1,467
Views
62
CrossRef citations to date
0
Altmetric
Review Article

Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection

ORCID Icon, ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 510-533 | Published online: 16 Jan 2019

References

  • Zhao, X.; Lin, C. W.; Wang, J.; Oh, D. H. Advances in Rapid Detection Methods for Foodborne Pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. DOI:10.4014/jmb.1310.10013.
  • Potter, M. E.; Tauxe, R. V. Epidemiology of Foodborne Diseases: Tools and Applications. World Health Stat. Q. 1997, 50, 24–29.
  • Kibret, M.; Abera, B. The Sanitary Conditions of Food Service Establishments and Food Safety Knowledge and Practices of Food Handlers in Bahir Dar Town. Ethiop. J. Health Sci. 2012, 22, 27–35.
  • Chemburu, S.; Wilkins, E.; Abdel-Hamid, I. Detection of Pathogenic Bacteria in Food Samples Using Highly-Dispersed Carbon Particles. Biosens. Bioelectron. 2005, 21, 491–499. DOI:10.1016/j.bios.2004.11.025.
  • Scott, E. Food Safety and Foodborne Disease in 21st Century Homes. Can. J. Infect. Dis. 2003, 14, 277–280. DOI:10.1155/2003/363984.
  • Lamps, L. Infective Disorders of the Gastrointestinal Tract. Histopathology 2007, 50, 55–63. DOI:10.1111/j.1365-2559.2006.02544.x.
  • Havelaar, A. H.; Kirk, M. D.; Torgerson, P. R.; Gibb, H. J.; Hald, T.; Lake, R. J.; Praet, N.; Bellinger, D. C.; de Silva, N. R.; Gargouri, N. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. DOI:10.1371/journal.pmed.1001923.
  • Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E.; Stricker, S. Application of Electrochemical Biosensors for Detection of Food Pathogenic Bacteria. Electroanalysis 2000, 12, 317–325. DOI:10.1002/(SICI)1521-4109(20000301)12:5 < 317::AID-ELAN317 > 3.0.CO;2-A.
  • Dickson, J. S.; Beran, G. W.; Proescholdt, T. A. Practical Laboratory Tests for Food Microbiology. Lab. Med. 1995, 26, 794–799. DOI:10.1093/labmed/26.12.794.
  • Foods NACoMCf. Response to Questions Posed by the Food Safety and Inspection Service regarding Determination of the Most Appropriate Technologies for the Food Safety and Inspection Service to Adopt in Performing Routine and Baseline Microbiological Analyses. J. Food Protect. 2010, 73, 1160. DOI:10.4315/0362-028X.JFP-17-294.
  • Turner, A. P. Biosensors: Sense and Sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. DOI:10.1039/c3cs35528d.
  • Luz, R. A. S.; Iost, R. M.; Crespilho, F. N. Nanomaterials for Biosensors and Implantable Biodevices. In Nanobioelectrochemistry: From Implantable Biosensors to Green Power Generation; Crespilho, F. N., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 27–48.
  • Hobson, N. S.; Tothill, I.; Turner, A. P. Microbial Detection. Biosens. Bioelectron. 1996, 11, 455–477. DOI:10.1016/0956-5663(96)86783-2.
  • Ghindilis, A. L.; Atanasov, P.; Wilkins, M.; Wilkins, E. Immunosensors: Electrochemical Sensing and Other Engineering Approaches. Biosens. Bioelectron. 1998, 13, 113–131. DOI:10.1016/S0956-5663(97)00031-6.
  • Berrettoni, M.; Tonelli, D.; Conti, P.; Marassi, R.; Trevisani, M. Electrochemical Sensor for Indirect Detection of Bacterial Population. Sens. Actuators B Chem. 2004, 102, 331–335. DOI:10.1016/j.snb.2004.04.022.
  • Tothill, I. Biosensors and Nanomaterials and Their Application for Mycotoxin Determination. World Mycotoxin J. 2011, 4, 361–374. DOI:10.3920/WMJ2011.1318.
  • Ronkainen, N. J.; Halsall, H. B.; Heineman, W. R. Electrochemical Biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. DOI:10.1039/b714449k.
  • Angione, M. D.; Pilolli, R.; Cotrone, S.; Magliulo, M.; Mallardi, A.; Palazzo, G.; Sabbatini, L.; Fine, D.; Dodabalapur, A.; Cioffi, N. Carbon Based Materials for Electronic Bio-Sensing. Mater. Today 2011, 14, 424–433. DOI:10.1016/S1369-7021(11)70187-0.
  • Tiwari, J. N.; Vij, V.; Kemp, K. C.; Kim, K. S. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS Nano 2016, 10, 46–80. DOI:10.1021/acsnano.5b05690.
  • Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E. L. K.; Poh, H. L. Graphene for Electrochemical Sensing and Biosensing. TrAC Trends Anal. Chem. 2010, 29, 954–965. DOI:10.1016/j.trac.2010.05.011.
  • Wang, J.; Lin, Y. Functionalized Carbon Nanotubes and Nanofibers for Biosensing Applications. Trends Anal. Chem. 2008, 27, 619–626. DOI:10.1016/j.trac.2008.05.009.
  • Wang, J.; Yang, S.; Guo, D.; Yu, P.; Li, D.; Ye, J.; Mao, L. Comparative Studies on Electrochemical Activity of Graphene Nanosheets and Carbon Nanotubes. Electrochem. Commun. 2009, 11, 1892–1895. DOI:10.1016/j.elecom.2009.08.019.
  • Pasinszki, T.; Krebsz, M.; Tung, T. T.; Losic, D. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. Sens. (Basel) 2017, 17, E1919. DOI:10.3390/s17081919.
  • Saito, N.; Haniu, H.; Usui, Y.; Aoki, K.; Hara, K.; Takanashi, S.; Shimizu, M.; Narita, N.; Okamoto, M.; Kobayashi, S.; et al. Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chem. Rev. 2014, 114, 6040–6079. DOI:10.1021/cr400341h.
  • Hayashi, T.; Kim, Y. A.; Natsuki, T.; Endo, M. Mechanical Properties of Carbon Nanomaterials. Chemphyschem 2007, 8, 999–1004. DOI:10.1002/cphc.200700077.
  • Nandakumar, V.; Bishop, D.; Alonas, E.; LaBelle, J.; Joshi, L.; Alford, T. L. A Low-Cost Electrochemical Biosensor for Rapid Bacterial Detection. IEEE Sens. J. 2011, 11, 210–216. DOI:10.1109/JSEN.2010.2055847.
  • Setterington, E. B.; Alocilja, E. C. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens. Biosensors 2012, 2, 15–31. DOI:10.3390/bios2010015.
  • Halford, C.; Gau, V.; Churchill, B. M.; Haake, D. A. Bacterial Detection & Identification Using Electrochemical Sensors. J. Vis. Exp. 2013, (74):4282. DOI:10.3791/4282.
  • Mandal, P.; Biswas, A.; Choi, K.; Pal, U. Methods for Rapid Detection of Foodborne Pathogens: An Overview. Am. J. Food Technol. 2011, 6, 87–102. DOI:10.3923/ajft.2011.87.102.
  • Maurer, F. P.; Christner, M.; Hentschke, M.; Rohde, H. Advances in Rapid Identification and Susceptibility Testing of Bacteria in the Clinical Microbiology Laboratory: Implications for Patient Care and Antimicrobial Stewardship Programs. Infect. Dis. Rep. 2017, 9, 6839. DOI:10.4081/idr.2017.6839.
  • Morshed, M. G.; Lee, M.-K.; Jorgensen, D.; Isaac-Renton, J. L. Molecular Methods Used in Clinical Laboratory: Prospects and Pitfalls. FEMS Immunol. Med. Microbiol. 2007, 49, 184–191. DOI:10.1111/j.1574-695X.2006.00191.x.
  • Wang, Y.; Salazar, J. K. Culture-Independent Rapid Detection Methods for Bacterial Pathogens and Toxins in Food Matrices. Compr. Rev. Food Sci. Food Saf. 2016, 15, 183–205. DOI:10.1111/1541-4337.12175.
  • Ricci, F.; Volpe, G.; Micheli, L.; Palleschi, G. A Review on Novel Developments and Applications of Immunosensors in Food Analysis. Anal. Chim. Acta 2007, 605, 111–129. DOI:10.1016/j.aca.2007.10.046.
  • Duffy, G. F.; Moore, E. J. Electrochemical Immunosensors for Food Analysis: A Review of Recent Developments. Anal. Lett. 2017, 50, 1–32. DOI:10.1080/00032719.2016.1167900.
  • Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Enzyme-Linked Immunosorbent Assay for the Quantitative/qualitative Analysis of Plant Secondary Metabolites. J. Nat. Med. 2018, 72, 32–42. DOI:10.1007/s11418-017-1144-z.
  • Moises, S. S.; Schäferling, M. Toxin Immunosensors and Sensor Arrays for Food Quality Control. Bioanal. Rev. 2009, 1, 73–104. DOI:10.1007/s12566-009-0006-x.
  • Laegreid, W.; Hoffman, M.; Keen, J.; Elder, R.; Kwang, J. Development of a Blocking Enzyme-Linked Immunosorbent Assay for Detection of Serum Antibodies to O157 Antigen of Escherichia coli. Clin. Diagn. Lab. Immunol. 1998, 5, 242–246.
  • D.; Gan, S.; Patel, K. Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay. J. Invest. Dermatol. 2013, 133, e12. DOI:10.1038/jid.2013.287.
  • Sajid, M.; Kawde, A.-N.; Daud, M. Designs, Formats and Applications of Lateral Flow Assay: A Literature Review. J. Saudi Chem. Soc. 2015, 19, 689–705. DOI:10.1016/j.jscs.2014.09.001.
  • Shan, S.; Lai, W.; Xiong, Y.; Wei, H.; Xu, H. Novel Strategies to Enhance Lateral Flow Immunoassay Sensitivity for Detecting Foodborne Pathogens. J. Agric. Food Chem. 2015, 63, 745–753. DOI:10.1021/jf5046415.
  • Kim, G.; Moon, J.-H.; Byeol Park, S.; Jang, Y.-J.; Lim, J.; Mo, C. Image Analysis of a Lateral Flow Strip Sensor for the Detection of Escherichia coli O157:H7. J. Biosyst. Eng. 2013, 38, 335–340.
  • Zhao, Y.; Wang, H.; Zhang, P.; Sun, C.; Wang, X.; Wang, X.; Yang, R.; Wang, C.; Zhou, L. Rapid Multiplex Detection of 10 Foodborne Pathogens with an up-Converting Phosphor Technology-Based 10-Channel Lateral Flow Assay. Sci. Rep. 2016, 6, 21342. DOI:10.1038/srep21342.
  • Uyttendaele, M.; Van Hoorde, I.; Debevere, J. The Use of Immuno-Magnetic Separation (IMS) as a Tool in a Sample Preparation Method for Direct Detection of L. monocytogenes in Cheese. Int. J. Food Microbiol. 2000, 54, 205–212. DOI:10.1016/S0168-1605(99)00196-8.
  • Sousa, A. M.; Pereira, M. O. A Prospect of Current Microbial Diagnosis Methods. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; FORMATEX: Badajoz, Spain, 2013; Vol. 3, pp 1429–1438.
  • Law, J. W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. Rapid Methods for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations. Front. Microbiol. 2014, 5, 770. DOI:10.3389/fmicb.2014.00770.
  • Law, J. W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. An Insight into the Isolation, Enumeration, and Molecular Detection of Listeria monocytogenes in Food. Front. Microbiol. 2015, 6, 1227. DOI:10.3389/fmicb.2015.01227.
  • Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR Inhibitors – Occurrence, Properties and Removal. J. Appl. Microbiol. 2012, 113, 1014–1026. DOI:10.1111/j.1365-2672.2012.05384.x.
  • Powell, H.; Gooding, C.; Garrett, S.; Lund, B.; McKee, R. Proteinase Inhibition of the Detection of Listeria monocytogenes in Milk Using the Polymerase Chain Reaction. Lett. Appl. Microbiol. 1994, 18, 59–61. DOI:10.1111/j.1472-765X.1994.tb00802.x.
  • Favrin, S. J.; Jassim, S. A.; Griffiths, M. W. Development and Optimization of a Novel Immunomagnetic Separation- Bacteriophage Assay for Detection of Salmonella enterica Serovar Enteritidis in Broth. Appl. Environ. Microbiol. 2001, 67, 217–224. DOI:10.1128/AEM.67.1.217-224.2001.
  • Zhang, L.; Wei, Q.; Han, Q.; Chen, Q.; Tai, W.; Zhang, J.; Song, Y.; Xia, X. Detection of Shigella in Milk and Clinical Samples by Magnetic Immunocaptured-Loop-Mediated Isothermal Amplification Assay. Front. Microbiol. 2018, 9, 94. DOI:10.3389/fmicb.2018.00094.
  • Azinheiro, S.; Carvalho, J.; Prado, M.; Garrido-Maestu, A. Evaluation of Different Genetic Targets for Salmonella enterica Serovar Enteriditis and Typhimurium, Using Loop-Mediated Isothermal Amplification for Detection in Food Samples. Front. Sustain. Food Syst. 2018, 2, 5. DOI:10.3389/fsufs.2018.00005.
  • Shen, Z.; Hou, N.; Jin, M.; Qiu, Z.; Wang, J.; Zhang, B.; Wang, X.; Wang, J.; Zhou, D.; Li, J.; et al. A Novel Enzyme-Linked Immunosorbent Assay for Detection of Escherichia coli O157:H7 Using Immunomagnetic and Beacon Gold Nanoparticles. Gut Pathog. 2014, 6, 14. DOI:10.1186/1757-4749-6-14.
  • Karoonuthaisiri, N.; Charlermroj, R.; Uawisetwathana, U.; Luxananil, P.; Kirtikara, K.; Gajanandana, O. Development of Antibody Array for Simultaneous Detection of Foodborne Pathogens. Biosens. Bioelectron. 2009, 24, 1641–1648. DOI:10.1016/j.bios.2008.08.026.
  • Kumar, B. K.; Raghunath, P.; Devegowda, D.; Deekshit, V. K.; Venugopal, M. N.; Karunasagar, I.; Karunasagar, I. Development of Monoclonal Antibody Based Sandwich ELISA for the Rapid Detection of Pathogenic Vibrio parahaemolyticus in Seafood. Int. J. Food Microbiol. 2011, 145, 244–249. DOI:10.1016/j.ijfoodmicro.2010.12.030.
  • Chaivisuthangkura, P.; Pengsuk, C.; Longyant, S.; Sithigorngul, P. Evaluation of Monoclonal Antibody Based Immunochromatographic Strip Test for Direct Detection of Vibrio cholerae O1 Contamination in Seafood Samples. J. Microbiol. Methods 2013, 95, 304–311. DOI:10.1016/j.mimet.2013.09.013.
  • Chen, X. Development of a Rapid and Sensitive Quantum Dot-Based Immunochromatographic Strip by Double Labeling PCR Products for Detection of Staphylococcus aureus in Food. Food Control 2014, 46, 225-32-2014 v.46. DOI:10.1016/j.foodcont.2014.04.044.
  • Pinto, S. D. S.; Thayse, C.; Marciane, M.; Juliane, A.; Yoko, H. E. Moreira, dOTCR. Multiplex PCR for the Simultaneous Detection of Salmonella spp. and Salmonella Enteritidis in Food. Int. J. Food Sci. Technol. 2011, 46, 1502–1507. DOI:10.1111/j.1365-2621.2011.02646.x.
  • Guan, Z. P.; Jiang, Y.; Gao, F.; Zhang, L.; Zhou, G. H.; Guan, Z. J. Rapid and Simultaneous Analysis of Five Foodborne Pathogenic Bacteria Using Multiplex PCR. Eur. Food Res. Technol. 2013, 237, 627–637. DOI:10.1007/s00217-013-2039-1.
  • Kawasaki, S.; Fratamico, P. M.; Horikoshi, N.; Okada, Y.; Takeshita, K.; Sameshima, T.; Kawamoto, S. Multiplex Real-Time Polymerase Chain Reaction Assay for Simultaneous Detection and Quantification of Salmonella Species, Listeria monocytogenes, and Escherichia coli O157:H7 in Ground Pork Samples. Foodborne Pathog. Dis. 2010, 7, 549–554. DOI:10.1089/fpd.2009.0465.
  • Russo, P.; Botticella, G.; Capozzi, V.; Massa, S.; Spano, G.; Beneduce, L. A Fast, Reliable, and Sensitive Method for Detection and Quantification of Listeria monocytogenes and Escherichia coli O157:H7 in Ready-To-Eat Fresh-Cut Products by MPN-qPCR. BioMed Res. Int. 2014, 2014, 1. DOI:10.1155/2014/608296.
  • Tyagi, A.; Saravanan, V.; Karunasagar, I.; Karunasagar, I. Detection of Vibrio parahaemolyticus in Tropical Shellfish by SYBR Green Real-Time PCR and Evaluation of Three Enrichment Media. Int. J. Food Microbiol. 2009, 129, 124–130. DOI:10.1016/j.ijfoodmicro.2008.11.006.
  • Suo, B.; He, Y.; Tu, S. I.; Shi, X. A Multiplex Real-Time Polymerase Chain Reaction for Simultaneous Detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes in Meat Products. Foodborne Pathog. Dis. 2010, 7, 619–628. DOI:10.1089/fpd.2009.0430.
  • Shao, Y.; Zhu, S.; Jin, C.; Chen, F. Development of Multiplex Loop-Mediated Isothermal Amplification-RFLP (mLAMP-RFLP) to Detect Salmonella spp. and Shigella spp. in Milk. Int. J. Food Microbiol. 2011, 148, 75–79. DOI:10.1016/j.ijfoodmicro.2011.05.004.
  • Han, F.; Wang, F.; Ge, B. Detecting Potentially Virulent Vibrio vulnificus Strains in Raw Oysters by Quantitative Loop-Mediated Isothermal Amplification. Appl. Environ. Microbiol. 2011, 77, 2589–2595. DOI:10.1128/AEM.02992-10.
  • López-Campos, G.; Martínez-Suárez, J. V.; Aguado-Urda, M.; López-Alonso, V. Detection, Identification, and Analysis of Foodborne Pathogens. In Microarray Detection and Characterization of Bacterial Foodborne Pathogens. Springer: Berlin, Germany; 2012; pp 13–32.
  • Feng, P. Rapid Methods for the Detection of Foodborne Pathogens: Current and Next-Generation Technologies, 3rd ed.; Food Microbiology: Fundamentals and Frontiers; Washington, DC: American Society for Microbiology, 2007; pp. 911–934.
  • Maalouf, R.; Fournier-Wirth, C.; Coste, J.; Chebib, H.; Saïkali, Y.; Vittori, O.; Errachid, A.; Cloarec, J.-P.; Martelet, C.; Jaffrezic-Renault, N.; et al. Label-Free Detection of Bacteria by Electrochemical Impedance Spectroscopy: Comparison to Surface Plasmon Resonance. Anal. Chem. 2007, 79, 4879–4886. DOI:10.1021/ac070085n.
  • Abdalhai, M. H.; Fernandes, A. M.; Xia, X.; Musa, A.; Ji, J.; Sun, X. Electrochemical Genosensor to Detect Pathogenic Bacteria (Escherichia coli O157:H7) As Applied in Real Food Samples (Fresh Beef) To Improve Food Safety and Quality Control. J. Agric. Food Chem. 2015, 63, 5017–5025. DOI:10.1021/acs.jafc.5b00675.
  • Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors (Basel, Switzerland) 2008, 8, 1400–1458. DOI:10.3390/s80314000.
  • Chaubey, A.; Malhotra, B. D. Mediated Biosensors. Biosens. Bioelectron. 2002, 17, 441–456.
  • Bakker, E.; Pretsch, E. Potentiometric Sensors for Trace-Level Analysis. Trends Anal. Chem. 2005, 24, 199–207. DOI:10.1016/j.trac.2005.01.003.
  • Palchetti, I. Mascini M. Amperometric Biosensor for Pathogenic Bacteria Detection. In Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems; Zourob, M.; Elwary, S.; Turner, A.; Eds.; Springer New York: New York, NY, 2008; pp 299–312.
  • Neethirajan, S.; Ahmed, S. R.; Chand, R.; Buozis, J.; Nagy, É. Recent Advances in Biosensor Development for Foodborne Virus Detection. Nanotheranostics 2017, 1, 272–295. DOI:10.7150/ntno.20301.
  • Mishra, G.; Barfidokht, A.; Tehrani, F.; Mishra, R. Food Safety Analysis Using Electrochemical Biosensors. Foods 2018, 7, 141. DOI:10.3390/foods7090141.
  • Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical Biosensors Based on Nanomodified Screen-Printed Electrodes: Recent Applications in Clinical Analysis. TrAC Trends Anal. Chem. 2016, 79, 114–126. DOI:10.1016/j.trac.2016.01.032.
  • Daniels, J. S.; Pourmand, N. Label-Free Impedance Biosensors: Opportunities and Challenges. Electroanalysis 2007, 19, 1239–1257. DOI:10.1002/elan.200603855.
  • Belluzo, M. S.; Ribone, M. E.; Lagier, C. M. Assembling Amperometric Biosensors for Clinical Diagnostics. Sensors (Basel, Switzerland) 2008, 8, 1366–1399. DOI:10.3390/s8031366.
  • Lim, S. A.; Ahmed, M. U. A Label Free Electrochemical Immunosensor for Sensitive Detection of Porcine Serum Albumin as a Marker for Pork Adulteration in Raw Meat. Food Chem. 2016, 206, 197–203. DOI:10.1016/j.foodchem.2016.03.063.
  • Yan, Q.; Yang, Y.; Tan, Z.; Liu, Q.; Liu, H.; Wang, P.; Chen, L.; Zhang, D.; Li, Y.; Dong, Y. A Label-Free Electrochemical Immunosensor Based on the Novel Signal Amplification System of AuPdCu Ternary Nanoparticles Functionalized Polymer Nanospheres. Biosens. Bioelectron. 2018, 103, 151–157. DOI:10.1016/j.bios.2017.12.040.
  • Wang, Y.; Ye, Z.; Ying, Y. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria. Sensors (Basel) 2012, 12, 3449–3471. DOI:10.3390/s120303449.
  • Poltronieri, P.; Mezzolla, V.; Primiceri, E.; Maruccio, G. Biosensors for the Detection of Food Pathogens. Foods (Basel, Switzerland) 2014, 3, 511–526. DOI:10.3390/foods3030511.
  • Arora, S.; Ahmed, D.-N.; Khubber, S.; Siddiqui, S. Detecting Food Borne Pathogens Using Electrochemical Biosensors: An Overview. Int. J. Chem. Stud. 2018, 6, 1031–1039.
  • Cho, I. H.; Lee, J. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification. Sensors. 2018;18(1), E207. DOI:10.3390/s18010207.
  • Leonard, P.; Hearty, S.; Brennan, J.; Dunne, L.; Quinn, J.; Chakraborty, T.; O’Kennedy, R. Advances in Biosensors for Detection of Pathogens in Food and Water. Enzyme Microb. Technol. 2003, 32, 3–13. DOI:10.1016/S0141-0229(02)00232-6.
  • Kavita, V. DNA Biosensors-A Review. J. Bioeng. Biomed. Sci. 2017, 7, 222.
  • Paniel, N.; Baudart, J.; Hayat, A.; Barthelmebs, L. Aptasensor and Genosensor Methods for Detection of Microbes in Real World Samples. Methods 2013, 64, 229–240. DOI:10.1016/j.ymeth.2013.07.001.
  • Rashid, J. I. A.; Yusof, N. A. The Strategies of DNA Immobilization and Hybridization Detection Mechanism in the Construction of Electrochemical DNA Sensor: A Review. Sens. Biosens. Res. 2017, 16, 19–31. DOI:10.1016/j.sbsr.2017.09.001.
  • Ahmed, A.; Rushworth, J. V.; Hirst, N. A.; Millner, P. A. Biosensors for Whole-Cell Bacterial Detection. Clin. Microbiol. Rev. 2014, 27, 631–646. DOI:10.1128/CMR.00120-13.
  • Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. DOI:10.1021/ac5039863.
  • Cagnin, S.; Caraballo, M.; Guiducci, C.; Martini, P.; Ross, M.; SantaAna, M.; Danley, D.; West, T.; Lanfranchi, G. Overview of Electrochemical DNA Biosensors: New Approaches to Detect the Expression of Life. Sensors (Basel) 2009, 9, 3122–3148. DOI:10.3390/s90403122.
  • Neethirajan, S.; Weng, X.; Tah, A.; Cordero, J. O.; Ragavan, K. V. Nano-Biosensor Platforms for Detecting Food Allergens – New Trends. Sens. Biosens. Res. 2018, 18, 13–30. DOI:10.1016/j.sbsr.2018.02.005.
  • Hayat, A.; Marty, J. L. Aptamer Based Electrochemical Sensors for Emerging Environmental Pollutants. Front. Chem. 2014, 2, 41. DOI:10.3389/fchem.2014.00041.
  • Zhao, Y. W.; Wang, H. X.; Jia, G. C.; Li, Z. Application of Aptamer-Based Biosensor for Rapid Detection of Pathogenic Escherichia coli. Sensors (Basel) 2018, 18, E2518. DOI:10.3390/s18082518.
  • Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.; Fiore, V.; et al. Analytical Problems in Exposing Amperometric Enzyme Biosensors to Biological Fluids. Sensors 2016, 16, 780. DOI:10.3390/s16060780.
  • Stradiotto, N. R.; Yamanaka, H.; Zanoni, M. V. B. Electrochemical Sensors: A Powerful Tool in Analytical Chemistry. J. Braz. Chem. Soc. 2003, 14, 159–173. DOI:10.1590/S0103-50532003000200003.
  • Bahadır, E.; Kemal Sezgintürk, M. A Review on Impedimetric Biosensors. Artif. Cells Nanomed. Biotechnol. 2014, 44, 248–262.
  • Jaffrezic-Renault, N.; Dzyadevych, S. V. Conductometric Microbiosensors for Environmental Monitoring. Sensors (Basel, Switzerland) 2008, 8, 2569–2588. DOI:10.3390/s8042569.
  • Thévenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Electrochemical Biosensors: Recommended Definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1. Biosens. Bioelectron. 2001, 16, (1):121–31. DOI:10.1016/S0956-5663(01)00115-4.
  • Vo-Dinh, T.; Cullum, B. Biosensors and Biochips: Advances in Biological and Medical Diagnostics. Fresenius J. Anal. Chem. 2000, 366, 540–551. DOI:10.1007/s002160051549.
  • Willis, J. R.; Briney, B. S.; DeLuca, S. L.; Crowe, J. E. Jr.; Meiler, J. Human Germline Antibody Gene Segments Encode Polyspecific Antibodies. PLoS Comput. Biol. 2013, 9, e1003045. DOI:10.1371/journal.pcbi.1003045.
  • Holford, T. R. J.; Davis, F.; Higson, S. P. J. Recent Trends in Antibody Based Sensors. Biosens. Bioelectron. 2012, 34, 12–24. DOI:10.1016/j.bios.2011.10.023.
  • Sassolas, A.; Blum, L. J.; Leca-Bouvier, B. D. Immobilization Strategies to Develop Enzymatic Biosensors. Biotechnol. Adv. 2012, 30, 489–511. DOI:10.1016/j.biotechadv.2011.09.003.
  • Goodridge, L.; Chen, J.; Griffiths, M. The Use of a Fluorescent Bacteriophage Assay for Detection of Escherichia coli O157:H7 in Inoculated Ground Beef and Raw Milk. Int. J. Food Microbiol. 1999, 47, 43–50. DOI:10.1016/S0168-1605(99)00010-0.
  • Balasubramanian, S.; Sorokulova, I. B.; Vodyanoy, V. J.; Simonian, A. L. Lytic Phage as a Specific and Selective Probe for Detection of Staphylococcus aureus–A Surface Plasmon Resonance Spectroscopic Study. Biosens. Bioelectron. 2007, 22, 948–955. DOI:10.1016/j.bios.2006.04.003.
  • Singh, A.; Glass, N.; Tolba, M.; Brovko, L.; Griffiths, M.; Evoy, S. Immobilization of Bacteriophages on Gold Surfaces for the Specific Capture of Pathogens. Biosens. Bioelectron. 2009, 24, 3645–3651. DOI:10.1016/j.bios.2009.05.028.
  • Chen, S.-H.; Wu, V. C. H.; Chuang, Y.-C.; Lin, C.-S. Using Oligonucleotide-Functionalized Au Nanoparticles to Rapidly Detect Foodborne Pathogens on a Piezoelectric Biosensor. J. Microbiol. Methods 2008, 73, 7–17. DOI:10.1016/j.mimet.2008.01.004.
  • Shabani, A.; Mak, A. W. H.; Gerges, I.; Cuccia, L. A.; Lawrence, M. F. DNA Immobilization onto Electrochemically Functionalized Si(100) Surfaces. Talanta 2006, 70, 615–623. DOI:10.1016/j.talanta.2006.01.033.
  • Lenigk, R.; Carles, M.; Ip, N. Y.; Sucher, N. J. Surface Characterization of a Silicon-Chip-Based DNA Microarray. Langmuir 2001, 17, 2497–2501. DOI:10.1021/la001355z.
  • Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An Overview of Foodborne Pathogen Detection: In the Perspective of Biosensors. Biotechnol. Adv. 2010, 28, 232–254. DOI:10.1016/j.biotechadv.2009.12.004.
  • Lee, J. F.; Stovall, G. M.; Ellington, A. D. Aptamer Therapeutics Advance. Curr. Opin. Chem. Biol. 2006, 10, 282–289. DOI:10.1016/j.cbpa.2006.03.015.
  • Banerjee, P.; Bhunia, A. K. Mammalian Cell-Based Biosensors for Pathogens and Toxins. Trends Biotechnol. 2009, 27, 179–188. DOI:10.1016/j.tibtech.2008.11.006.
  • Pancrazio, J. J.; Whelan, J. P.; Borkholder, D. A.; Ma, W.; Stenger, D. A. Development and Application of Cell-Based Biosensors. Ann. Biomed. Eng. 1999, 27, 697–711. DOI:10.1114/1.225.
  • Bhunia, A. K.; Banada, P.; Banerjee, P.; Valadez, A.; Hirleman, E. D. Light Scattering, Fiber Optic- and Cell-Based Sensors for Sensitive Detection of Foodborne Pathogens. J. Rapid Methods Auto. Microbiol. 2007, 15, 121–145. DOI:10.1111/j.1745-4581.2007.00077.x.
  • Banerjee, P.; Franz, B.; Bhunia, A. K. Mammalian Cell-Based Sensor System. Adv. Biochem. Eng./Biotechnol. 2010, 117, 21–55. DOI:10.1007/10_2009_21.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183. DOI:10.1038/nmat1849.
  • Pandey, P.; Datta, M.; Malhotra, B. D. Prospects of Nanomaterials in Biosensors. Anal. Lett. 2008, 41, 159–209. DOI:10.1080/00032710701792620.
  • Abu-Salah, K. M.; Alrokyan, S. A.; Khan, M. N.; Ansari, A. A. Nanomaterials as Analytical Tools for Genosensors. Sensors (Basel, Switzerland) 2010, 10, 963–993. DOI:10.3390/s100100963.
  • Zhu, Z. An Overview of Carbon Nanotubes and Graphene for Biosensing Applications. Nanomicro. Lett. 2017, 9, 25. DOI: 10.1007/s40820-017-0128-6.
  • Poulsen, F.; Hansen, T. Band Gap Energy of Gradient Core–Shell Quantum Dots. J. Phys. Chem. C 2017, 121, 13655–13659. DOI:10.1021/acs.jpcc.7b01792.
  • Singh, R. P. Prospects of Nanobiomaterials for Biosensing. Int. J. Electrochem. 2011, 2011, 1. DOI:10.4061/2011/125487.
  • Revin, S. B.; John, S. A. Electrochemical Sensor for Neurotransmitters at Physiological pH Using a Heterocyclic Conducting Polymer Modified Electrode. Analyst 2012, 137, 209–215. DOI:10.1039/C1AN15746A.
  • Yáñez-Sedeño, P.; Pingarrón, J. M.; Riu, J.; Rius, F. X. Electrochemical Sensing Based on Carbon Nanotubes. TrAC Trends Anal. Chem. 2010, 29, 939–953. DOI:10.1016/j.trac.2010.06.006.
  • Chatterjee, S.; Chen, A. Functionalization of Carbon Buckypaper for the Sensitive Determination of Hydrogen Peroxide in Human Urine. Biosens. Bioelectron. 2012, 35, 302–307. DOI:10.1016/j.bios.2012.03.005.
  • Wanekaya, A. K. Applications of Nanoscale Carbon-Based Materials in Heavy Metal Sensing and Detection. Analyst 2011, 136, 4383–4391. DOI:10.1039/c1an15574a.
  • Kulkarni, G. S.; Zhong, Z. Detection Beyond the Debye Screening Length in a High-Frequency Nanoelectronic Biosensor. Nano Lett. 2012, 12, 719–723. DOI:10.1021/nl203666a.
  • Maehashi, K. O.,Y.; Matsumoto, K. Utilizing Research into Electrical Double Layers as a Basis for the Development of Label-Free Biosensors Based on Nanomaterial Transistors. Nanobiosens. Dis. Diag. 2015, 5, 1–13. DOI:10.2147/NDD.S40316.
  • Reiner-Rozman, C.; Larisika, M.; Nowak, C.; Knoll, W. Graphene-Based Liquid-Gated Field Effect Transistor for Biosensing: Theory and Experiments. Biosens. Bioelectron. 2015, 70, 21–27. DOI:10.1016/j.bios.2015.03.013.
  • Filipiak, M.; Rother, M.; Andoy, N. C.; Knudsen, A.; B.; Grimm, S.; Bachran, C.;Swee, L. K.; Zaumseil, J. Label-Free Immunodetection in High Ionic Strength Solutions Using Carbon Nanotube Transistors with Nanobody Receptors. Presented at Eurosensors, Paris, Sep 3–6, 2017.
  • de Moraes, C. A.; Kubota, T. L. Recent Trends in Field-Effect Transistors-Based Immunosensors. Chemosensors 2016, 4, 20. DOI:10.3390/chemosensors4040020.
  • Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22, 1027–1036. DOI:10.1002/elan.200900571.
  • Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Solid C60: A New Form of Carbon. Nature 1990, 347, 354. DOI:10.1038/347354a0.
  • Iijima, S.; Ichihashi, T. Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature 1993, 363, 603. DOI:10.1038/363603a0.
  • Zhang, X.; Rajaraman, B. R. S.; Liu, H.; Ramakrishna, S. Graphene's Potential in Materials Science and Engineering. RSC Adv. 2014, 4, 28987–29011. DOI:10.1039/C4RA02817A.
  • Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. DOI:10.1021/cr500304f.
  • Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. DOI:10.1021/cr900070d.
  • Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching Ballistic Transport in Suspended Graphene. Nat. Nanotechnol. 2008, 3, 491. DOI:10.1038/nnano.2008.199.
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385. DOI:10.1126/science.1157996.
  • Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777. DOI:10.1002/anie.200901678.
  • Gurunathan, S.; Kim, J.-H. Synthesis, Toxicity, Biocompatibility, and Biomedical Applications of Graphene and Graphene-Related Materials. Int. J. Nanomed. 2016, 11, 1927–1945. DOI:10.2147/IJN.S105264.
  • Qing, Z.; Hao, W.; Nan, W.; Rui, Y.; Yuehui, M.; Weijun, G.; Wang, J.; Ding, K. Graphene-Based Biosensors for Biomolecules Detection. Curr. Nanosci. 2014, 10, 627–637. DOI:10.2174/1573413710666140422231701.
  • Li, D.; Zhang, W.; Yu, X.; Wang, Z.; Su, Z.; Wei, G. When Biomolecules Meet Graphene: From Molecular Level Interactions to Material Design and Applications. Nanoscale 2016, 8, 19491–19509. DOI:10.1039/C6NR07249F.
  • Notley, S. M.; Crawford, R. J.; Ivanova, E. P. Bacterial Interaction with Graphene Particles and Surfaces. In Advances in Graphene Science; Aliofkhazraei, M., Ed.; InTech: Rijeka, 2013; Ch. 05.
  • Yang, Y.; Asiri, A. M.; Tang, Z.; Du, D.; Lin, Y. Graphene Based Materials for Biomedical Applications. Mater. Today 2013, 16, 365–373. DOI:10.1016/j.mattod.2013.09.004.
  • Chang, J.; Zhou, G.; Christensen, E. R.; Heideman, R.; Chen, J. Graphene-Based Sensors for Detection of Heavy Metals in Water: A Review. Anal. Bioanal. Chem. 2014, 406, 3957–3975. DOI:10.1007/s00216-014-7804-x.
  • Pumera, M. Graphene in Biosensing. Mater. Today 2011, 14, 308–315. DOI:10.1016/S1369-7021(11)70160-2.
  • Hong, B. J.; An, Z.; Compton, O. C.; Nguyen, S. T. Tunable Biomolecular Interaction and Fluorescence Quenching Ability of Graphene Oxide: Application to “Turn-On” DNA Sensing in Biological Media. Small (Weinheim an Der Bergstrasse, Germany) 2012, 8, 2469–2476. DOI:10.1002/smll.201200264.
  • Chen, D.; Tang, L.; Li, J. Graphene-Based Materials in Electrochemistry. Chem. Soc. Rev. 2010, 39, 3157–3180. DOI:10.1039/b923596e.
  • Xu, M.; Wang, R.; Li, Y. Electrochemical Biosensors for Rapid Detection of Escherichia coli O157:H7. Talanta 2017, 162, 511–522. DOI:10.1016/j.talanta.2016.10.050.
  • Zuo, P.; Li, X.; Dominguez, D. C.; Ye, B.-C. A PDMS/Paper/Glass Hybrid Microfluidic Biochip Integrated with Aptamer-Functionalized Graphene Oxide Nano-Biosensors for One-Step Multiplexed Pathogen Detection. Lab Chip 2013, 13, 3921–3928. DOI:10.1039/c3lc50654a.
  • Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?. Angew. Chem. Int. Ed. 2010, 49, 2114–2138. DOI:10.1002/anie.200903463.
  • Jafari, S.; Faridbod, F.; Norouzi, P.; Dezfuli, A. S.; Ajloo, D.; Mohammadipanah, F.; Ganjali, M. R. Detection of Aeromonas Hydrophila DNA Oligonucleotide Sequence Using a Biosensor Design Based on Ceria Nanoparticles Decorated Reduced Graphene Oxide and Fast Fourier Transform Square Wave Voltammetry. Anal. Chim. Acta 2015, 895, 80–88. DOI:10.1016/j.aca.2015.05.055.
  • Hu, X.; Dou, W.; Zhao, G. Electrochemical Immunosensor for Enterobacter Sakazakii Detection Based on Electrochemically Reduced Graphene Oxide–gold Nanoparticle/Ionic Liquid Modified Electrode. Electroanal. Chem. 2015, 756, 43–48. DOI:10.1016/j.jelechem.2015.08.009.
  • Pandey, A.; Gurbuz, Y.; Ozguz, V.; Niazi, J. H.; Qureshi, A. Graphene-Interfaced Electrical Biosensor for Label-Free and Sensitive Detection of Foodborne Pathogenic E. coli O157:H7. Biosens. Bioelectron. 2017, 91, 225–231. DOI:10.1016/j.bios.2016.12.041.
  • Li, Y.; Deng, J.; Fang, L.; Yu, K.; Huang, H.; Jiang, L.; Liang, W.; Zheng, J. A Novel Electrochemical DNA Biosensor Based on HRP-Mimicking Hemin/G-Quadruplex Wrapped GOx Nanocomposites as Tag for Detection of Escherichia coli O157:H7. Biosens. Bioelectron. 2015, 63, 1–6. DOI:10.1016/j.bios.2014.07.012.
  • Wang, Y.; Ping, J.; Ye, Z.; Wu, J.; Ying, Y. Impedimetric Immunosensor Based on Gold Nanoparticles Modified Graphene Paper for Label-Free Detection of Escherichia coli O157:H7. Biosens. Bioelectron. 2013, 49, 492–498. DOI:10.1016/j.bios.2013.05.061.
  • Wu, Y.; Chai, H. Development of an Electrochemical Biosensor for Rapid Detection of Foodborne Pathogenic Bacteria. Int. J. Electrochem. Sci. 2017, 12, 4291–4300. DOI:10.20964/2017.05.09.
  • Jia, F.; Duan, N.; Wu, S.; Ma, X.; Xia, Y.; Wang, Z.; Wei, X. Impedimetric Aptasensor for Staphylococcus aureus Based on Nanocomposite Prepared from Reduced Graphene Oxide and Gold Nanoparticles. Microchim. Acta 2014, 181, 967–974. DOI:10.1007/s00604-014-1195-8.
  • Ma, X.; Jiang, Y.; Jia, F.; Yu, Y.; Chen, J.; Wang, Z. An Aptamer-Based Electrochemical Biosensor for the Detection of Salmonella. J. Microbiol. Methods 2014, 98, 94–98. DOI:10.1016/j.mimet.2014.01.003.
  • Singh, A.; Sinsinbar, G.; Choudhary, M.; Kumar, V.; Pasricha, R.; Verma, H. N.; Singh, S. P.; Arora, K. Graphene Oxide-Chitosan Nanocomposite Based Electrochemical DNA Biosensor for Detection of Typhoid. Sens. Actuators B Chem. 2013, 185, 675–684. DOI:10.1016/j.snb.2013.05.014.
  • Jia, F.; Duan, N.; Wu, S.; Dai, R.; Wang, Z.; Li, X. Impedimetric Salmonella Aptasensor Using a Glassy Carbon Electrode Modified with an Electrodeposited Composite Consisting of Reduced Graphene Oxide and Carbon Nanotubes. Microchim. Acta 2016, 183, 337–344. DOI:10.1007/s00604-015-1649-7.
  • Chen, S.; Frank Cheng, Y.; Voordouw, G. Three-Dimensional Graphene Nanosheet Doped with Gold Nanoparticles as Electrochemical DNA Biosensor for Bacterial Detection. Sens. Actuators B Chem. 2018, 262, 860–868. DOI:10.1016/j.snb.2018.02.093.
  • Huang, Y.; Dong, X.; Liu, Y.; Li, L.-J.; Chen, P. Graphene-Based Biosensors for Detection of Bacteria and Their Metabolic Activities. J. Mater. Chem. 2011, 21, 12358–12362. DOI:10.1039/c1jm11436k.
  • Bhardwaj, N.; Bhardwaj, S. K.; Mehta, J.; Mohanta, G. C.; Deep, A. Bacteriophage Immobilized Graphene Electrodes for Impedimetric Sensing of Bacteria (Staphylococcus arlettae). Anal. Biochem. 2016, 505, 18–25. DOI:10.1016/j.ab.2016.04.008.
  • Joshi, R.; Janagama, H.; Dwivedi, H. P.; Senthil Kumar, T. M. A.; Jaykus, L.-A.; Schefers, J.; Sreevatsan, S. Selection, Characterization, and Application of DNA Aptamers for the Capture and Detection of Salmonella enterica Serovars. Mol. Cell. Probes 2009, 23, 20–28. DOI:10.1016/j.mcp.2008.10.006.
  • Jiang, D.; Feng, D.; Jiang, H.; Yuan, L.; Yongqi, Y.; Xu, X.; Fang, W. Preliminary Study on an Innovative, Simple Mast Cell-Based Electrochemical Method for Detecting Foodborne Pathogenic Bacterial Quorum Signaling Molecules (N-acyl-homoserine-lactones). Biosens. Bioelectron. 2017, 90, 436–442. DOI:10.1016/j.bios.2016.09.096.
  • Mohanty, N.; Berry, V. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett. 2008, 8, 4469–4476. DOI:10.1021/nl802412n.
  • Muniandy, S.; Dinshaw, I. J.; Teh, S. J.; Lai, C. W.; Ibrahim, F.; Thong, K. L.; Leo, B. F. Graphene Based Label-Free Electrochemical Aptasensor for Rapid and Sensitive Detection of Foodborne Pathogen. Anal. Bioanal. Chem. 2017, 409, 6893–6905. DOI:10.1007/s00216-017-0654-6.
  • Dinshaw, I. J.; Muniandy, S.; Teh, S. J.; Ibrahim, F.; Leo, B. F.; Thong, K. L. Development of an Aptasensor Using Reduced Graphene Oxide Chitosan Complex to Detect Salmonella. Electroanal. Chem. 2017, 806, 88–96. DOI:10.1016/j.jelechem.2017.10.054.
  • Agui, L.; Yanez-Sedeno, P.; Pingarron, J. M. Role of Carbon Nanotubes in Electroanalytical Chemistry: A Review. Anal. Chim. Acta 2008, 622, 11–47. DOI:10.1016/j.aca.2008.05.070.
  • Dumitrescu, I.; Unwin, P. R.; Macpherson, J. V. Electrochemistry at Carbon Nanotubes: Perspective and Issues. Chem. Commun. 2009, 6886–6901. DOI:10.1039/b909734a.
  • Jacobs, C. B.; Peairs, M. J.; Venton, B. J. Review: Carbon Nanotube Based Electrochemical Sensors for Biomolecules. Anal. Chim. Acta 2010, 662, 105–127. DOI:10.1016/j.aca.2010.01.009.
  • Aqel, A.; El-Nour, K. M. M. A.; Ammar, R. A. A.; Al-Warthan, A. Carbon Nanotubes, Science and Technology Part (I) Structure, Synthesis and Characterisation. Arab. J. Chem. 2012, 5, 1–23. DOI:10.1016/j.arabjc.2010.08.022.
  • Schnorr, J. M.; Swager, T. M. Emerging Applications of Carbon Nanotubes. Chem. Mater. 2011, 23, 646–657. DOI:10.1021/cm102406h.
  • Popov, V. N. Carbon Nanotubes: Properties and Application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. DOI:10.1016/j.mser.2003.10.001.
  • Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. Carbon Nanotubes: Properties, Synthesis, Purification, and Medical Applications. Nanoscale Res. Lett. 2014, 9, 393. DOI:10.1186/1556-276X-9-393.
  • Anantram, M. P.; Léonard, F. Physics of Carbon Nanotube Electronic Devices. Rep. Prog. Phys. 2006, 69, 507. DOI:10.1088/0034-4885/69/3/R01.
  • Farhana S, Alam AZ, Khan S, Motakabber S, Eds. Modeling of Optimum Chiral Carbon Nanotube Using DFT. Presented at the 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), Beijing, China; Aug 5–8, 2013.
  • Dresselhaus, M. S.; Dresselhaus, G.; Saito, R. Physics of Carbon Nanotubes. Carbon 1995, 33, 883–891. DOI:10.1016/0008-6223(95)00017-8.
  • Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for Biosensing Applications: A Review. Front. Chem. 2014, 2, 63 DOI: 10.3389/fchem.2014.00063.
  • Kumar, S.; Ahlawat, W.; Kumar, R.; Dilbaghi, N. Graphene, Carbon Nanotubes, Zinc Oxide and Gold as Elite Nanomaterials for Fabrication of Biosensors for Healthcare. Biosens. Bioelectron. 2015, 70, 498–503. DOI:10.1016/j.bios.2015.03.062.
  • Wang, Z.; Dai, Z. Carbon Nanomaterial-Based Electrochemical Biosensors: An Overview. Nanoscale 2015, 7, 6420–6431. DOI:10.1039/C5NR00585J.
  • Zhao, Q.; Gan, Z.; Zhuang, Q. Electrochemical Sensors Based on Carbon Nanotubes. Electroanalysis 2002, 14, 1609–1613. DOI:10.1002/elan.200290000.
  • Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Soluble Carbon Nanotubes. Chemistry 2003, 9, 4000–4008. DOI:10.1002/chem.200304800.
  • Pérez-López, B.; Merkoçi, A. Carbon Nanotubes and Graphene in Analytical Sciences. Microchim. Acta 2012, 179, 1–16. DOI:10.1007/s00604-012-0871-9.
  • Meng, L.; Fu, C.; Lu, Q. Advanced Technology for Functionalization of Carbon Nanotubes. Prog. Nat. Sci. 2009, 19, 801–810. DOI:10.1016/j.pnsc.2008.08.011.
  • Nie, C.; Pan, L.; Li, H.; Chen, T.; Lu, T.; Sun, Z. Electrophoretic Deposition of Carbon Nanotubes Film Electrodes for Capacitive Deionization. Electroanal. Chem. 2012, 666, 85–88. DOI:10.1016/j.jelechem.2011.12.006.
  • Balasubramanian, K.; Burghard, M. Chemically Functionalized Carbon Nanotubes. Small 2005, 1, 180–192. DOI:10.1002/smll.200400118.
  • Hasan, M. R.; Pulingam, T.; Appaturi, J. N.; Zifruddin, A. N.; Teh, S. J.; Lim, T. W.; Ibrahim, F.; Leo, B. F.; Thong, K. L. Carbon Nanotube-Based Aptasensor for Sensitive Electrochemical Detection of Whole-Cell Salmonella. Anal. Biochem. 2018, 554, 34–43. DOI:10.1016/j.ab.2018.06.001.
  • Guner, A.; Cevik, E.; Senel, M.; Alpsoy, L. An Electrochemical Immunosensor for Sensitive Detection of Escherichia coli O157:H7 by Using Chitosan, MWCNT, polypyrrole with Gold Nanoparticles Hybrid Sensing Platform. Food Chem. 2017, 229, 358–365. DOI:10.1016/j.foodchem.2017.02.083.
  • Zhou, Y.; Ramasamy, R. P. Phage-Based Electrochemical Biosensors for Detection of Pathogenic Bacteria. ECS Trans. 2015, 69, 1–8. DOI:10.1149/06938.0001ecst.
  • Dong, J.; Zhao, H.; Xu, M.; Ma, Q.; Ai, S. A Label-Free Electrochemical Impedance Immunosensor Based on AuNPs/PAMAM-MWCNT-Chi Nanocomposite Modified Glassy Carbon Electrode for Detection of Salmonella Typhimurium in Milk. Food Chem. 2013, 141, 1980–1986. DOI:10.1016/j.foodchem.2013.04.098.
  • Choi, H.-K.; Lee, J.; Park, M.-K.; Oh, J.-H. Development of Single-Walled Carbon Nanotube-Based Biosensor for the Detection of Staphylococcus aureus. J. Food Qual. 2017, 2017, 1. DOI:10.1155/2017/5239487.
  • Jain, S.; Singh S, R.; Horn D, W.; Davis, V.; Kumar Ram, M.; Pillai, S. Development of an Antibody Functionalized Carbon Nanotube Biosensor for Foodborne Bacterial Pathogens. J. Biosens. Bioelectron. Special Issue S11 2012, 2012, 7. DOI:10.4172/2155-6210.S11-002.
  • Viswanathan, S.; Rani, C.; Ho, J. A. Electrochemical Immunosensor for Multiplexed Detection of Food-Borne Pathogens Using Nanocrystal Bioconjugates and MWCNT Screen-Printed Electrode. Talanta 2012, 94, 315–319. DOI:10.1016/j.talanta.2012.03.049.
  • Xiao, X.; Zhu, G.; Liao, L.; Liu, B.; Yuan, Y.; Wang, Y.; He, J.; He, B.; Wu, Y. A Square Wave Voltammetric Method for the Detection of Microorganism Populations Using a MWNT-Modified Glassy Carbon Electrode. Electrochim. Acta 2012, 74, 105–110. DOI:10.1016/j.electacta.2012.04.006.
  • Zelada-Guillén, G. A.; Bhosale, S. V.; Riu, J.; Rius, F. X. Real-Time Potentiometric Detection of Bacteria in Complex Samples. Anal. Chem. 2010, 82, 9254–9260. DOI:10.1021/ac101739b.
  • Wang, J. Carbon-Nanotube Based Electrochemical Biosensors: A Review. Electroanalysis 2005, 17, 7–14. DOI:10.1002/elan.200403113.
  • Punbusayakul, N.; Talapatra, S.; Ajayan, P. M.; Surareungchai, W. Label-Free as-Grown Double Wall Carbon Nanotubes Bundles for Salmonella Typhimuriumimmunoassay. Chem. Central J. 2013, 7, 102. DOI:10.1186/1752-153X-7-102.
  • Pumara, M. Electrochemical Properties of Double Wall Carbon Nanotube Electrodes. Nanoscale Res. Lett. 2007, 2, 87–93. DOI:10.1007/s11671-006-9035-3.
  • Liu, G.; Chai, C.; Yao, B. Rapid Evaluation of Salmonella Pullorum Contamination in Chicken Based on a Portable Amperometric Sensor. J. Biosens. Bioelectron. 2013, 4, 137. DOI:10.4172/2155-6210.1000137.
  • Li, Y.; Cheng, P.; Gong, J.; Fang, L.; Deng, J.; Liang, W.; Zheng, J. Amperometric Immunosensor for the Detection of Escherichia coli O157:H7 in Food Specimens. Anal. Biochem. 2012, 421, 227–233. DOI:10.1016/j.ab.2011.10.049.
  • Hema, B.; Shipra, S.; Gajjala, S. Electrophoretically Deposited Multiwalled Carbon Nanotube Based Amperometric Genosensor for E. coli Detection. J. Phys. Conf. Ser. 2016, 704, 012007. DOI:10.1088/1742-6596/704/1/012007.
  • Zhao, G.; Zhan, X.; Dou, W. A Disposable Immunosensor for Shigella flexneri Based on Multiwalled Carbon Nanotube/Sodium Alginate Composite Electrode. Anal. Biochem. 2011, 408, 53–58. DOI:10.1016/j.ab.2010.08.039.
  • Lu, Y.; Liu, Y.; Zhao, Y.; Li, W.; Qiu, L.; Li, L. A Novel and Disposable Enzyme-Labeled Amperometric Immunosensor Based on MWCNT Fibers for Listeria monocytogenes Detection. J. Nanomater. 2016, 2016, 1. DOI:10.1155/2016/3895920.
  • Dou, W.; Tang, W.; Zhao, G. A Disposable Electrochemical Immunosensor Arrays Using 4-Channel Screen-Printed Carbon Electrode for Simultaneous Detection of Escherichia coli O157:H7 and Enterobacter sakazakii. Electrochim. Acta 2013, 97, 79–85. DOI:10.1016/j.electacta.2013.02.136.
  • Fernandes, A. M.; Abdalhai, M. H.; Ji, J.; Xi, B.-W.; Xie, J.; Sun, J.; Noeline, R.; Lee, B. H.; Sun, X. Development of Highly Sensitive Electrochemical Genosensor Based on Multiwalled Carbon Nanotubes–Chitosan–Bismuth and Lead Sulfide Nanoparticles for the Detection of Pathogenic Aeromonas. Biosens. Bioelectron. 2015, 63, 399–406. DOI:10.1016/j.bios.2014.07.054.
  • Abdalhai, M. H.; Maximiano Fernandes, A.; Bashari, M.; Ji, J.; He, Q.; Sun, X. Detection of Foodborne Pathogenic Bacteria (Staphylococcus aureus) Using an Electrochemical DNA Genomic Biosensor and Its Application in Fresh Beef. J. Agric. Food Chem. 2014, 62, 12659–12667. DOI:10.1021/jf503914f.
  • Zelada-Guillen, G. A.; Sebastian-Avila, J. L.; Blondeau, P.; Riu, J.; Rius, F. X. Label-Free Detection of Staphylococcus aureus in Skin Using Real-Time Potentiometric Biosensors Based on Carbon Nanotubes and Aptamers. Biosens. Bioelectron. 2012, 31, 226–232. DOI:10.1016/j.bios.2011.10.021.
  • Zelada-Guillén, G. A.; Riu, J.; Düzgün, A.; Rius, F. X. Immediate Detection of Living Bacteria at Ultralow Concentrations Using a Carbon Nanotube Based Potentiometric Aptasensor. Angew. Chem. Int. Ed. 2009, 48, 7334–7337. DOI:10.1002/anie.200902090.
  • Crespo, G. A.; Macho, S.; Bobacka, J.; Rius, F. X. Transduction Mechanism of Carbon Nanotubes in Solid-Contact Ion-Selective Electrodes. Anal. Chem. 2009, 81, 676–681. DOI:10.1021/ac802078z.
  • Duzgun, A.; Zelada-Guillen, G. A.; Crespo, G. A.; Macho, S.; Riu, J.; Rius, F. X. Nanostructured Materials in Potentiometry. Anal. Bioanal. Chem. 2011, 399, 171–181. DOI:10.1007/s00216-010-3974-3.
  • Mujeeb-U-Rahman, M.; Adalian, D.; Scherer, A. Fabrication of Patterned Integrated Electrochemical Sensors. J. Nanotechnol. 2015, 2015, 1. DOI:10.1155/2015/467190.
  • Abdulbari, H. A.; Basheer, E. A. M. Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication. ChemBioEng Rev. 2017, 4, 92–105. DOI:10.1002/cben.201600009.
  • Mistry, K. K.; Layek, K.; Mahapatra, A.; RoyChaudhuri, C.; Saha, H. A Review on Amperometric-Type Immunosensors Based on Screen-Printed Electrodes. Analyst 2014, 139, 2289–2311. DOI:10.1039/c3an02050a.
  • Arshak, K.; Moore, E.; ÓLaighin, G.; Harris, J.; Clifford, S. A Review of Gas Sensors Employed in Electronic Nose Applications. Sensor Rev. 2004, 24, 181–198.
  • Ronkainen-Matsuno, N. J.; Thomas, J. H.; Halsall, H. B.; Heineman, W. R. Electrochemical Immunoassay Moving into the Fast Lane. TrAC Trends Anal. Chem. 2002, 21, 213–225. DOI:10.1016/S0165-9936(02)00401-6.
  • Jin, P.; Yamaguchi, A.; Oi, F. A.; Matsuo, S.; Tan, J.; Misawa, H. Glucose Sensing Based on Interdigitated Array Microelectrode. Anal. Sci. 2001, 17, 841–846. DOI:10.2116/analsci.17.841.
  • Kamath, R. R.; Madou, M. J. Three-Dimensional Carbon Interdigitated Electrode Arrays for Redox-Amplification. Anal. Chem. 2014, 86, 2963–2971. DOI:10.1021/ac4033356.
  • Niwa, O.; Morita, M.; Tabei, H. Electrochemical Behavior of Reversible Redox Species at Interdigitated Array Electrodes with Different Geometries: Consideration of Redox Cycling and Collection Efficiency. Anal. Chem. 1990, 62, 447–452. DOI:10.1021/ac00204a006.
  • Liu, C. C. Electrochemical Based Biosensors. Biosensors 2012, 2, 269–272. DOI:10.3390/bios2030269.
  • Housaindokht, M. R.; Verdian, A.; Sheikhzadeh, E.; Pordeli, P.; Rouhbakhsh Zaeri, Z.; Janati Fard, F. A Sensitive Electrochemical Aptasensor Based on Single Wall Carbon Nanotube Modified Screen Printed Electrode for Detection of Escherichia coli O157:H7. Adv. Mater. Lett. 2018, 9, 369–374.
  • Quiton, P. A. C.; Marie, B.; Cruz-Papa, D.; May, D.; Bergantin, J. Jr. Bacteriophage-Modified Graphene Oxide Screen-Printed Electrodes for the Impedimetric Biosensing of Salmonella Enterica Serovar Typhimurium. Sens. Transducers 2018, 18, 38–42.
  • Heo, J.; Hua, S. Z. An Overview of Recent Strategies in Pathogen Sensing. Sensors (Basel, Switzerland) 2009, 9, 4483–4502. DOI:10.3390/s90604483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.