515
Views
20
CrossRef citations to date
0
Altmetric
Review Articles

Recent Applications of Carbonaceous Nanosorbents in Solid Phase Extraction for the Determination of Pesticides in Food Samples

ORCID Icon, ORCID Icon, &
Pages 439-458 | Published online: 29 Dec 2018

References

  • Popp, J.; Pető, K.; Nagy, J. Pesticide Productivity and Food Security. A Review. Agron. Sustain. Dev. 2013, 33, 243–255. DOI: 10.1007/s13593-012-0105-x.
  • Campos, E. V. R.; de Oliveira, J. L.; Fraceto, L. F. Applications of Controlled Release Systems for Fungicides, Herbicides, Acaricides, Nutrients, and Plant Growth Hormones: A Review. Adv. Sci. Engng. Med. 2014, 6, 373–387. DOI: 10.1166/asem.2014.1538.
  • Carvalho, F. P. Pesticides, Environment, and Food Safety. Food Energy Secur. 2017, 6, 48–60. DOI: 10.1002/fes3.108.
  • Mostafalou, S.; Abdollahi, M. Pesticides: An Update of Human Exposure and Toxicity. Arch. Toxicol. 2017, 91, 549–599. DOI: 10.1007/s00204-016-1849-x.
  • Tarone, R. E. On the International Agency for Research on Cancer Classification of Glyphosate as a Probable Human Carcinogen. Eur. J. Can. Prev. 2018, 27, 82–87. DOI: 10.1097/CEJ.0000000000000289.
  • Machado, A. A.; Valyi, K.; Rillig, M. C. Potential Environmental Impacts of an “Underground Revolution”: A Response to Bender et al. Trends Ecol. Evol. 2017, 32, 8–10. DOI: 10.1016/j.tree.2016.10.009.
  • Tosi, S.; Costa, C.; Vesco, U.; Quaglia, G.; Guido, G. A 3-Year Survey of Italian Honey Bee-Collected Pollen Reveals Widespread Contamination by Agricultural Pesticides. Sci. Total Environ. 2018, 615, 208–218. DOI: 10.1016/j.scitotenv.2017.09.226.
  • Buah-Kwofie, A.; Humphries, M. S.; Pillay, L. Bioaccumulation and Risk Assessment of Organochlorine Pesticides in Fish from a Global Biodiversity Hotspot: iSimangaliso Wetland Park, South Africa. Sci. Total Environ. 2018, 621, 273–281. DOI: 10.1016/j.scitotenv.2017.11.212.
  • Cremonese, C.; Piccoli, C.; Pasqualotto, F.; Clapauch, R.; Koifman, R. J.; Koifman, S.; Freire, C. Occupational Exposure to Pesticides, Reproductive Hormone Levels and Sperm Quality in Young Brazilian Men. Reprod. Toxicol. 2017, 67, 174–185. DOI: 10.1016/j.reprotox.2017.01.001.
  • Barbosa, F. H. F.; Menezes, H. C.; de Carvalho Teixeira, A. P.; Serp, P.; Antipoff, V.; de Lourdes Cardeal, Z. Versatile Magnetic Carbon Nanotubes for Sampling and Pre Concentration of Pesticides in Environmental Water. Talanta 2017, 167, 538–543. DOI: 10.1016/j.talanta.2017.02.054.
  • Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-Phase Extraction of Organic Compounds: A Critical Review (Part I). TrAC, Trends Anal. Chem. 2016, 80, 641–654. DOI: 10.1016/j.trac.2015.08.015.
  • Jakubus, A.; Paszkiewicz, M.; Stepnowski, P. Carbon Nanotubes Application in the Extraction Techniques of Pesticides: A Review. Crit. Rev. Anal. Chem. 2017, 47, 76–91. DOI: 10.1080/10408347.2016.1209105.
  • Chen, W.; Duan, L.; Zhu, D. Adsorption of Polar and Nonpolar Organic Chemicals to Carbon Nanotubes. Environ. Sci. Technol. 2007, 41, 8295–8300. DOI: 10.1021/es071230h.
  • Wen, Y.; Chen, L.; Li, J.; Liu, D.; Chen, L. Recent Advances in Solid-Phase Sorbents for Sample Preparation Prior to Chromatographic Analysis. TRAC, Trends Anal. Chem. 2014, 59, 26–41. DOI: 10.1016/j.trac.2014.03.011.
  • Ersan, G.; Kaya, Y.; Apul, O. G.; Karanfil, T. Adsorption of Organic Contaminants by Graphene Nanosheets, Carbon Nanotubes and Granular Activated Carbons under Natural Organic Matter Preloading Conditions. Sci. Total Environ. 2016, 565, 811–817. DOI: 10.1016/j.scitotenv.2016.03.224.
  • Lu, Y.; Long, G.; Zhang, L.; Zhang, T.; Zhang, M.; Zhang, F.; Yang, Y.; Ma, Y.; Chen, Y. What Are the Practical Limits for the Specific Surface Area and Capacitance of Bulk sp2 Carbon Materials? Sci. China Chem. 2016, 59, 225–230. DOI: 10.1007/s11426-015-5474-y.
  • Sitko, R.; Zawisza, B.; Malicka, E. Graphene as a New Sorbent in Analytical Chemistry. TrAC, Trends Anal. Chem. 2013, 51, 33–43. DOI: 10.1016/j.trac.2013.05.011.
  • Tankiewicz, M.; Fenik, J.; Biziuk, M. Solventless and Solvent-Minimized Sample Preparation Techniques for Determining Currently Used Pesticides in Water Samples: A Review. Talanta 2011, 86, 8–22. DOI: 10.1016/j.talanta.2011.08.056.
  • Yang, G. C.; Tang, P. L. Removal of Phthalates and Pharmaceuticals from Municipal Wastewater by Graphene Adsorption Process. Water Sci. Technol. 2016, 73, 2268–2274. DOI: 10.2166/wst.2016.006.
  • Socas-Rodríguez, B.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez Delgado, M. Á. Application of Multiwalled Carbon Nanotubes as Sorbents for the Extraction of Mycotoxins in Water Samples and Infant Milk Formula Prior to High Performance Liquid Chromatography Mass Spectrometry Analysis. Electrophoresis 2016, 37, 1359–1366. DOI: 10.1002/elps.201500581.
  • Shan, S.; Zhao, Y.; Tang, H.; Cui, F. Linear Solvation Energy Relationship to Predict the Adsorption of Aromatic Contaminants on Graphene Oxide. Chemosphere 2017, 185, 826–832. DOI:
  • Gadipelli, S.; Guo, Z. X. Graphene-Based Materials: Synthesis and Gas Sorption, Storage and Separation. Progress Mater. Sci. 2015, 69, 1–60. DOI: 10.1016/j.pmatsci.2014.10.004.
  • Wang, Z.; Han, Q.; Xia, J.; Xia, L.; Ding, M.; Tang, J. Graphene-Based Solid-Phase Extraction Disk for Fast Separation and Preconcentration of Trace Polycyclic Aromatic Hydrocarbons from Environmental Water Samples. J. Sep. Sci. 2013, 36, 1834–1842. DOI: 10.1002/jssc.201300186.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. DOI: 10.1002/adma.201001068.
  • Wang, J.; Chen, Z.; Chen, B. Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets. Environ. Sci. Technol. 2014, 48, 4817–4825. DOI: 10.1021/es405227u.
  • Pan, B.; Xing, B. Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environ. Sci. Technol. 2008, 42, 9005–9013. DOI: 10.1021/es801777n.
  • Wang, X.; Liu, Y.; Tao, S.; Xing, B. Relative Importance of Multiple Mechanisms in Sorption of Organic Compounds by Multiwalled Carbon Nanotubes. Carbon 2010, 48, 3721–3728. DOI: 10.1016/j.carbon.2010.06.034.
  • Apul, O. G.; Karanfil, T. Adsorption of Synthetic Organic Contaminants by Carbon Nanotubes: A Critical Review. Water Res. 2015, 68, 34–55. DOI: 10.1016/j.watres.2014.09.032.
  • Ebrahimi, M.; Es‘Haghi, Z.; Samadi, F.; Hosseini, M. S. Ionic Liquid Mediated Sol–Gel Sorbents for Hollow Fiber Solid-Phase Microextraction of Pesticide Residues in Water and Hair Samples. J. Chromatogr. A 2011, 1218, 8313–8321. DOI: 10.1016/j.chroma.2011.09.058.
  • Zhao, Z.; Yang, Z.; Hu, Y.; Li, J.; Fan, X. Multiple Functionalization of Multi-Walled Carbon Nanotubes with Carboxyl and Amino Groups. Appl. Surf. Sci. 2013, 276, 476–481.
  • Patiño, Y.; Díaz, E.; Ordóñez, S.; Gallegos-Suarez, E.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Adsorption of Emerging Pollutants on Functionalized Multiwall Carbon Nanotubes. Chemosphere 2015, 136, 174–180. DOI: 10.1016/j.chemosphere.2015.04.089.
  • He, Z.; Wang, L.; Peng, Y.; Luo, M.; Wang, W.; Liu, X. Multiresidue Analysis of over 200 Pesticides in Cereals Using a QuEChERS and Gas Chromatography–Tandem Mass Spectrometry-Based Method. Food Chem. 2015, 169, 372–380. DOI: 10.1016/j.foodchem.2014.07.102.
  • Zhao, P.; Wang, L.; Zhou, L.; Zhang, F.; Kang, S.; Pan, C. Multi-Walled Carbon Nanotubes as Alternative Reversed-Dispersive Solid Phase Extraction Materials in Pesticide Multi-Residue Analysis with QuEChERS Method. J. Chromatogr. A 2012, 1225, 17–25. DOI: 10.1016/j.chroma.2011.12.070.
  • Cinelli, G.; Avino, P.; Notardonato, I.; Russo, M. V. Ultrasound-Vortex-Assisted Dispersive Liquid–Liquid Microextraction Coupled with Gas Chromatography with a Nitrogen–Phosphorus Detector for Simultaneous and Rapid Determination of Organophosphorus Pesticides and Triazines in Wine. Anal. Methods 2014, 6, 782–790. DOI: 10.1039/C3AY41641K.
  • Farajzadeh, M. A.; Feriduni, B.; Mogaddam, M. R. A. Determination of Triazole Pesticide Residues in Edible Oils Using Air-Assisted Liquid-Liquid Microextraction Followed by Gas Chromatography with Flame Ionization Detection. J. Sep. Sci. 2015, 38, 1002–1009. DOI: 10.1002/jssc.201400818.
  • Ahmad, W.; Al-Sibaai, A. A.; Bashammakh, A. S.; Alwael, H.; El-Shahawi, M. S. Recent Advances in Dispersive Liquid-Liquid Microextraction for Pesticide Analysis. TrAC, Trends Anal. Chem. 2015, 72, 181–192. DOI: 10.1016/j.trac.2015.04.022.
  • Lawal, A.; Tan, G. H.; Alsharif, A. M. A. Recent Advances in Analysis of Pesticides in Food and Drink Samples Using LPME Techniques Coupled to GC-MS and LC-MS: A Review. J. AOAC Int. 2016, 99, 1383–1394. DOI: 10.5740/jaoacint.16–0272.
  • Elbashir, A. A.; Aboul-Enein, H. Y. Application of Gas and Liquid Chromatography Coupled to Time-of-Flight Mass Spectrometry in Pesticides Multi-Residue Analysis. Biomed. Chromatogr 2018, 32, e4038. DOI: 10.1002/bmc.4038.
  • Tuzimski, T. Multiclass, Multiresidue Methods (MRMs) for the Determination of Pesticides by Modern Extraction and Detection Techniques: The Combination of QuEChERS and High-Resolution Mass Spectrometry (HRMS). J. AOAC Int. 2016, 99, 1381–1382. DOI: 10.5740/jaoacint.16-0271.
  • Samsidar, A.; Siddiquee, S.; Shaarani, S. M. A Review of Extraction, Analytical and Advanced Methods for Determination of Pesticides in Environment and Foodstuffs. Trends Food Sci. Technol. 2018, 71, 188–201. DOI: 10.1016/j.talanta.2016.11.003.
  • Shimelis, O.; Yang, Y.; Stenerson, K.; Kaneko, T.; Ye, M. Evaluation of a Solid-Phase Extraction Dual-Layer Carbon/Primary Secondary Amine for Clean-up of Fatty Acid Matrix Components from Food Extracts in Multiresidue Pesticide Analysis. J. Chromatogr. A 2007, 1165, 18–25. DOI: 10.1016/j.chroma.2007.07.037.
  • Wilkowska, A.; Biziuk, M. Determination of Pesticide Residues in Food Matrices Using the QuEChERS Methodology. Food Chem. 2011, 125, 803–812. DOI: 10.1016/j.foodchem.2010.09.094
  • Lehotay, S. J.; Maštovská, K.; Lightfield, A. R. Use of Buffering and Other Means to Improve Results of Problematic Pesticides in a Fast and Easy Method for Residue Analysis of Fruits and Vegetables. J. AOAC Int. 2005, 88, 615–629.
  • Chamkasem, N.; Ollis, L. W.; Harmon, T.; Lee, S.; Mercer, G. Analysis of 136 Pesticides in Avocado Using a Modified QuEChERS Method with LC-MS/MS and GC-MS/MS. J. Agric. Food Chem. 2013, 61, 2315–2329. DOI: 10.1021/jf304191c.
  • Mol, H. G.; Rooseboom, A.; van Dam, R.; Roding, M.; Arondeus, K.; Sunarto, S. Modification and Re-Validation of the Ethyl Acetate-Based Multi-Residue Method for Pesticides in Produce. Anal. Bioanal. Chem. 2007, 389, 1715–1754. DOI: 10.1007/s00216-007-1357-1.
  • Andraščíková, M.; Matisová, E.; Hrouzková, S. Liquid Phase Microextraction Techniques as a Sample Preparation Step for Analysis of Pesticide Residues in Food. Sep. Purif. Rev. 2015, 44, 1–18. DOI: 10.1080/15422119.2013.872125.
  • Lozano, A.; Rajski, Ł.; Uclés, S.; Belmonte-Valles, N.; Mezcua, M.; Fernández-Alba, A. R. Evaluation of Zirconium Dioxide-Based Sorbents to Decrease the Matrix Effect in Avocado and Almond Multiresidue Pesticide Analysis Followed by Gas Chromatography Tandem Mass Spectrometry. Talanta 2014, 118, 68–83. DOI: 10.1016/j.talanta.2013.09.053.
  • Wan Ibrahim, W. A.; Nodeh, H. R.; Aboul-Enein, H. Y.; Sanagi, M. M. Magnetic Solid-Phase Extraction Based on Modified Ferum Oxides for Enrichment, Preconcentration, and Isolation of Pesticides and Selected Pollutants. Crit. Rev. Anal. Chem. 2015, 45, 270–287. DOI: 10.1080/10408347.2014.938148.
  • Li, X.; Sun, Y.; Sun, Q.; Liang, L.; Piao, H.; Jiang, Y.; Yu, A.; Song, D.; Wang, X. Ionic-Liquid-Functionalized Zinc Oxide Nanoparticles for the Solid-Phase Extraction of Triazine Herbicides in Corn Prior to HPLC Analysis. J. Sep. Sci. 2017, 40, 2991–2998. DOI: 10.1002/jssc.201700118.
  • Arnnok, P.; Patdhanagul, N.; Burakham, R. Dispersive Solid-Phase Extraction Using Polyaniline-Modified Zeolite NaY as a New Sorbent for Multiresidue Analysis of Pesticides in Food and Environmental Samples. Talanta 2017, 164, 651–661. DOI: 10.1016/j.talanta.2016.11.003.
  • Liang, X.; Liu, S.; Wang, S.; Guo, Y.; Jiang, S. Carbon-Based Sorbents: carbon Nanotubes. J. Chromatogr. A 2014, 1357, 53–67. DOI: 10.1016/j.chroma.2014.04.039.
  • Sharon, M.; Sharon, M. Carbon Nanomaterials: Applications in Physico-Chemical Systems and Biosystems. Def. Sci. J. 2008, 58, 460–485. DOI: 10.14429/dsj.58.1668 http://dx.doi.org/10.14429/dsj.58.1668.
  • Hua, S.; Gong, J. L.; Zeng, G. M.; Yao, F. B.; Guo, M.; Ou, X. M. Remediation of Organochlorine Pesticides Contaminated Lake Sediment Using Activated Carbon and Carbon Nanotubes. Chemosphere 2017, 177, 65–76. DOI: 10.1016/j.chemosphere.2017.02.133.
  • Soler, C.; Pico, Y. Recent Trends in Liquid Chromatography-Tandem Mass Spectrometry to Determine Pesticides and Their Metabolites in Food. TrAC, Trends Anal. Chem. 2007, 26, 103–115. DOI: 10.1016/j.trac.2006.08.005.
  • Li, M.; Liu, X.; Dong, F.; Xu, J.; Kong, Z.; Li, Y.; Zheng, Y. Simultaneous Determination of Cyflumetofen and Its Main Metabolite Residues in Samples of Plant and Animal Origin Using Multi-Walled Carbon Nanotubes in Dispersive Solid-Phase Extraction and Ultrahigh Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2013, 1300, 95–103. DOI: 10.1016/j.chroma.2013.05.052.
  • Deme, P.; Upadhyayula, V. V. Ultra Performance Liquid Chromatography Atmospheric Pressure Photoionization High Resolution Mass Spectrometric Method for Determination of Multiclass Pesticide Residues in Grape and Mango Juices. Food Chem. 2015, 173, 1142–1149. DOI: 10.1016/j.foodchem.2014.11.007.
  • Su, R.; Li, D.; Wang, X.; Yang, H.; Shi, X.; Liu, S. Determination of Organophosphorus Pesticides in Ginseng by Carbon Nanotube Envelope-Based Solvent Extraction Combined with Ultrahigh-Performance Liquid Chromatography Mass Spectrometry. J. Chromatogr. B 2016, 1022, 141–152. DOI: 10.1016/j.jchromb.2016.04.018.
  • Qin, Y.; Zhao, P.; Fan, S.; Han, Y.; Li, Y.; Zou, N.; Song, S.; Zhang, Y.; Li, F.; Li, X.; et al. The Comparison of Dispersive Solid Phase Extraction and Multi-Plug Filtration Clean-up Method Based on Multi-Walled Carbon Nanotubes for Pesticides Multi-Residue Analysis by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2015, 1385, 1–11. DOI: 10.1016/j.chroma.2015.01.066.
  • Qin, Y.; Zhang, J.; He, Y.; Han, Y.; Zou, N.; Li, Y.; Chen, R.; Li, X.; Pan, C. Automated Multiplug Filtration Clean-up for Pesticide Residue Analyses in Kiwi Fruit (Actinidia Chinensis) and Kiwi Juice by Gas Chromatography–Mass Spectrometry. J. Agric. Food Chem. 2016, 64, 6082–6090. DOI: 10.1021/acs.jafc.5b06027.
  • Qin, Y.; Huang, B.; Zhang, J.; Han, Y.; Li, Y.; Zou, N.; Yang, J.; Pan, C. Analytical Method for 44 Pesticide Residues in Spinach Using Multi-Plug-Filtration Clean-up Based on Multiwalled Carbon Nanotubes with Liquid Chromatography and Tandem Mass Spectrometry Detection. J. Sep. Sci. 2016, 39, 1757–1765. DOI: 10.1002/jssc.201501401.
  • Qin, Y.; Zhang, J.; Zhang, Y.; Li, F.; Han, Y.; Zou, N.; Xu, H.; Qian, M.; Pan, C. Automated Multi-Plug Filtration Clean-up for Liquid Chromatographic–Tandem Mass Spectrometric Pesticide Multi-Residue Analysis in Representative Crop Commodities. J. Chromatogr. A 2016, 1462, 19–26. DOI: 10.1016/j.chroma.2016.07.073.
  • Han, Y.; Song, L.; Zou, N.; Chen, R.; Qin, Y.; Pan, C. Multi-Residue Determination of 171 Pesticides in Cowpea Using Modified QuEChERS Method with Multi-Walled Carbon Nanotubes as Reversed-Dispersive Solid-Phase Extraction Materials. J. Chromatogr. B 2016, 1031, 99–108. DOI: 10.1016/j.jchromb.2016.07.043.
  • Han, Y.; Song, L.; Zhao, P.; Li, Y.; Zou, N.; Qin, Y.; Li, X.; Pan, C. Residue Determination of Glufosinate in Plant Origin Foods Using Modified Quick Polar Pesticides (QuPPe) Method and Liquid Chromatography Coupled with Tandem Mass Spectrometry. Food Chem. 2016, 197, 730–736. DOI: 10.1016/j.foodchem.2015.11.021.
  • Han, Y.; Song, L.; Zou, N.; Qin, Y.; Li, X.; Pan, C. Rapid Multiplug Filtration Cleanup Method for the Determination of 124 Pesticide Residues in Rice, Wheat, and Corn. J. Sep. Sci. 2017, 40, 878–884. DOI: 10.1002/jssc.201600978.
  • Wang, L.; Zhang, M.; Zhang, D.; Zhang, L. New Approach for the Simultaneous Determination Fungicide Residues in Food Samples by Using Carbon Nanofiber Packed Microcolumn Coupled with HPLC. Food Control 2016, 60, 1–6. DOI: 10.1016/j.foodcont.2015.07.024.
  • Wang, C.; Wu, Q.; Wu, C.; Wang, Z. Determination of Some Organophosphorus Pesticides in Water and Watermelon Samples by Microextraction Prior to High-Performance Liquid Chromatography. J. Sep. Sci. 2011, 34, 3231–3239. DOI: 10.1002/jssc.201100661.
  • Wu, M.; Wang, L.; Zeng, B.; Zhao, F. Ionic Liquid Polymer Functionalized Carbon Nanotubes-Doped Poly (3,4-Ethylenedioxythiophene) for Highly-Efficient Solid-Phase Microextraction of Carbamate Pesticides. J. Chromatogr. A 2016, 1444, 42–49. DOI: 10.1016/j.chroma.2016.03.074.
  • Makkliang, F.; Kanatharana, P.; Thavarungkul, P.; Thammakhet, C. A Novel Miniaturized Zinc Oxide/Hydroxylated Multiwalled Carbon Nanotubes as a Stir-Brush Microextractor Device for Carbamate Pesticides Analysis. Anal. Chim. Acta 2016, 917, 27–36. DOI: 10.1016/j.aca.2016.02.040.
  • Dehaghi, S. M.; Rahmanifar, B.; Moradi, A. M.; Azar, P. A. Removal of Permethrin Pesticide from Water by Chitosan–Zinc Oxide Nanoparticles Composite as an Adsorbent. J. Saud. Chem. Soc. 2014, 18, 348–355. DOI: 10.1016/j.jscs.2014.01.004.
  • Guan, W.; Li, Z.; Zhang, H.; Hong, H.; Rebeyev, N.; Ye, Y.; Ma, Y. Amine Modified Graphene as Reversed-Dispersive Solid Phase Extraction Materials Combined with Liquid Chromatography–Tandem Mass Spectrometry for Pesticide Multi-Residue Analysis in Oil Crops. J. Chromatogr. A 2013, 1286, 1–8. DOI: 10.1016/j.chroma.2013.02.043.
  • Shi, Z.; Zhang, S.; Huai, Q.; Xu, D.; Zhang, H. Methylamine-Modified Graphene-Based Solid Phase Extraction Combined with UPLC-MS/MS for the Analysis of Neonicotinoid Insecticides in Sunflower Seeds. Talanta 2017, 162, 300–308. DOI: 10.1016/j.talanta.2016.10.042.
  • Guan, W.; Li, C.; Liu, X.; Zhou, S.; Ma, Y. Graphene as Dispersive Solidphase Extraction Materials for Pesticides LC-MS/MS Multi-Residue Analysis in Leek, Onion and Garlic. Food Addit. Contam. A 2014, 31, 250–261. DOI: 10.1080/19440049.2013.865278.
  • Kaczyński, P. Clean-up and Matrix Effect in LC-MS/MS Analysis of Food of Plant Origin for High Polar Herbicides. Food Chem. 2017, 230, 524–531. DOI: 10.1016/j.foodchem.2017.03.091.
  • Han, Q.; Wang, Z.; Xia, J.; Zhang, X.; Wang, H.; Ding, M. Application of Graphene for the SPE Clean-Up of Organophosphorus Pesticides Residues from Apple Juices. J. Sep. Sci. 2014, 37, 99–105. DOI: 10.1002/jssc.201301005.
  • Shi, Z.; Li, Q.; Xu, D.; Huai, Q.; Zhang, H. Graphene-Based Pipette Tip Solid-Phase Extraction with Ultra-High Performance Liquid Chromatography and Tandem Mass Spectrometry for the Analysis of Carbamate Pesticide Residues in Fruit Juice. J. Sep. Sci. 2016, 39, 4391–4397. DOI: 10.1002/jssc.201600498.
  • Zhang, F.; Zhao, Q.; Yan, X.; Li, H.; Zhang, P.; Wang, L.; Zhou, T.; Li, Y.; Ding, L. Rapid Preparation of Expanded Graphite by Microwave Irradiation for the Extraction of Triazine Herbicides in Milk Samples. Food Chem. 2016, 197, 943–949. DOI: 10.1016/j.foodchem.2015.11.056.
  • Zhang, M.; Chen, H.; Zhu, L.; Wang, C.; Ma, G.; Liu, X. Solid-Phase Purification and Extraction for the Determination of Trace Neonicotinoid Pesticides in Tea Infusion. J. Sep. Sci. 2016, 39, 910–917. DOI: 10.1002/jssc.201670051.
  • Zhang, X.; Niu, J.; Zhang, X.; Xiao, R.; Lu, M.; Cai, Z. Graphene oxide-SiO2 Nanocomposite as the Adsorbent for Extraction and Preconcentration of Plant Hormones for HPLC Analysis. J. Chromatogr. B 2017, 1046, 58–64. DOI: 10.1016/j.jchromb.2017.01.004.
  • Sun, T.; Jin, Y.; Yang, J.; Li, L.; Shi, X.; Li, X. Dispersive Solid-Phase Extraction of Organophosphorus Pesticides from Apple, Cucumber and Water Samples Using Reduced Graphene Oxide Coated with ZnO Nanocomposites as a Sorbent. Anal. Methods 2015, 7, 6095–6102. DOI: 10.1039/C5AY00866B.
  • Sun, T.; Sun, H.; Zhao, F. Dispersive Solid-Phase Extraction for the Determination of Trace Organochlorine Pesticides in Apple Juices Using Reduced Graphene Oxide Coated with ZnO Nanocomposites as Sorbent. J. Sep. Sci. 2017, 40, 3725–3733. DOI: 10.1002/jssc.201700599.
  • Li, M.; Wang, J.; Jiao, C.; Wang, C.; Wu, Q.; Wang, Z. Graphene Oxide Framework: An Adsorbent for Solid Phase Extraction of Phenylurea Herbicides from Water and Celery Samples. J. Chromatogr. A 2016, 1469, 17–24. DOI: 10.1016/j.chroma.2016.09.056.
  • Wu, J.; Liang, X.; Hao, L.; Wang, C.; Wu, Q.; Wang, Z. Graphene Oxide Cross-Linked with Phytic Acid: An Efficient Adsorbent for the Extraction of Carbamates. Microchim. Acta 2017, 184, 3773–3779. DOI: 10.1007/s00604-017-2413-y https://doi.org/10.1007/s00604-017-2413-y.
  • Boulanouar, S.; Mezzache, S.; Combès, A.; Pichon, V. Molecularly Imprinted Polymers for the Determination of Organophosphorus Pesticides in Complex Samples. Talanta 2018, 176, 465–478. DOI: 10.1016/j.talanta.2017.08.067.
  • Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Profumo, A. Newest Applications of Molecularly Imprinted Polymers for Extraction of Contaminants from Environmental and Food Matrices: A Review. Anal. Chim. Acta 2017, 974, 1–26. DOI: 10.1016/j.aca.2017.04.042.
  • Ma, X.; Wang, J.; Wu, Q.; Wang, C.; Wang, Z. Extraction of Carbamate Pesticides in Fruit Samples by Graphene Reinforced Hollow Fibre Liquid Microextraction Followed by High Performance Liquid Chromatographic Detection. Food Chem. 2014, 157, 119–124. DOI: 10.1016/j.foodchem.2014.02.007.
  • Ma, R.; Zhou, X.; Ma, X.; Wang, C.; Wu, Q.; Wang, Z. Determination of Carbamate Pesticides in Vegetables by Octadecyl Modified Graphene Reinforced Hollow Fiber Liquid Phase Microextraction Combined with High-Performance Liquid Chromatography. Anal. Lett. 2015, 48, 1671–1685. DOI: 10.1080/00032719.2014.1002035
  • Silva, V. D.; Simão, V.; Dias, A. N.; Carletto, J. S.; Carasek, E. Combination of Hollow-Fiber-Supported Liquid Membrane and Dispersive Liquid-Liquid Microextraction as a Fast and Sensitive Technique for the Extraction of Pesticides from Grape Juice Followed by High-Performance Liquid Chromatography. J. Sep. Sci. 2015, 38, 1959–1968. DOI: 10.1002/jssc.201401418.
  • Qi, R.; Jiang, H.; Liu, S.; Jia, Q. Preconcentration and Determination of Pesticides with Graphene-Modified Polymer Monolith Combined with High Performance Liquid Chromatography. Anal. Methods 2014, 6, 1427–1434. DOI: 10.1039/C3AY41688G.
  • Khalilian, F.; Farajvand, M. Polyaniline/Graphene Nanocomposite as a Promising Sorbent for Dispersive Solid Phase Extraction of Avermectins from Citrus Fruit Juice. Anal. Bioanal. Chem. Res. 2017, 4, 21–29. DOI: 10.22036/abcr.2017.40553.
  • Ayazi, Z.; Jaafarzadeh, R. Graphene Oxide/Polyamide Nanocomposite as a Novel Stir Bar Coating for Sorptive Extraction of Organophosphorous Pesticides in Fruit Juice and Vegetable Samples. Chromatographia 2017, 80, 1411–1422. DOI: 10.1007/s10337-017-3364-5.
  • Darvishnejad, M.; Ebrahimzadeh, H. Halloysite Nanotubes Functionalized with a Nanocomposite Prepared from Reduced Graphene Oxide and Polythiophene as a Viable Sorbent for the Preconcentration of Six Organochlorine Pesticides Prior to Their Quantitation by GC/MS. Microchim. Acta 2017, 184, 3603–3612. DOI: 10.1007/s00604-017-2381-2.
  • Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R. M.; Otárola-Jiménez, J. Magnetic Solid-Phase Extraction Using Carbon Nanotubes as Sorbents: A Review. Anal. Chim. Acta 2015, 892, 10–26. DOI: 10.1016/j.aca.2015.07.046.
  • Hou, M.; Zang, X.; Wang, C.; Wang, Z. The Use of Silica-Coated Magnetic Graphene Microspheres as the Adsorbent for the Extraction of Pyrethroid Pesticides from Orange and Lettuce Samples Followed by GC-MS Analysis. J. Sep. Sci. 2013, 36, 3242–3248. DOI: 10.1002/jssc.201300656.
  • Ma, X.; Wang, J.; Sun, M.; Wang, W.; Wu, Q.; Wang, C.; Wang, Z. Magnetic Solid-Phase Extraction of Neonicotinoid Pesticides from Pear and Tomato Samples Using Graphene Grafted Silica-Coated Fe3O4 as the Magnetic Adsorbent. Anal. Methods 2013, 5, 2809–2815. DOI: 10.1039/C3AY40207J.
  • Sun, M.; Ma, X.; Wang, J.; Wang, W.; Wu, Q.; Wang, C.; Wang, Z. Graphene Grafted Silica-Coated Fe3O4 Nanocomposite as Absorbent for Enrichment of Carbamates from Cucumbers and Pears Prior to HPLC. J. Sep. Sci. 2013, 36, 1478–1485. DOI: 10.1002/jssc.201201036.
  • Wang, L.; Zang, X.; Chang, Q.; Wang, C.; Wang, Z. A Graphene-Coated Magnetic Nanocomposite for the Enrichment of Fourteen Pesticides in Tomato and Rape Samples Prior to Their Determination by Gas Chromatography-Mass Spectrometry. Anal. Methods 2014, 6, 253–260. DOI: 10.1039/C3AY41454J.
  • Yan, S.; Qi, T. T.; Chen, D. W.; Li, Z.; Li, X. J.; Pan, S. Y. Magnetic Solid Phase Extraction Based on Magnetite/Reduced Graphene Oxide Nanoparticles for Determination of Trace Isocarbophos Residues in Different Matrices. J. Chromatogr. A 2014, 1347, 30–38. DOI: 10.1016/j.chroma.2014.04.073.
  • Liu, L.; Feng, T.; Wang, C.; Wu, Q.; Wang, Z. Enrichment of Neonicotinoid Insecticides from Lemon Juice Sample with Magnetic Three-Dimensional Graphene as the Adsorbent Followed by Determination with High-Performance Liquid Chromatography. J. Sep. Sci. 2014, 37, 1276–1282. DOI: 10.1002/jssc.201301382.
  • Li, N.; Chen, J.; Shi, Y. P. Magnetic Graphene Solid-Phase Extraction for the Determination of Carbamate Pesticides in Tomatoes Coupled with High Performance Liquid Chromatography. Talanta 2015, 141, 212–219. DOI: 10.1016/j.talanta.2015.04.018.
  • Tavakoli, M.; Hajimahmoodi, M.; Shemirani, F.; Dezfuli, A. S.; Khanavi, M. Application of Fe3O4/rGO Nanocomposite as a Sorbent of Pesticides. Chromatographia 2017, 80, 1423–1432. DOI: 10.1007/s10337-017-3361-8.
  • Mahpishanian, S.; Sereshti, H.; Baghdadi, M. Superparamagnetic Core–Shells Anchored onto Graphene Oxide Grafted with Phenylethyl Amine as a Nano-Adsorbent for Extraction and Enrichment of Organophosphorus Pesticides from Fruit, Vegetable and Water Samples. J. Chromatogr. A 2015, 1406, 48–58. DOI: 10.1016/j.chroma.2015.06.025.
  • Mahpishanian, S.; Sereshti, H. Three-Dimensional Graphene Aerogel-Supported Iron Oxide Nanoparticles as an Efficient Adsorbent for Magnetic Solid Phase Extraction of Organophosphorus Pesticide Residues in Fruit Juices Followed by Gas Chromatographic Determination. J. Chromatogr. A 2016, 1443, 43–53. DOI: 10.1016/j.chroma.2016.03.046.
  • Li, N.; Chen, J.; Shi, Y. P. Magnetic Polyethyleneimine Functionalized Reduced Graphene Oxide as a Novel Magnetic Solid-Phase Extraction Adsorbent for the Determination of Polar Acidic Herbicides in Rice. Anal. Chim. Acta 2017, 949, 23–34. DOI: 10.1016/j.aca.2016.11.016.
  • Nodeh, H. R.; Ibrahim, W. A. W.; Sanagi, M. M.; Aboul-Enein, H. Y. Magnetic Graphene-Based Cyanopropyltriethoxysilane as an Adsorbent for Simultaneous Determination of Polar and Non-Polar Organophosphorus Pesticides in Cow’s Milk. RSC Adv. 2016, 6, 24853–24864. DOI: 10.1039/C5RA26742K.
  • Nodeh, H. R.; Sereshti, H.; Gaikani, H.; Kamboh, M. A.; Afsharsaveh, Z. Magnetic Graphene Coated Inorganic-Organic Hybrid Nanocomposite for Enhanced Preconcentration of Selected Pesticides in Tomato and Grape. J. Chromatogr. A 2017, 1509, 26–34. DOI: 10.1016/j.chroma.2017.06.032.
  • Chen, Y.; Cao, S.; Zhang, L.; Xi, C.; Li, X.; Chen, Z.; Wang, G. Preparation of Size-Controlled Magnetite Nanoparticles with a Graphene and Polymeric Ionic Liquid Coating for the Quick, Easy, Cheap, Effective, Rugged and Safe Extraction of Preservatives from Vegetables. J. Chromatogr. A 2016, 1448, 9–19. DOI: 10.1016/j.chroma.2016.04.045.
  • Chen, J.-Y.; Cao, S.-R.; Xi, C.-X.; Chen, Y.; Li, X.-L.; Zhang, L.; Wang, G.-M.; Chen, Y.-L.; Chen, Z.-Q. A Novel Magnetic β-Cyclodextrin Modified Graphene Oxide Adsorbent with High Recognition Capability for 5 Plant Growth Regulators. Food Chem. 2018, 239, 911–919. DOI: 10.1016/j.foodchem.2017.07.013.
  • Mahpishanian, S.; Sereshti, H. One-Step Green Synthesis of β-Cyclodextrin/Iron Oxide-Reduced Graphene Oxide Nanocomposite with High Supramolecular Recognition Capability: Application for Vortex-Assisted Magnetic Solid Phase Extraction of Organochlorine Pesticides Residue from Honey Samples. J. Chromatogr. A 2017, 1485, 32–43. DOI: 10.1016/j.chroma.2017.01.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.