 4178, 2nd ed.; TNO: Rijswijk, Netherlands, 2009.
  • Cropek, D. M.; Kemme, P. A.; Day, J. M.; Cochran, J. Use of Pyrolysis GC/MS for Predicting Emission Byproducts from the Incineration of Double-Base Propellant. Environ. Sci. Technol. 2002, 36, 4346–4351.
  • Joshi, M.; Rigsby, K.; Almirall, J. R. Analysis of the Headspace Composition of Smokeless Powders Using GC–MS, GC-μECD and Ion Mobility Spectrometry. Forensic Sci. Int. 2011, 208, 29–36.
  • Chajistamatiou, A. S.; Bakeas, E. B. A Rapid Method for the Identification of Nitrocellulose in High Explosives and Smokeless Powders Using GC–EI–MS. Talanta 2016, 151, 192–201.
  • de Perre, C.; Corbin, I.; Blas, M.; McCord, B. R. Separation and Identification of Smokeless Gunpowder Additives by Capillary Electrochromatography. J. Chromatogr. A 2012, 1267, 259–265.
  • Chovancová, M.; Očko, P.; Pechová, A.; Lopuch, J. Lifetime Prediction of Propellants according to NATO Standards. Problemy Techniki Uzbrojenia 2006, 35, pp 7–14.
  • Oehrle, S. A. Analysis of Stabilizer Degradation Products in Propellants Using HPLC and Photodiode Array (PDA) Detection. Propellants. Explos. Pyrotech. 1998, 23, 56–60.
  • Ferdowsi, M.; Taghian, A.; Najafi, A.; Moradi, M. Application of a Nanostructured Supramolecular Solvent for the Microextraction of Diphenylamine and Its Mono-Nitrated Derivatives from Unburned Single-Base Propellants. J. Sep. Sci. 2015, 38, 276–282.
  • Bergens, A.; Danielsson, R. Decomposition of Diphenylamine in Nitrocellulose Based Propellants—I. Optimization of a Numerical Model to Concentration-Time Data for Diphenylamine and Its Primary Degradation Products Determined by Liquid Chromatography with Dual-Amperometric Detection. Talanta 1995, 42, 171–183.
  • Curtis, N.; Rogasch, P. Determination of Derivatives of Diphenylamine in Australian Gun Propellants by High Performance Liquid Chromatography. Propellants Explos. Pyrotech. 1987, 12, 158–163.
  • Cropek, D. M.; Dankowski, B. Sonolysis of nitrocellulose fines (No. ERDC/CERL TR-00-14). Technical report, Construction Engineering Research Lab(ARMY): Champaign IL, 2000.
  • Matecic Musanic, S.; Suceska, M.; Culjak, R. The Applicability of Chromatographic Methods in the Investigation of Ageing Processes in Double Base Rocket Propellants, 2013, 10, 245-262.
  • Niessen, W. State-of-the-Art in Liquid Chromatography–Mass Spectrometry. J. Chromatogr. A 1999, 856, 179–197.
  • DeTata, D.; Collins, P.; McKinley, A. A Fast Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-QToF-MS) Method for the Identification of Organic Explosives and Propellants. Forensic Sci. Int. 2013, 233, 63–74.
  • Tachon, R.; Pichon, V.; Le Borgne, M. B.; Minet, J.-J. Use of Porous Graphitic Carbon for the Analysis of Nitrate Ester, Nitramine and Nitroaromatic Explosives and by-Products by Liquid Chromatography–Atmospheric Pressure Chemical Ionisation-Mass Spectrometry. J. Chromatogr. A 2007, 1154, 174–181.
  • Mathis, J. A.; McCord, B. R. Gradient Reversed-Phase Liquid Chromatographic-Electrospray Ionization Mass Spectrometric Method for the Comparison of Smokeless Powders. J. Chromatogr. A 2003, 988, 107–116.
  • Thomas, J. L.; Lincoln, D.; McCord, B. R. Separation and Detection of Smokeless Powder Additives by Ultra Performance Liquid Chromatography with Tandem Mass Spectrometry (UPLC/MS/MS). J. Forensic Sci. 2013, 58, 609–615.
  • Mei, H.; Quan, Y.; Wang, W.; Zhou, H.; Liu, Z.; Shi, H.; Wang, P. Determination of Diphenylamine in Gunshot Residue by HPLC-MS/MS. J. Forensic Sci. Med. 2016, 2, 18.
  • Moore, D. S.; McGrane, S. D. Comparative Infrared and Raman Spectroscopy of Energetic Polymers. J. Mol. Struct. 2003, 661-662, 561–566.
  • Rahoui, N.; Jiang, B.; Pan, H. T.; Huang, Y. D. Spectroscopy Strategy for Solid Propellants Quality Control. Appl. Spectrosc. Rev. 2016, 51, 431–450.
  • Auer, N.; Hedger, J. N.; Evans, C. S. Degradation of Nitrocellulose by Fungi. Biodegradation 2005, 16, 229–236.
  • Moniruzzaman, M.; Bellerby, J. Use of UV–Visible Spectroscopy to Monitor Nitrocellulose Degradation in Thin Films. Polym. Degrad. Stabil. 2008, 93, 1067–1072.
  • Perez, J. J.; Flanigan, P. M.; IV, Brady, J. J.; Levis, R. J. Classification of Smokeless Powders Using Laser Electrospray Mass Spectrometry and Offline Multivariate Statistical Analysis. Anal. Chem. 2013, 85, 296–302.
  • Tong, Y.; Wu, Z.; Yang, C.; Yu, J.; Zhang, X.; Yang, S.; Deng, X.; Xu, Y.; Wen, Y. Determination of Diphenylamine Stabilizer and Its Nitrated Derivatives in Smokeless Gunpowder Using a Tandem MS Method. Analyst 2001, 126, 480–484.
  • Ouellet, N.; Brochu, S.; Lussier, L.-S. Application of Partial Least-Squares Quantitative Analysis of Infrared Spectroscopic Data to Low-Vulnerability Ammunition Propellant Powders. Appl. Spectrosc. 2002, 56, 125–133.
  • Mallick, L.; Kumar, S.; Chowdhury, A. Thermal Decomposition of Ammonium Perchlorate—a TGA–FTIR–MS Study: Part I. Thermochim. Acta 2015, 610, 57–68.
  • Sharma, S.; Lahiri, S. Characterization and Identification of Explosives and Explosive Residues Using GC-MS, an FTIR Microscope, and HPTLC. J. Energetic Mater. 2005, 23, 239–264.
  • Nedkova, M.; Shishkov, P.; Varadinova, L.; Glavchev, I. An Investigation of the Extended Storage of Single-Base Propellants. Central Eur. J. Energetic Mater. 2014, 11, 613–624.
  • Farhadian, A.; Tehrani, M. K.; Keshavarz, M.; Darbani, S. Raman Spectroscopy Combined with Principle Component Analysis to Investigate the Aging of High Energy Materials. Laser Phys. 2017, 27, pp 075701.
  • Stich, S.; Bard, D.; Gros, L.; Walter Wenz, H.; Yarwood, J.; Williams, K. Raman Microscopic Identification of Gunshot Residues. J. Raman Spectrosc. 1998, 29, 787–790.
  • Bueno, J.; Lednev, I. K. Advanced Statistical Analysis and Discrimination of Gunshot Residue Implementing Combined Raman and FT-IR Data. Anal. Methods 2013, 5, 6292–6296.
  • Trewartha, S.; Shapter, J.; Gibson, C. T.; Mikajlo, E.; Jones, A. Determination of Deterrent Profiles in Nitrocellulose Propellant Grains Using Confocal Raman Microscopy. Propellants Explos. Pyrotech. 2011, 36, 451–458.
  • López-López, M.; Delgado, J. J.; García-Ruiz, C. Analysis of Macroscopic Gunshot Residues by Raman Spectroscopy to Assess the Weapon Memory Effect. Forensic Sci. Int. 2013, 231, 1–5.
  • Elbasuney, S.; El-Sherif, A. F. Complete Spectroscopic Picture of Concealed Explosives: Laser Induced Raman versus Infrared. Trends Analyt. Chem. 2016, 85, 34–41.
  • Zhao, M.; Zhang, S.; Yang, C.; Xu, Y.; Wen, Y.; Sun, L.; Zhang, X. Desorption Electrospray Tandem MS (DESI-MSMS) Analysis of Methyl Centralite and Ethyl Centralite as Gunshot Residues on Skin and Other Surfaces. J. Forensic Sci. 2008, 53, 807–811.
  • Pourmortazavi, S.; Hosseini, S.; Rahimi-Nasrabadi, M.; Hajimirsadeghi, S.; Momenian, H. Effect of Nitrate Content on Thermal Decomposition of Nitrocellulose. J. Hazard. Mater. 2009, 162, 1141–1144.
  • Binke, N.; Rong, L.; Zhengquan, Y.; Yuan, W.; Pu, Y.; Rongzu, H.; Qingsen, Y. Studies on the Kinetics of the First Order Autocatalytic Decomposition Reaction of Highly Nitrated Nitrocellulose. J. Thermal Anal. Calorimetry 1999, 58, 403–411.
  • Dong, J.; Yan, Q.-L.; Liu, P.-J.; He, W.; Qi, X.-F.; Zeman, S. The Correlations among Detonation Velocity, Heat of Combustion, Thermal Stability and Decomposition Kinetics of Nitric Esters. J. Therm. Anal. Calorim. 2018, 131, 1391–1403.
  • Książczak, A.; Ostrowski, M. DSC Studies on Long-Term Properties of Nitrocellulose and SYM-Diphenylurea System. J, Thermal Anal, Calorimetry 2004, 77, 341–351.
  • Rong, L.; Binke, N.; Yuan, W.; Zhengquan, Y.; Rongzu, H. Estimation of the Critical Temperature of Thermal Explosion for the Highly Nitrated Nitrocellulose Using Non-Isothermal DSC. J, Thermal Anal, Calorimetry 1999, 58, 369–373.
  • Chen, Y.; An, Z.; Chen, M.; Zhang, L. Study on Thermal Decomposition Characteristics of Two Kinds of Propellant. In: IOP Conference Series: Earth and Environmental Science; IOP Publishing: 2018, 108, 022016.
  • Guillaume, P.; Rat, M.; Pantel, G.; Wilker, S. Heat Flow Calorimetry of Propellants – Effects of Sample Preparation and Measuring Conditions. Propellants Explos. Pyrotech. 2001, 26, 51–57.
  • Trache, D.; Khimeche, K.; Benelmir, R.; Dahmani, A. DSC Measurement and Prediction of Phase Diagrams for Binary Mixtures of Energetic Materials’ Stabilizers. Thermochim. Acta 2013, 565, 8–16.
  • Rychlý, J.; Lattuati-Derieux, A.; Matisová-Rychlá, L.; Csomorová, K.; Janigová, I.; Lavédrine, B. Degradation of Aged Nitrocellulose Investigated by Thermal Analysis and Chemiluminescence. J. Therm. Anal. Calorim. 2012, 107, 1267–1276.
  • Zayed, M. A.; Hassan, M. A. Stability of Non‐Isothermally Treated Double‐Base Propellants Containing Different Stabilizers in Comparison with Molecular Orbital Calculations. Propellants Explos. Pyrotech. 2010, 35, 468–476.
  • Trache, D.; Khimeche, K.; Benziane, M.; Dahmani, A. Solid–Liquid Phase Equilibria for Binary Mixtures of Propellant’s Stabilizers. J. Therm. Anal. Calorim. 2013, 112, 215–222.
  • NATO Standardisation Agreement (STANAG) 4147, Chemical Compatibility of Ammunition Components with Explosives (Non Nuclear Applications); AC/310 (SG1) D/15 (Draft edition 2) I-96 NAVY/ARMY/AIR.
  • Kissinger, H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706.
  • Ozawa, T. A New Method of Analyzing Thermogravimetric Data. BCSJ. 1965, 38, 1881–1886.
  • Lin, C.-P.; Chang, Y.-M.; Gupta, J. P.; Shu, C.-M. Comparisons of TGA and DSC Approaches to Evaluate Nitrocellulose Thermal Degradation Energy and Stabilizer Efficiencies. Process Safety Environ. Protect. 2010, 88, 413–419.
  • Park, S. S.; Hwang, I. S.; Kang, M. S.; Jeong, H. J.; Hwang, J. Thermal Decomposition Characteristics of Expired Single-Based Propellant Using a Lab-Scale Tube Furnace and a Thermo-Gravimetric Analysis Reactor. J. Therm. Anal. Calorim. 2016, 124, 657–665.
  • North Atlantic Treaty Organisation; STANAG 4582: Qualification of Energetic Materials, 2004; North Atlantic Treaty Organisation; STANAG 4117: Qualification of Energetic Materials; 1998.
  • Ticmanis, U.; Wilker, S.; Pantel, G. Principles of a STANAG for the Estimation of the Chemical Stability of Propellants by Heat Flow Calorimetry. Energ. Mater. Anal., Diagnost. Test. 2000, 2, 1.
  • Husband, D. M. Use of Dynamic Mechanical Measurements to Determine the Aging Behavior of Solid Propellant. Propellants. Explos. Pyrotech. 1992, 17, 196–201.
  • Matecic Musanic, S.; Suceska, M. Artificial Ageing of Double Base Rocket Propellant. J. Thermal Anal. Calorim. 2009, 96, 523–529.
  • Herder, G.; Weterings, F.; de Klerk, W. Mechanical Analysis on Rocket Propellants. J. Thermal Anal. Calorim. 2003, 72, 921–929.
  • Menard, K. P. Dynamic Mechanical Analysis: A Practical Introduction; Taylor & Francis Group: Boca Raton, London, New York, CRC Press, 2008.
  • Ripani, E., Frioni, M., Marcelli, G., Squeo, E. A., Cianfanelli, S., Lillo, F. & SpA, A. Dynamical Characterization of Propellant Using the DMA. 2017.
  • Sućeska, M.; Mušanić, S. M.; Fiamengo, I.; Bakija, S.; Bakić, A.; Kodvanj, J. Study of Mechanical Properties of Naturally Aged Double Base Rocket Propellants. Central Eur. J. Energetic Mater. 2010, 7, 47.
  • Wani, V.; M, M.; Jain, S.; Singh, P.; Bhattacharya, B. Prediction of Storage Life of Propellants Having Different Burning Rates Using Dynamic Mechanical Analysis. DSJ. 2012, 62, 290.
  • Gabbott, P. Principles and Applications of Thermal Analysis; John Wiley & Sons: Oxford, UK, 2008.
  • Hartman, K.; Morrow, S. Solid propellants, Technical report, Alliant Tech-system, 2011; pp 277–293.
  • van Driel, C.; de Klerk, W. Functional lifetime of gun propellants. In 19th International Symposium of Ballistics, Interllaken, Switzerland, 2001.
  • Bohn, M. Prediction of equivalent time-temperature loads for accelerated ageing to simulate preset in-storage ageing and time-temperature profile loads. In Proceedings of 40th International Annual Conference of ICT, Karlsruhe, 2009, pp. 23–26.
  • López-López, M.; Bravo, J. C.; García-Ruiz, C.; Torre, M. Diphenylamine and Derivatives as predictors of gunpowder Age by Means of HPLC and Statistical Models. Talanta 2013, 103, 214–220.
  • Xiong, Y.; Sui, X.; Wang, N-f. Research on NEPE Propellant Life Prediction Model. 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, 2015.
  • Bailey, A.; Murray, S. Explosives, Propellants, and Pyrotechnics; Potomac Books Inc: Brassey’s, Oxford, 1989.
  • Trache, D.; Klapötke, T. M.; Maiz, L.; Abd-Elghany, M.; DeLuca, L. T. Recent Advances in New Oxidizers for Solid Rocket Propulsion. Green Chem. 2017, 19, 4711–4736.
  • Bofors, A. Analytical Methods for Powders and Explosives; Bofors AB Bofors: Nobelkrut, 1974.
  • Tiganescu, V.; Rotariu, T.; Esanu, S. R.; Zecheru, T.; Florea, C.; Matache, L.-C. Studies regarding the Effectiveness of Stabilizer “Revival” Process on Old Propellants. Rev. Chim. 2014, 65, 1042–1045.
  • Ferdowsi, M.; Taghian, A.; Najafi, A.; Moradi, M. Application of a Nanostructured Supramolecular Solvent for the Microextraction of Diphenylamine and Its Mono‐Nitrated Derivatives from Unburned Single‐Base Propellants. J. Sep. Sci. 2015, 38, 276–282.
  • López-López, M.; Ferrando, J. L.; García-Ruiz, C. Comparative Analysis of Smokeless Gunpowders by Fourier Transform Infrared and Raman Spectroscopy. Anal. Chim. Acta 2012, 717, 92–99.
  • Zhou, S.; Wang, Z.; Lu, L.; Yin, Q.; Yu, L.; Deng, G. Rapid Quantification of Stabilizing Agents in Single-Base Propellants Using near Infrared Spectroscopy. Infrared Phys. Technol. 2016, 77, 1–7.
  • Alizadeh, N.; Farokhcheh, A. Simultaneous Determination of Diphenylamine and Nitrosodiphenylamine by Photochemically Induced Fluorescence and Synchronous Fluorimetry Using Double Scans Method. Talanta 2014, 121, 239–246.
  • Luo, Q.; Ren, T.; Shen, H.; Zhang, J.; Liang, D. The Thermal Properties of Nitrocellulose: From Thermal Decomposition to Thermal Explosion. Combust. Sci. Technol. 2018, 190, 579–590.
  • Zhang, F.; Liu, Z.; Du, P. Thermal Decomposition Kinetics of Nitroguanidine Propellant under Different Pressures. Prop. Explos. Pyrotech. 2018, 43, 390–397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.