360
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Organic Analysis of Environmental Samples Using Liquid Chromatography with Diode Array and Fluorescence Detectors: An Overview

&
Pages 29-49 | Published online: 29 Mar 2019

References

  • Samanidou, V. F. High Performance Liquid Chromatography (HPLC): The Workhorse in the Analytical Laboratory. SOJ Chromatograph Sci. 2016, 1, 2. www.symbiosisonlinepublishing.com DOI: 10.15226/2471-3627/1/1/00105.
  • Vega-Morales, T.; Montesdeoca-Esponda, S.; Santana Rodriguez, J. J.; Efremova, S.; Jean-Jacques, A. Luminescence Methods for Study and Determination of Pollutants in the Environment. Maced. J. Chem. Chem. Eng. 2010, 29, 1–42.
  • Prosen, H. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples. Molecules 2014, 19, 6776–6808. DOI: 10.3390/molecules19056776.
  • Yamini, Y.; Rezazadeh, M.; Seidi, S. Liquid-Phase Microextraction—The Different Principles and Configurations. TrAC Trends Analyt. Chem. In press.
  • Trujillo-Rodríguez, M. J.; Rocío-Bautista, P.; Pino, V.; Afonso, A. M. Ionic Liquids in Dispersive Liquid-Liquid Microextraction. TrAC Trends Analyt. Chem. 2013, 51, 87–106. DOI: 10.1016/j.trac.2013.06.008.
  • Shishov, A.; Bulatov, A.; Locatelli, M.; Carradori, S.; Andruch, V. Application of Deep Eutectic Solvents in Analytical Chemistry. A Review. Microchem. J. 2017, 135, 33–38. DOI: 10.1016/j.microc.2017.07.015.
  • Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Miniaturized Solid-Phase Extraction Techniques. TrAC Trends Analyt. Chem. 2015, 73, 19–38. DOI: 10.1016/j.trac.2015.04.026.
  • Afshar Mogaddam, M. R.; Mohebbi, A.; Pazhohan, A.; Khodadadeian, F.; Farajzadeh, M. A. Headspace Mode of Liquid Phase Microextraction: A Review. TrAC Trends Analyt. Chem. 2019, 110, 8–14. DOI: 10.1016/j.trac.2018.10.021.
  • Saraji, M.; Khalili Boroujeni, M. Recent Developments in Dispersive Liquid-Liquid Microextraction Microextraction Techniques. Anal. Bioanal. Chem. 2013, 406, 1–40.
  • Sajid, M.; Alhooshani, K. Dispersive Liquid-Liquid Microextraction Based Binary Extraction Techniques Prior to Chromatographic Analysis: A Review. TrAC Trends Analyt. Chem. 2018, 108, 167–182. DOI: 10.1016/j.trac.2018.08.016.
  • Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. DOI: 10.1021/cr300162p.
  • Seebunrueng, K.; Dejchaiwatana, C.; Santaladchaiyakit, Y.; Srijaranai, S. Development of Supramolecular Solvent Based Microextraction Prior to High Performance Liquid Chromatography for Simultaneous Determination of Phenols in Environmental Water. RSC Adv. 2017, 7, 50143–50149. DOI: 10.1039/C7RA07780G.
  • Santaladchaiyakit, Y.; Bunchamnan, J.; Tongsa, D.; Srijaranai, S. Methyl Salicylate-Based Vortex-Assisted Surfactant-Enhanced Emulsification Microextraction and HPLC for Determination of Fungicides in Honey Samples. Acta Chim. Slov. 2017, 64, 849–857. DOI: 10.17344/acsi.2017.3413.
  • da Silva, D. C.; Oliveira, C. C. Development of Micellar HPLC-UV Method for Determination of Pharmaceuticals in Water Samples. J. Anal. Methods Chem. 2018, 2018, 1. DOI: 10.1155/2018/9143730.
  • Díaz-Bao, M.; Barreiro, R.; Miranda, J.; Cepeda, A.; Regal, P. Recent Advances and Uses of Monolithic Columns for the Analysis of Residues and Contaminants in Food. Chromatography 2015, 2, 79. DOI: 10.3390/chromatography2010079.
  • Chen, R.; Zhou, H.; Liu, M.; Yan, H.; Qiao, X. Ionic Liquids-Based Monolithic Columns: Recent Advancements and Their Applications for High-Efficiency Separation and Enrichment. TrAC Trends Analyt. Chem. 2019, 111, 1–12. DOI: 10.1016/j.trac.2018.11.026.
  • United States Environmental Protection Agency. Method 8315A (SW-846): Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC), Revision 1. Available from https://www.epa.gov/sites/production/files/2015-07/documents/epa-8315a.pdf (accesed Jan 30, 2019).
  • Albaigés, J.; Patnaik, P. Handbook of Environmental Analysis. Int. J. Environ. Anal. Chem. 2013, 93, 1557–1557. DOI: 10.1080/03067319.2013.869587.
  • Possanzini, M.; Palo, V. D.; Brancaleoni, E.; Frattoni, M.; Ciccioli, P. A Train of Carbon and DNPH-Coated Cartridges for the Determination of Carbonyls from C1 to C12 in Air and Emission Samples. Atmos. Environ. 2000, 34, 5311–5318. DOI: 10.1016/S1352-2310(00)00300-9.
  • Wang, H.; Zhang, X.; Chen, Z. Development of DNPH/HPLC Method for the Measurement of Carbonyl Compounds in the Aqueous Phase: Applications to Laboratory Simulation and Field Measurement. Environ. Chem. 2009, 6, 389–397. DOI: 10.1071/EN09057.
  • Kim, K.-H.; Szulejko, J. E.; Kim, Y.-H.; Lee, M.-H. An Exploration on the Suitability of Airborne Carbonyl Compounds Analysis in Relation to Differences in Instrumentation (GC-MS Versus HPLC-UV) and Standard Phases (Gas Versus Liquid). Sci. World J. 2014, 2014, 1–11. DOI: 10.1155/2014/308405.
  • Serrano-Trespalacios, P. I.; Ryan, L.; Spengler, J. D. Ambient, indoor and Personal Exposure Relationships of Volatile Organic Compounds in Mexico City Metropolitan Area. J. Expo. Sci. Environ. Epidemiol. 2004, 14, S118–S132. DOI: 10.1038/sj.jea.7500366.
  • García-Alonso, S.; Pérez-Pastor, R.; Sevillano-Castaño, M. L. Determination of Glyoxal and Methylglyoxal in Atmospheric Particulate Matter by 2,4-Dinitrophenylhydrazine Derivatisation. Toxicol. Environ. Chem. 2006, 88, 445–452. DOI: 10.1080/02772240600796837.
  • Custodio, D.; Guimaraes, C. S.; Varandas, L.; Arbilla, G. Pattern of Volatile Aldehydes and Aromatic Hydrocarbons in the Largest Urban Rainforest in the Americas. Chemosphere 2010, 79, 1064–1069. DOI: 10.1016/j.chemosphere.2010.03.028.
  • Liu, Q. Y.; Liu, Y. J.; Chen, S. Z.; Liu, Q. J. Ionic Liquid for Single-Drop Microextraction Followed by High-Performance Liquid Chromatography-Ultraviolet Detection to Determine Carbonyl Compounds in Environmental Waters. J. Sep. Sci. 2010, 33, 2376–2382. DOI: 10.1002/jssc.201000051.
  • Prieto-Blanco, M. C.; Iglesias, M. P.; López-Mahía, P.; Lorenzo, S. M.; Rodríguez, D. P. Simultaneous Determination of Carbonyl Compounds and Polycyclic Aromatic Hydrocarbons in Atmospheric Particulate Matter by Liquid Chromatography–Diode Array Detection–Fluorescence Detection. Talanta 2010, 80, 2083–2092. DOI: 10.1016/j.talanta.2009.11.009.
  • Sofuoglu, S. C.; Aslan, G.; Inal, F.; Sofuoglu, A. An Assessment of Indoor Air Concentrations and Health Risks of Volatile Organic Compounds in Three Primary Schools. Int. J. Hyg. Environ. Health 2011, 214, 38–46.
  • Araki, A.; Tsuboi, T.; Kawai, T.; Bamai, Y. A.; Takeda, T.; Yoshioka, E.; Kishi, R. Validation of Diffusive Mini-Samplers for Aldehyde and VOC and Its Feasibility for Measuring the Exposure Levels of Elementary School Children. J. Environ. Monit. 2012, 14, 368–374. DOI: 10.1039/C1EM10624D.
  • Czaplicka, M.; Jaworek, K.; Wochnik, A. Determination of Aldehydes in Wet Deposition. Arch. Environ. Prot. 2014, 40, 21–31. DOI: 10.2478/aep-2014-0011.
  • Villanueva, F.; Tapia, A.; Lara, S.; Amo-Salas, M. Indoor and Outdoor Air Concentrations of Volatile Organic Compounds and NO2 in Schools of Urban, Industrial and Rural Areas in Central-Southern Spain. Sci. Total Environ. 2018, 622–623, 222–235. DOI: 10.1016/j.scitotenv.2017.11.274.
  • Herrington, J. S.; Hays, M. D. Concerns Regarding 24-h Sampling for Formaldehyde, Acetaldehyde, and Acrolein Using 2,4-Dinitrophenylhydrazine (DNPH)-Coated Solid Sorbents. Atmos. Environ. 2012, 55, 179–184. DOI: 10.1016/j.atmosenv.2012.02.088.
  • Vairavamurthy, A.; Roberts, J. M.; Newman, L. Methods for Determination of Low Molecular Weight Carbonyl Compounds in the Atmosphere: A Review. Atmos. Environ. 1992, 26, 1965–1993. DOI: 10.1016/0960-1686(92)90083-W.
  • Vogel, M.; Büldt, A.; Karst, U. Hydrazine Reagents as Derivatizing Agents in Environmental Analysis—A Critical Review. Fresenius J. Anal. Chem. 2000, 366, 781–791. DOI: 10.1007/s002160051572.
  • Szulejko, J. E.; Kim, K.-H. Derivatization Techniques for Determination of Carbonyls in Air. TrAC Trends Analyt. Chem. 2015, 64, 29–41. DOI: 10.1016/j.trac.2014.08.010.
  • Chen, L.; Fu, Y.-J.; Fang, W.-L.; Guo, X.-F.; Wang, H. Screening of a Highly Effective Fluorescent Derivatization Reagent for Carbonyl Compounds and Its Application in HPLC with Fluorescence Detection. Talanta 2018, 186, 221–228. DOI: 10.1016/j.talanta.2018.04.017.
  • De Lima, L. F.; Brandão, P. F.; Donegatti, T. A.; Ramos, R. M.; Gonçalves, L. M.; Cardoso, A. A.; Pereira, E. A.; Rodrigues, J. A. 4-Hydrazinobenzoic Acid as a Derivatizing Agent for Aldehyde Analysis by HPLC-UV and CE-DAD. Talanta 2018, 187, 113–119. DOI: 10.1016/j.talanta.2018.04.091.
  • Czauderna, M.; Kowalczyk, J. Lactic Acid Can Be Easily and Precisely Determined by Reversed-Phase High Performance Liquid Chromatography with Pre-Column Derivatization. J. Anim. Feed Sci. 2008, 17, 268–279. DOI: 10.22358/jafs/66606/2008.
  • Xie, Z. M.; Yu, L.; Yu, H. J.; Deng, Q. Y. Application of a Fluorescent Derivatization Reagent 9-Chloromethyl Anthracene on Determination of Carboxylic Acids by HPLC. J. Chromatogr. Sci. 2012, 50, 464–468. DOI: 10.1093/chromsci/bms023.
  • Zhang, Q.; Hu, N.; Li, W.; Bai, B.; Wang, H.; Suo, Y.; Ding, C.; Wang, X. Quantitative Analysis of Fatty Acids from Safflower by Selective and Sensitive Pre-Column Derivatization Method Using HPLC-FLD and Online APCI/MS. Asian J. Chem. 2015, 27, 2492–2496. DOI: 10.14233/ajchem.2015.17953.
  • Salgado, P.; Visnevschi-Necrasov, T.; Kiene, R. P.; Azevedo, I.; Rocha, A. C. S.; Almeida, C. M. R.; Magalhaes, C. Determination of 3-Mercaptopropionic Acid by HPLC: A Sensitive Method for Environmental Applications. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 992, 103–108. DOI: 10.1016/j.jchromb.2015.04.008.
  • Rezaei, F.; Jamei, R.; Heidari, R. Evaluation of Volatile Profile, Fatty Acids Composition and In Vitro Bioactivity of Tagetes Minuta Growing Wild in Northern Iran. Adv. Pharm. Bull. 2018, 8, 115–121. DOI: 10.15171/apb.2018.014.
  • Štěrbová, D.; Matějı́ček, D.; Vlček, J.;.; Kubáň, V. Combined Microwave-Assisted Isolation and Solid-Phase Purification Procedures Prior to the Chromatographic Determination of Phenolic Compounds in Plant Materials. Anal. Chim. Acta 2004, 513, 435–444. DOI: 10.1016/j.aca.2004.03.031.
  • Czauderna, M.; Kowalczyk, J. HPLC Separation of Some Unsaturated and Saturated Fatty Acids. Chem. Anal. 2002, 47, 867–882.
  • Dremetsika, A. V.; Siskos, P. A.; Bakeas, E. B. Determination of Formic and Acetic Acid in the Interior Atmosphere of Display Cases and Cabinets in Athens Museums by Reverse Phase High Performance Liquid Chromatography. Indoor Built Environ. 2005, 14, 51–58. DOI: 10.1177/1420326X05050345.
  • Possanzini, M.; Tagliacozzo, G.; Cecinato, A. Simultaneous Determination of Formic Acid and Lower Carbonyls in Air Samples by DNPH Derivatization. J. Sep. Sci. 2007, 30, 2460–2465. DOI: 10.1002/jssc.200700109.
  • [United States Environmental Protection Agency, E.-.-. Health Effects Assessment For Polycyclic Aromatic Hydrocarbons (PAH) Available from https://nepis.epa.gov/Exe/ZyPDF.cgi/2000FD6E.PDF?Dockey=2000FD6E.PDF (accesed Jan 30, 2019).
  • Zhang, Q.; Yang, F.; Tang, F.; Zeng, K.; Wu, K.; Cai, Q.; Yao, S. Ionic Liquid-Coated Fe3O4 Magnetic Nanoparticles as an Adsorbent of Mixed Hemimicelles Solid-Phase Extraction for Preconcentration of Polycyclic Aromatic Hydrocarbons in Environmental Samples. Analyst 2010, 135, 2426–2433. DOI: 10.1039/c0an00245c.
  • Zhang, S. X.; Niu, H. Y.; Cai, Y. Q.; Shi, Y. L. Barium Alginate Caged Fe3O4@C18 Magnetic Nanoparticles for the Pre-Concentration of Polycyclic Aromatic Hydrocarbons and Phthalate Esters from Environmental Water Samples. Anal. Chim. Acta 2010, 665, 167–175. DOI: 10.1016/j.aca.2010.03.026.
  • Huang, Y. R.; Zhou, Q. X.; Xie, G. H. Development of Micro-Solid Phase Extraction with Titanate Nanotube Array Modified by Cetyltrimethylammonium Bromide for Sensitive Determination of Polycyclic Aromatic Hydrocarbons from Environmental Water Samples. J. Hazard. Mater. 2011, 193, 82–89. DOI: 10.1016/j.jhazmat.2011.07.025.
  • Long, Y.; Chen, Y.; Yang, F.; Chen, C.; Pan, D.; Cai, Q.; Yao, S. Triphenylamine-Functionalized Magnetic Microparticles as a New Adsorbent Coupled with High Performance Liquid Chromatography for the Analysis of Trace Polycyclic Aromatic Hydrocarbons in Aqueous Samples. Analyst 2012, 137, 2716–2722. DOI: 10.1039/c2an16248b.
  • Khalili-Fard, V.; Ghanemi, K.; Nikpour, Y.; Fallah-Mehrjardi, M. Application of Sulfur Microparticles for Solid-Phase Extraction of Polycyclic Aromatic Hydrocarbons from Sea Water and Wastewater Samples. Anal. Chim. Acta 2012, 714, 89–97. DOI: 10.1016/j.aca.2011.11.065.
  • Mao, X. J.; Hu, B.; He, M.; Fan, W. Y. Stir Bar Sorptive Extraction Approaches with a Home-Made Portable Electric Stirrer for the Analysis of Polycyclic Aromatic Hydrocarbon Compounds in Environmental Water. J. Chromatogr. A 2012, 1260, 16–24. DOI: 10.1016/j.chroma.2012.08.062.
  • Huo, S.-H.; Yan, X.-P. Facile Magnetization of Metal-Organic Framework MIL-101 for Magnetic Solid-Phase Extraction of Polycyclic Aromatic Hydrocarbons in Environmental Water Samples. Analyst 2012, 137, 3445–3451. DOI: 10.1039/c2an35429b.
  • Vinci, G.; Antonelli, M. L.; Preti, R. Rapid Determination of Polycyclic Aromatic Hydrocarbons in Rainwater by Liquid-Liquid Microextraction and LC with Core-Shell Particles Column and Fluorescence Detection. J. Sep. Sci. 2013, 36, 461–468. DOI: 10.1002/jssc.201200854.
  • Wang, Y. X.; Wang, S. H.; Niu, H. Y.; Ma, Y. R.; Zeng, T.; Cai, Y. Q.; Meng, Z. F. Preparation of Polydopamine Coated Fe3O4 Nanoparticles and Their Application for Enrichment of Polycyclic Aromatic Hydrocarbons from Environmental Water Samples. J. Chromatogr. A 2013, 1283, 20–26. DOI: 10.1016/j.chroma.2013.01.110.
  • Pan, D.; Wang, J.; Chen, C.; Huang, C. a.; Cai, Q.; Yao, S. Ultrasonic Assisted Extraction Combined with Titanium-Plate Based Solid Phase Extraction for the Analysis of PAHs in Soil Samples by HPLC-FLD. Talanta 2013, 108, 117–122. DOI: 10.1016/j.talanta.2013.02.066.
  • Huang, K. J.; Liu, Y. J.; Li, J.; Gan, T.; Liu, Y. M. Ultra-Trace Determination of Polycyclic Aromatic Hydrocarbons Using Solid-Phase Extraction Coupled with HPLC Based on Graphene-Functionalized Silica Gel Composites. Anal. Methods 2014, 6, 194–201. DOI: 10.1039/C3AY41588K.
  • Zhou, Q.; Gao, Y. Determination of Polycyclic Aromatic Hydrocarbons in Water Samples by Temperature-Controlled Ionic Liquid Dispersive Liquid-Liquid Microextraction Combined with High Performance Liquid Chromatography. Anal. Methods 2014, 6, 2553–2559. DOI: 10.1039/c3ay42254b.
  • Zhang, W.; Zhang, Z.; Zhang, J.; Meng, J.; Bao, T.; Chen, Z. Covalent Immobilization of Graphene onto Stainless Steel Wire for Jacket-Free Stir Bar Sorptive Extraction. J Chromatogr A. 2014, 1351, 12–20. DOI: 10.1016/j.chroma.2014.05.038.
  • Liu, X. F.; Lu, X.; Huang, Y.; Liu, C. W.; Zhao, S. L. Fe3O4@Ionic Liquid@methyl Orange Nanoparticles as a Novel Nano-Adsorbent for Magnetic Solid-Phase Extraction of Polycyclic Aromatic Hydrocarbons in Environmental Water Samples. Talanta 2014, 119, 341–347. DOI: 10.1016/j.talanta.2013.11.039.
  • Hu, C.; He, M.; Chen, B. B.; Zhong, C.; Hu, B. Sorptive Extraction Using Polydimethylsiloxane/metal-Organic Framework Coated Stir Bars Coupled with High Performance Liquid Chromatography-Fluorescence Detection for the Determination of Polycyclic Aromatic Hydrocarbons in Environmental Water Samples. J. Chromatogr. A 2014, 1356, 45–53. DOI: 10.1016/j.chroma.2014.06.062.
  • Hu, H.; Liu, S.; Chen, C.; Wang, J.; Zou, Y.; Lin, L.; Yao, S. Two Novel Zeolitic Imidazolate Frameworks (ZIFs) as Sorbents for Solid-Phase Extraction (SPE) of Polycyclic Aromatic Hydrocarbons (PAHs) in Environmental Water Samples. Analyst 2014, 139, 5818–5826. DOI: 10.1039/C4AN01410C.
  • Liu, L.; Zhou, X.; Wang, C.; Wu, Q.; Wang, Z. Extraction and Enrichment of Polycyclic Aromatic Hydrocarbons by Ordered Mesoporous Carbon Reinforced Hollow Fiber Liquid‐Phase Microextraction. J. Sep. Sci. 2015, 38, 683–689. DOI: 10.1002/jssc.201401071.
  • Su, R.; Ruan, G.; Nie, H.; Xie, T.; Zheng, Y.; Du, F.; Li, J. Development of High Internal Phase Emulsion Polymeric Monoliths for Highly Efficient Enrichment of Trace Polycyclic Aromatic Hydrocarbons from Large-Volume Water Samples. J. Chromatogr. A 2015, 1405, 23–31. DOI: 10.1016/j.chroma.2015.05.067.
  • Yang, X.; Luo, N.; Zong, Y. Y.; Jia, Z. H.; Liao, X. Quantum Dots Extraction Coupled with High-Performance Liquid Chromatography for the Determination of Polycyclic Aromatic Hydrocarbons in Water. Appl. Ecol. Environ. Res. 2017, 15, 171–186. DOI: 10.15666/aeer/1503_171186.
  • Zhang, W. F.; Zhang, Y. H.; Jiang, Q.; Zhao, W. J.; Yu, A. J.; Chang, H.; Lu, X. M.; Xie, F. W.; Ye, B. X.; Zhang, S. S. Tetraazacalix 2 Arence 2 Triazine Coated Fe3O4/SiO2 Magnetic Nanoparticles for Simultaneous Dispersive Solid Phase Extraction and Determination of Trace Multitarget Analytes. Anal. Chem. 2016, 88, 10523–10532. DOI: 10.1021/acs.analchem.6b02583.
  • Xu, J.; Li, Y.; Li, C.; Zhang, R.; Xiao, Y. Hexafluoroisopropanol-Mediated Cloud Point Extraction of Organic Pollutants in Water with Analysis by High-Performance Liquid Chromatography. Anal. Bioanal. Chem. 2017, 409, 4559–4569. DOI: 10.1007/s00216-017-0394-7.
  • Yousefi, S. M.; Shemirani, F.; Ghorbanian, S. A. Hydrophobic Deep Eutectic Solvents in Developing Microextraction Methods Based on Solidification of Floating Drop: Application to the Trace HPLC/FLD Determination of PAHs. Chromatographia 2018, 81, 1201–1211. DOI: 10.1007/s10337-018-3548-7.
  • Roper, J. C.; Pfaender, F. K. Pyrene and Chrysene Fate in Surface Soil and Sand Microcosms. Environ. Toxicol. Chem. 2001, 20, 223–230. DOI: 10.1002/etc.5620200201.
  • Kishikawa, N.; Morita, S.; Wada, M.; Ohba, Y.; Nakashima, K.; Kuroda, N. Determination of Hydroxylated Polycyclic Aromatic Hydrocarbons in Airborne Particulates by High-Performance Liquid Chromatography with Fluorescence Detection. Anal. Sci. 2004, 20, 129–132. DOI: 10.2116/analsci.20.129.
  • Barrado, A. I.; García, S.; Barrado, E.; Pérez, R. M. PM2.5-Bound PAHs and Hydroxy-PAHs in Atmospheric Aerosol Samples: Correlations with Season and with Physical and Chemical Factors. Atmos. Environ. 2012, 49, 224–232. DOI: 10.1016/j.atmosenv.2011.11.056.
  • Kamiura, T.; Kawaraya, T.; Tanaka, M.; Nakadoi, T. Determination of 3-Nitrofluoranthene and 1-Nitropyrene in Suspended Particulate Matter by Liquid Chromatography with Fluorescence Detection. Anal. Chim. Acta 1991, 254, 27–31. DOI: 10.1016/0003-2670(91)90005-P.
  • Brichac, J.; Zima, J.; Barek, J. HPLC Determination of Nitrated Polycyclic Aromatic Hydrocarbons after Their Reduction to Amino Derivatives. Anal. Lett. 2004, 37, 2379–2392. DOI: 10.1081/AL-200028178.
  • García-Alonso, S.; Barrado-Olmedo, A. I.; Pérez-Pastor, R. M. An Analytical Method to Determine Selected Nitro-PAHs in Soil Samples by HPLC with Fluorescence Detection. Polycycl. Aromat. Comp. 2012, 32, 669–682. DOI: 10.1080/10406638.2012.725196.
  • Barrado, A. I.; García, S.; Castrillejo, Y.; Barrado, E. Exploratory Data Analysis of PAH, Nitro-PAH and Hydroxy-PAH Concentrations in Atmospheric PM10-Bound Aerosol Particles. Correlations with Physical and Chemical Factors. Atmos. Environ. 2013, 67, 385–393. DOI: 10.1016/j.atmosenv.2012.10.030.
  • AlSalka, Y.; Karabet, F.; Hashem, S. Development and Optimisation of Quantitative Analytical Method to Determine BTEX in Environmental Water Samples Using HPLC-DAD. Anal. Methods 2010, 2, 1026–1035. DOI: 10.1039/c0ay00285b.
  • Filho, C. M. C.; Neto, M. N. L.; Teixeira, R. S.; Pais, A. A. C. C.; Valente, A. J. M. Development and Optimization of an HPLC–DAD Method for Quantification of Six Petroleum Hydrocarbon Compounds in Aqueous Samples. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 837–846. DOI: 10.1080/10826076.2016.1274998.
  • Abdel-Shafy, H. I.; Mansour, M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Petrol. 2016, 25, 107–123. DOI: 10.1016/j.ejpe.2015.03.011.
  • Kim, K. H.; Jahan, S. A.; Kabir, E.; Brown, R. J. C. A Review of Airborne Polycyclic Aromatic Hydrocarbons (PAHs) and Their Human Health Effects. Environ. Int. 2013, 60, 71–81. DOI: 10.1016/j.envint.2013.07.019.
  • Li, K.; Woodward, L. A.; Karu, A. E.; Li, Q. X. Immunochemical Detection of Polycyclic Aromatic Hydrocarbons and 1-Hydroxypyrene in Water and Sediment Samples. Anal. Chim. Acta 2000, 419, 1–8. DOI: 10.1016/S0003-2670(00)00989-2.
  • Barrado, A. I.; Garcia, S.; Castrillejo, Y.; Perez, R. M. Hydroxy–PAH Levels in Atmospheric PM10 Aerosol Samples Correlated with Season, physical Factors and Chemical Indicators of Pollution. Atmos. Pollut. Res. 2012, 3, 81–87. DOI: 10.5094/APR.2012.007.
  • Kishikawa, N.; Kuroda, N. Analytical Techniques for the Determination of Biologically Active Quinones in Biological and Environmental Samples. J. Pharmaceut. Biomed. 2014, 87, 261–270. DOI: 10.1016/j.jpba.2013.05.035.
  • Cvacka, J.; Barek, J.; Zima, J.; G.; Fogg, A.; C.; Moreira, J. Critical Review. High-Performance Liquid Chromatography of Nitrated Polycyclic Aromatic Hydrocarbons. Analyst 1998, 123, 9R–18R. DOI: 10.1039/a705097f.
  • Zielinska, B.; Samy, S. Analysis of Nitrated Polycyclic Aromatic Hydrocarbons. Anal. Bioanal. Chem. 2006, 386, 883–890. DOI: 10.1007/s00216-006-0521-3.
  • Hernández, J. J.; Ballesteros, R.; Aranda, G. Characterisation of Tars from Biomass Gasification: Effect of the Operating Conditions. Energy 2013, 50, 333–342. DOI: 10.1016/j.energy.2012.12.005.
  • González, J. L.; Pell, A.; López-Mesas, M.; Valiente, M. Simultaneous Determination of BTEX and Their Metabolites Using Solid-Phase Microextraction Followed by HPLC or GC/MS: An Application in Teeth as Environmental Biomarkers. Sci. Total Environ. 2017, 603–604, 109–117. DOI: 10.1016/j.scitotenv.2017.05.267.
  • Meulenberg, E. Phenolics: Occurrence and Immunochemical Detection in Environment and Food. Molecules 2009, 14, 439 DOI: 10.3390/molecules14010439.
  • Opeolu, B. O.; Fatoki, O. S.; Odendaal, J. Development of a Solid-Phase Extraction Method Followed by HPLC-UV Detection for the Determination of Phenols in Water. Int. J. Phys. Sci. 2010, 5, 576–581.
  • Yang, F.; Shen, R.; Long, Y. M.; Sun, X. Y.; Tang, F.; Cai, Q. Y.; Yao, S. Z. Magnetic Microsphere Confined Ionic Liquid as a Novel Sorbent for the Determination of Chlorophenols in Environmental Water Samples by Liquid Chromatography. J. Environ. Monit. 2011, 13, 440–445. DOI: 10.1039/C0EM00389A.
  • Cruceru, I.; Florescu, A.; Badea, I. A.; Vladescu, L. Determination of Three Alkylphenol Isomers in Various Water Samples Using a New HPLC Method Based on a Duet Stationary Phase. Environ. Monit. Assess. 2012, 184, 6061–6070. DOI: 10.1007/s10661-011-2403-1.
  • Cruceru, I.; Iancu, V.; Petre, J.; Badea, I. A.; Vladescu, L. HPLC-FLD Determination of 4-Nonylphenol and 4-Tert-Octylphenol in Surface Water Samples. Environ. Monit. Assess. 2012, 184, 2783–2795. DOI: 10.1007/s10661-011-2151-2.
  • Lou, L.; Cheng, G.; Yang, Q.; Xu, X.; Hu, B.; Chen, Y. Development of a Novel Solid-Phase Extraction Element for the Detection of Nonylphenol in the Surface Water of Hangzhou. J. Environ. Monit. 2012, 14, 517–523. DOI: 10.1039/C1EM10731C.
  • Li, X. Y.; Xue, A. F.; Chen, H.; Li, S. Q. Low-Density Solvent-Based Dispersive Liquid-Liquid Microextraction Combined with Single-Drop Microextraction for the Fast Determination of Chlorophenols in Environmental Water Samples by High Performance Liquid Chromatography-Ultraviolet Detection. J. Chromatogr. A 2013, 1280, 9–15. DOI: 10.1016/j.chroma.2013.01.023.
  • Kadmi, Y.; Favier, L.; Yehya, T.; Soutrel, I.; Simion, A. I.; Vial, C.; Wolbert, D. Controlling Contamination for Determination of Ultra-Trace Levels of Priority Pollutants Chlorophenols in Environmental Water Matrices. Arab. J. Chem. DOI: 10.1016/j.arabjc.2015.06.005.
  • Villar-Navarro, M.; Ramos-Payán, M.; Fernández-Torres, R.; Callejón-Mochón, M.; Bello-López, M. Á. A Novel Application of Three Phase Hollow Fiber Based Liquid Phase Microextraction (HF-LPME) for the HPLC Determination of Two Endocrine Disrupting Compounds (EDCs), n-Octylphenol and n-Nonylphenol, in Environmental Waters. Sci. Total Environ. 2013, 443, 1–6. DOI: 10.1016/j.scitotenv.2012.10.071.
  • Suliman, F. O.; Al-Busaidi, J. N.; Al-Lawati, H. A.; Al-Kindy, S. M. Microfluidic Precolumn Derivatization of Environmental Phenols with Coumarin-6-Sulfonyl Chloride and HPLC Separation. J. Chromatogr. Sci. 2015, 53, 1379–1385. DOI: 10.1093/chromsci/bmv028.
  • Graca, B.; Staniszewska, M.; Zakrzewska, D.; Zalewska, T. Reconstruction of the Pollution History of Alkylphenols (4-Tert-Octylphenol, 4-Nonylphenol) in the Baltic Sea. Environ. Sci. Pollut. Res. Int. 2016, 23, 11598–11610. DOI: 10.1007/s11356-016-6262-8.
  • Zhong, C.; He, M.; Liao, H. P.; Chen, B. B.; Wang, C.; Hu, B. Polydimethylsiloxane/Covalent Triazine Frameworks Coated Stir Bar Sorptive Extraction Coupled with High Performance Liquid Chromatography-Ultraviolet Detection for the Determination of Phenols in Environmental Water Samples. J. Chromatogr. A 2016, 1441, 8–15. DOI: 10.1016/j.chroma.2016.02.073.
  • Zhou, Q. X.; Gao, Y. Y.; Xie, G. H. Determination of Bisphenol A, 4-n-Nonylphenol, and 4-Tert-Octylphenol by Temperature-Controlled Ionic Liquid Dispersive Liquid-Phase Microextraction Combined with High Performance Liquid Chromatography-Fluorescence Detector. Talanta 2011, 85, 1598–1602. DOI: 10.1016/j.talanta.2011.06.050.
  • Banihashemi, B.; Droste, R. L. Trace Level Determination of Bisphenol-A in Wastewater and Sewage Sludge by High-Performance Liquid Chromatography and UV Detection. Water Qual. Res. J. Can. 2013, 48, 133–144. DOI: 10.2166/wqrjc.2013.037.
  • Chen, B.; Huang, Y.; He, M.; Hu, B. Hollow Fiber Liquid-Liquid-Liquid Microextraction Combined with High Performance Liquid Chromatography-Ultraviolet Detection for the Determination of Various Environmental Estrogens in Environmental and Biological Samples. J. Chromatogr. A 2013, 1305, 17–26. DOI: 10.1016/j.chroma.2013.06.029.
  • Hu, C.; He, M.; Chen, B.; Zhong, C.; Hu, B. Polydimethylsiloxane/Metal-Organic Frameworks Coated Stir Bar Sorptive Extraction Coupled to High Performance Liquid Chromatography-Ultraviolet Detector for the Determination of Estrogens in Environmental Water Samples. J. Chromatogr. A 2013, 1310, 21–30. DOI: 10.1016/j.chroma.2013.08.047.
  • Lima, D. L. D.; Silva, C. P.; Otero, M.; Esteves, V. I. Low Cost Methodology for Estrogens Monitoring in Water Samples Using Dispersive Liquid-Liquid Microextraction and HPLC with Fluorescence Detection. Talanta 2013, 115, 980–985. DOI: 10.1016/j.talanta.2013.07.007.
  • Wang, X.; Liu, J.; Liu, Q.; Du, X.; Jiang, G. Rapid Determination of Tetrabromobisphenol A and Its Main Derivatives in Aqueous Samples by Ultrasound-Dispersive Liquid-Liquid Microextraction Combined with High-Performance Liquid Chromatography. Talanta 2013, 116, 906–911. DOI: 10.1016/j.talanta.2013.08.011.
  • Zhou, Q.; Wang, G.; Xie, G. Preconcentration and Determination of Bisphenol A, Naphthol and Dinitrophenol from Environmental Water Samples by Dispersive Liquid-Phase Microextraction and HPLC. Anal. Methods 2014, 6, 187–193. DOI: 10.1039/C3AY40281A.
  • Zhou, Q. X.; Wu, W.; Huang, Y. R. TiO2 Nanotube Array Micro-Solid Phase Equilibrium Extraction for the Determination of Bisphenol A, 4-n-Nonylphenol, and 4-Tert-Octylphenol at Trace Levels with High-Performance Liquid Chromatography. Anal. Methods 2014, 6, 8396–8402. DOI: 10.1039/C4AY01412J.
  • Zou, Y. M.; Zhang, Z.; Shao, X. L.; Chen, Y.; Wu, X. Y.; Yang, L. Q.; Zhu, J. J.; Zhang, D. M. Hollow-Fiber-Supported Liquid-Phase Microextraction Using an Ionic Liquid as the Extractant for the Pre-Concentration of Bisphenol A, 17-Beta-Estradiol, Estrone and Diethylstilbestrol from Water Samples with HPLC Detection. Water Sci. Technol. 2014, 69, 1028–1035. DOI: 10.2166/wst.2013.824.
  • Diao, C. P.; Yang, X.; Sun, A. L.; Liu, R. M. A Combined Technique for the Pretreatment of Ultra Trace Bisphenol A in Environmental Water Based on Magnetic Matrix Solid Phase Extraction Assisted Dispersive Liquid-Liquid Microextraction. Anal. Methods 2015, 7, 10170–10176. DOI: 10.1039/C5AY02711J.
  • Trujillo-Rodriguez, M. J.; Pino, V.; Anderson, J. L.; Ayala, J. H.; Afonso, A. M. Double Salts of Ionic-Liquid-Based Surfactants in Microextraction: Application of Their Mixed Hemimicelles as Novel Sorbents in Magnetic-Assisted Micro-Dispersive Solid-Phase Extraction for the Determination of Phenols. Anal. Bioanal. Chem. 2015, 407, 8753–8764. DOI: 10.1007/s00216-015-9034-2.
  • Sadeghi, M.; Nematifar, Z.; Fattahi, N.; Pirsaheb, M.; Shamsipur, M. Determination of Bisphenol A in Food and Environmental Samples Using Combined Solid-Phase Extraction-Dispersive Liquid-Liquid Microextraction with Solidification of Floating Organic Drop Followed by HPLC. Food Anal. Methods 2016, 9, 1814–1824. DOI: 10.1007/s12161-015-0357-6.
  • Wu, X.; Li, Y. R.; Zhu, X. L.; He, C. Y.; Wang, Q.; Liu, S. R. Dummy Molecularly Imprinted Magnetic Nanoparticles for Dispersive Solid-Phase Extraction and Determination of Bisphenol A in Water Samples and Orange Juice. Talanta 2017, 162, 57–64. DOI: 10.1016/j.talanta.2016.10.007.
  • Nur, M.; Yahaya, N.; Saad, B.; Kamaruzaman, S.; Hanapi, N. S. M. Rapid Ultrasound Assisted Emulsification Micro-Solid Phase Extraction Based on Molecularly Imprinted Polymer for HPLC-DAD Determination of Bisphenol A in Aqueous Matrices. Talanta 2017, 171, 242–249. DOI: 10.1016/j.talanta.2017.05.006.
  • Oenning, A. L.; Lopes, D.; Dias, A. N.; Merib, J.; Carasek, E. Evaluation of Two Membrane-Based Microextraction Techniques for the Determination of Endocrine Disruptors in Aqueous Samples by HPLC with Diode Array Detection. J. Sep. Sci. 2017, 40, 4431–4438. DOI: 10.1002/jssc.201700583.
  • Sobhi, H. R.; Ghambarian, M.; Behbahani, M.; Esrafili, A. Application Application of Dispersive Solid Phase Extraction Based on a Surfactant-Coated Titanium-Based Nanomagnetic Sorbent for Preconcentration of Bisphenol A in Water Samples. J. Chromatogr. A 2017, 1518, 25–33. DOI: 10.1016/j.chroma.2017.08.064.
  • Ayazi, Z.; Matin, A. A. Development of Carbon Nanotube-Polyamide Nanocomposite-Based Stir Bar Sorptive Extraction Coupled to HPLC-UV Applying Response Surface Methodology for the Analysis of Bisphenol A in Aqueous Samples. J. Chromatogr. Sci. 2016, 54, 1841–1850. DOI: 10.1093/chromsci/bmw135.
  • de Morais, P.; Stoichev, T.; Basto, M. C. P.; Vasconcelos, M. T. S. D. Extraction and Preconcentration Techniques for Chromatographic Determination of Chlorophenols in Environmental and Food Samples. Talanta 2012, 89, 1–11. DOI: 10.1016/j.talanta.2011.12.044.
  • Occupational Safety and Health Administration (OSHA), Method 1018: Bisphenol A and Diglycidyl Ether of Bisphenol A 2013; Vol. Available from https://www.osha.gov/dts/sltc/methods/validated/1018/1018.html (accesed Jan 30, 2019).
  • Bruhn, C., Method for the determination of bisphenol A. The MAK-Collection for Occupational Health and Safety, Wiley-VCH Verlag GmbH & Co. KGaA: Air Monitoring Methods, 2012. Available from http://onlinelibrary.wiley.com/doi/10.1002/3527600418.am8005e0013/full.
  • Yi, B.; Kim, C.; Yang, M. Biological Monitoring of Bisphenol A with HLPC/FLD and LC/MS/MS Assays. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 2606–2610. DOI: 10.1016/j.jchromb.2010.02.008.
  • Gao, D. W.; Wen, Z. D. Phthalate Esters in the Environment: A Critical Review of Their Occurrence, Biodegradation, and Removal During Wastewater Treatment Processes. Sci. Total Environ. 2016, 541, 986–1001. DOI: 10.1016/j.scitotenv.2015.09.148.
  • David, F.; Sandra, P.; Tienpont, B.; Vanwalleghem, F.; Ikonomou, M. Analytical Methods Review. In Series Anthropogenic Compounds: Phtalate Esters; Staples, C. A., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2003; pp 9–56.
  • Net, S.; Delmont, A.; Sempéré, R.; Paluselli, A.; Ouddane, B. Reliable Quantification of Phthalates in Environmental Matrices (Air, Water, Sludge, Sediment and Soil): A Review. Sci. Total Environ. 2015, 515–516, 162–180. DOI: 10.1016/j.scitotenv.2015.02.013.
  • Cobellis, L.; Latini, G.; De Felice, C.; Razzi, S.; Paris, I.; Ruggieri, F.; Mazzeo, P.; Petraglia, F. High Plasma Concentrations of Di-(2-Ethylhexyl)-Phthalate in Women with Endometriosis. Hum. Reprod. 2003, 18, 1512–1515. DOI: 10.1093/humrep/deg254.
  • Sircar, D.; Albazi, J.; Atallah, Y.; Pizzi, W. Validation and Application of an HPLC Method for Determination of Di (2-Ethylhexyl) Phthalate and Mono (2-Ethylhexyl) Phthalate in Liver Samples. J. Chromatogr. Sci. 2008, 46, 627–631. DOI: 10.1093/chromsci/46.7.627.
  • Chung, E. N.; Albazi, S. J. Method Development for Determination of Di(2-Ethylhexyl)Phathalate and Its Metabolite Mono(2-Ethylhexyl)Phathalate by Reverse-Phase Liquid Cromatography. Trans. Ill. State Acad. Sci. 2005, 98, 131–138.
  • Fernández-Amado, M.; Prieto-Blanco, M. C.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. A Comparative Study of Extractant and Chromatographic Phases for the Rapid and Sensitive Determination of Six Phthalates in Rainwater Samples. Chemosphere 2017, 175, 52–65. DOI: 10.1016/j.chemosphere.2017.02.001.
  • Cortazar, E.; Bartolomé, L.; Delgado, A.; Etxebarria, N.; Fernández, L. A.; Usobiaga, A.; Zuloaga, O. Optimisation of Microwave-Assisted Extraction for the Determination of Nonylphenols and Phthalate Esters in Sediment Samples and Comparison with Pressurised Solvent Extraction. Anal. Chim. Acta 2005, 534, 247–254. DOI: 10.1016/j.aca.2004.11.037.
  • Wang, L.; Jiang, GB.; Cai, YQ.; He, B.; Wang, YW.; Shen, DZ. Cloud Point Extraction Coupled with HPLC-UV for the Determination of Phthalate Esters in Environmental Water Samples. J. Environ. Sci. 2007, 19, 874–878. DOI: 10.1016/S1001-0742(07)60145-4.
  • Niu, H.; Cai, Y.; Shi, Y.; Wei, F.; Mou, S.; Jiang, G. Cetyltrimethylammonium Bromide-Coated Titanate Nanotubes for Solid-Phase Extraction of Phthalate Esters from Natural Waters Prior to High-Performance Liquid Chromatography Analysis. J. Chromatogr. A 2007, 1172, 113–120. DOI: 10.1016/j.chroma.2007.10.014.
  • Li, J.; Cai, Y.; Shi, Y.; Mou, S.; Jiang, G. Analysis of Phthalates Via HPLC-UV in Environmental Water Samples after Concentration by Solid-Phase Extraction Using Ionic Liquid Mixed Hemimicelles. Talanta 2008, 74, 498–504. DOI: 10.1016/j.talanta.2007.06.008.
  • Zhao, R.-S.; Wang, X.; Yuan, J.-P.; Lin, J.-M. Investigation of Feasibility of Bamboo Charcoal as Solid-Phase Extraction Adsorbent for the Enrichment and Determination of Four Phthalate Esters in Environmental Water Samples. J. Chromatogr. A 2008, 1183, 15–20. DOI: 10.1016/j.chroma.2008.01.021.
  • Xu, Q.; Yin, X.; Wu, S.; Wang, M.; Wen, Z.; Gu, Z. Determination of Phthalate Esters in Water Samples Using Nylon6 Nanofibers Mat-Based Solid-Phase Extraction Coupled to Liquid Chromatography. Microchim. Acta 2010, 168, 267–275. DOI: 10.1007/s00604-010-0290-8.
  • Chang, M. S.; Shen, J. Y.; Yang, S. H.; Wu, G. J. Subcritical Water Extraction for the Remediation of Phthalate Ester-Contaminated Soil. J. Hazard. Mater. 2011, 192, 1203–1209. DOI: 10.1016/j.jhazmat.2011.06.031.
  • Hadjmohammadi, M. R.; Ranjbari, E. Utilization of Homogeneous Liquid–Liquid Extraction Followed by HPLC-UV as a Sensitive Method for the Extraction and Determination of Phthalate Esters in Environmental Water Samples. Int. J. Environ. Anal. Chem. 2012, 92, 1312–1324. DOI: 10.1080/03067319.2011.603049.
  • Ranjbari, E.; Hadjmohammadi, M. R. Magnetic Stirring-Assisted Dispersive Liquid-Liquid Microextraction Followed by High Performance Liquid Chromatography for Determination of Phthalate Esters in Drinking and Environmental Water Samples. Talanta 2012, 100, 447–453. DOI: 10.1016/j.talanta.2012.08.019.
  • Wu, Q.; Liu, M.; Ma, X.; Wang, W.; Wang, C.; Zang, X.; Wang, Z. Extraction of Phthalate Esters from Water and Beverages Using a Graphene-Based Magnetic Nanocomposite Prior to Their Determination by HPLC. Microchim. Acta 2012, 177, 23–30. DOI: 10.1007/s00604-011-0752-7.
  • Xue, L.; Zhang, D.; Wang, T.; Wang, X.-M.; Du, X. Dispersive Liquid-Liquid Microextraction Followed by High Performance Liquid Chromatography for Determination of Phthalic Esters in Environmental Water Samples. Anal. Methods 2014, 6, 1121–1127. DOI: 10.1039/C3AY41996G.
  • Zaater, M. F.; Tahboub, Y. R.; Al Sayyed, A. N. Determination of Phthalates in Jordanian Bottled Water Using GC-MS and HPLC-UV: Environmental Study. J. Chromatogr. Sci. 2014, 52, 447–452. DOI: 10.1093/chromsci/bmt059.
  • Brzeźnicki, S.; Bonczarowska, M. Occupational Exposure to Selected Isocyanates in Polish Industry. Med. Pr. 2015, 66, 291–301. DOI: 10.13075/mp.5893.00020.
  • Streicher, R. P.; Reh, C. M.; Key-Schwartz, R.; Schlecht, P. C.; Cassinelli, M. E. National Institute Occupational Safety and Health Research (NIOSH) Manual of Analytical Methods: Determination of Airborne Isocyanate Exposure. 1998. Available from https://www.cdc.gov/niosh/docs/2003-154/pdfs/chapter-k.pdf (accesed Jan 30, 2019).
  • Dahlin, J. Aerosols of Isocyanates, Amines and Anhydrides. Sampling and Analysis. Ph. D. Stockholm University, 2007.
  • Streicher, R. P.; Arnold, J. E.; Ernst, M. K.; Cooper, C. V. Development of a Novel Derivatization Reagent for the Sampling and Analysis of Total Isocyanate Group in Air and Comparison of Its Performance with That of Several Established Reagent. Am. Ind. Hyg. Assoc. J. 1996, 57, 905–913. DOI: 10.1202/0002-8894(1996)057<0905:DOANDR> 2.0.CO;2.
  • Key-Schwartz, R. J.; Tucker, S. P. An Approach to Area Sampling and Analysis for Total Isocyanates in Workplace Air. Am. Ind. Hyg. Assoc. J. 1999, 60, 200–207. DOI: 10.1080/00028899908984436.
  • Henneken, H.; Lindahl, R.; Ostin, A.; Vogel, M.; Levin, J. O.; Karst, U. Diffusive Sampling of Methyl Isocyanate Using 4-Nitro-7-Piperazinobenzo-2-Oxa-1,3-Diazole (NBDPZ) as Derivatizing Agent. J. Environ. Monit. 2003, 5, 100–105. DOI: 10.1039/b209816b.
  • Werlich, S.; Stockhorst, H.; Witting, U.; Binding, N. MMNTP-A New Tailor-Made Modular Derivatization Agent for the Selective Determination of Isocyanates and Diisocyanates. Analyst 2004, 129, 364–370. DOI: 10.1039/B309221F.
  • Streicher, R. P.; Reh, C. M.; Key-Schwartz, R. J.; Schlecht, P. C.; Cassinelli, M. E.; Oʼconnor, P. F. Determination of Airborne Isocyanate Exposure: Considerations in Method Selection. AIHAJ 2000, 61, 544–556. DOI: 10.1080/15298660008984567.
  • Song, L. Q.; Yu, Y.; Wang, X. Y. Determination of Methyl Isocyanate (MIC) in Air of Workplaces by HPLC. Chinese J. Ind. Hyg Occup. Dis. 2012, 30, 618–620.
  • Hegedus, O.; Smotlakova, Z.; Hegedusova, A.; Dubajova, J.; Andrejiova, A.; Jakabova, S.; Tonk, S.; Szep, R.; Pernyeszi, T. Determination of Isocyanates in Workplace Atmosphere by HPLC. Rev. Chim. 2018, 69, 533–538.
  • Tuzimski, T.; Sherma, J., High Performance Liquid Chromatography in Pesticide Residue Analysis. CRC Press: 2015. Available from https://www.crcpress.com/High-Performance-Liquid-Chromatography-in-Pesticide-Residue-Analysis/Tuzimski-Sherma/p/book/9781466568815 (accesed Jan 30, 2019)
  • Samsidar, A.; Siddiquee, S.; Shaarani, S. M. A Review of Extraction, analytical and Advanced Methods for Determination of Pesticides in Environment and Foodstuffs. Trends Food Sci. Technol. 2018, 71, 188–201. DOI: 10.1016/j.tifs.2017.11.011.
  • Bedassa, T.; Gure, A.; Megersa, N. The QuEChERS Analytical Method Combined with Low Density Solvent Based Dispersive Liquid-Liquid Microextraction for Quantitative Extraction of Multiclass Pesticide Residues in Cereals. Bull. Chem. Soc. Eth. 2017, 31, 1–15. DOI: 10.4314/bcse.v31i1.1.
  • Pirsaheb, M.; Fattahi, N. Development of a Liquid-Phase Microextraction Based on the Freezing of a Deep Eutectic Solvent Followed by HPLC-UV for Sensitive Determination of Common Pesticides in Environmental Water Samples. RSC Adv. 2018, 8, 11412–11418. DOI: 10.1039/C8RA00912K.
  • Liu, Z. M.; Zang, X. H.; Liu, W. H.; Wang, C.; Wang, Z. Novel Method for the Determination of Five Carbamate Pesticides in Water Samples by Dispersive Liquid–Liquid Microextraction Combined with High Performance Liquid Chromatography. Chin. Chem. Lett. 2009, 20, 213–216. DOI: 10.1016/j.cclet.2008.10.047.
  • Fu, L.; Liu, X.; Hu, J.; Zhao, X.; Wang, H.; Wang, X. Application of Dispersive Liquid–Liquid Microextraction for the Analysis of Triazophos and Carbaryl Pesticides in Water and Fruit Juice Samples. Anal. Chim. Acta 2009, 632, 289–295. DOI: 10.1016/j.aca.2008.11.020.
  • Wu, Q.; Li, Y.; Wang, C.; Liu, Z.; Zang, X.; Zhou, X.; Wang, Z. Dispersive Liquid–Liquid Microextraction Combined with High Performance Liquid Chromatography–Fluorescence Detection for the Determination of Carbendazim and Thiabendazole in Environmental Samples. Anal. Chim. Acta 2009, 638, 139–145. DOI: 10.1016/j.aca.2009.02.017.
  • Wu, Q.; Chang, Q.; Wu, C.; Rao, H.; Zeng, X.; Wang, C.; Wang, Z. Ultrasound-Assisted Surfactant-Enhanced Emulsification Microextraction for the Determination of Carbamate Pesticides in Water Samples by High Performance Liquid Chromatography. J. Chromatogr. A 2010, 1217, 1773–1778. DOI: 10.1016/j.chroma.2010.01.060.
  • Goulart, S. M.; Alves, R. D.; Neves, A. A.; de Queiroz, J. H.; de Assis, T. C.; de Queiroz, M. E. L. R. Optimization and Validation of Liquid–Liquid Extraction with Low Temperature Partitioning for Determination of Carbamates in Water. Anal. Chim. Acta 2010, 671, 41–47. DOI: 10.1016/j.aca.2010.05.003.
  • Cao, X.; Li, Y. Determination of N,N-Dimethyldithiocarbamate in Wastewater Using Pre-Column Derivatization and High-Performance Liquid Chromatography. Anal. Methods 2012, 4, 2996–3001. DOI: 10.1039/c2ay25235j.
  • Salisaeng, P.; Arnnok, P.; Patdhanagul, N.; Burakham, R. Vortex-Assisted Dispersive Micro-Solid Phase Extraction Using CTAB-Modified Zeolite NaY Sorbent Coupled with HPLC for the Determination of Carbamate Insecticides. J. Agric. Food Chem. 2016, 64, 2145–2152. DOI: 10.1021/acs.jafc.5b05437.
  • Talebianpoor, M. S.; Khodadoust, S.; Mousavi, A.; Mahmoudi, R.; Nikbakht, J.; Mohammadi, J. Preconcentration of Carbamate Insecticides in Water Samples by Using Modified Stir Bar with ZnS Nanoparticles Loaded on Activated Carbon and Their HPLC Determination: Response Surface Methodology. Microchem. J. 2017, 130, 64–70. DOI: 10.1016/j.microc.2016.08.002.
  • He, L.; Luo, X.; Xie, H.; Wang, C.; Jiang, X.; Lu, K. Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction Followed High-Performance Liquid Chromatography for the Determination of Organophosphorus Pesticides in Water Sample. Anal. Chim. Acta 2009, 655, 52–59. DOI: 10.1016/j.aca.2009.09.044.
  • Wu, C.; Liu, N.; Wu, Q.; Wang, C.; Wang, Z. Application of Ultrasound-Assisted Surfactant-Enhanced Emulsification Microextraction for the Determination of Some Organophosphorus Pesticides in Water Samples. Anal. Chim. Acta 2010, 679, 56–62. DOI: 10.1016/j.aca.2010.09.009.
  • Farajzadeh, M. A.; Bahram, M.; Vardast, M. R.; Bamorowat, M. Dispersive Liquid-Liquid Microextraction for the Analysis of Three Organophosphorus Pesticides in Real Samples by High Performance Liquid Chromatography-Ultraviolet Detection and Its Optimization by Experimental Design. Microchim. Acta 2011, 172, 465–470. DOI: 10.1007/s00604-010-0451-9.
  • Wang, S.; Xiang, B.; Tang, Q. Trace Determination of Dichlorvos in Environmental Samples by Room Temperature Ionic Liquid-Based Dispersive Liquid-Phase Microextraction Combined with HPLC. J. Chromatogr. Sci. 2012, 50, 702–708. DOI: 10.1093/chromsci/bms058.
  • Delmonico, E. L.; Bertozzi, J.; de Souza, N. E.; Oliveira, C. C. Determination of Glyphosate and Aminomethylphosphonic Acid for Assessing the Quality Tap Water Using SPE and HPLC. Acta Sci. Technol. 2014, 36, 513–519. DOI: 10.4025/actascitechnol.v36i3.22406.
  • Seebunrueng, K.; Santaladchaiyakit, Y.; Srijaranai, S. Vortex-Assisted Low Density Solvent Based Demulsified Dispersive Liquid–Liquid Microextraction and High-Performance Liquid Chromatography for the Determination of Organophosphorus Pesticides in Water Samples. Chemosphere 2014, 103, 51–58. DOI: 10.1016/j.chemosphere.2013.11.024.
  • Jiang, Q.; Liu, Q.; Chen, Q.; Zhao, W.; Xiang, G.; He, L.; Jiang, X.; Zhang, S. Dicationic Polymeric Ionic-Liquid-Based Magnetic Material as an Adsorbent for the Magnetic Solid-Phase Extraction of Organophosphate Pesticides and Polycyclic Aromatic Hydrocarbons. J. Sep. Sci. 2016, 39, 3221–3229. DOI: 10.1002/jssc.201600267.
  • Wee, S. Y.; Omar, T. F. T.; Aris, A. Z.; Lee, Y. Surface Water Organophosphorus Pesticides Concentration and Distribution in the Langat River, Selangor, Malaysia. Expo. Health 2016, 8, 497–511. DOI: 10.1007/s12403-016-0214-x.
  • Maddah, B.; Soltaninezhad, M.; Adib, K.; Hasanzadeh, M. Activated Carbon Nanofiber Produced from Electrospun PAN Nanofiber as a Solid Phase Extraction Sorbent for the Preconcentration of Organophosphorus Pesticides. Sep. Sci. Technol. 2017, 52, 700–711. DOI: 10.1080/01496395.2016.1221432.
  • Meseguer-Lloret, S.; Torres-Cartas, S.; Catalá-Icardo, M.; Simó-Alfonso, E. F.; Herrero-Martínez, J. M. Extraction and Preconcentration of Organophosphorus Pesticides in Water by Using a Polymethacrylate-Based Sorbent Modified with Magnetic Nanoparticles. Anal. Bioanal. Chem. 2017, 409, 3561–3571. DOI: 10.1007/s00216-017-0294-x.
  • Bazmandegan-Shamili, A.; Haji Shabani, A. M.; Dadfarnia, S.; Rohani Moghadam, M.; Saeidi, M. Preparation of Magnetic Mesoporous Silica Composite for the Solid-Phase Microextraction of Diazinon and Malathion before Their Determination by High-Performance Liquid Chromatography. J. Sep. Sci. 2017, 40, 1731–1738. DOI: 10.1002/jssc.201601339.
  • Zhou, Q.; Zhang, X.; Xie, G.; Xiao, J. Temperature-Controlled Ionic Liquid-Dispersive Liquid-Phase Microextraction for Preconcentration of Chlorotoluron, Diethofencarb and Chlorbenzuron in Water Samples. J. Sep. Sci. 2009, 32, 3945–3950. DOI: 10.1002/jssc.200900444.
  • Saraji, M.; Tansazan, N. Application of Dispersive Liquid-Liquid Microextraction for the Determination of Phenylurea Herbicides in Water Samples by HPLC-Diode Array Detection. J. Sep. Sci. 2009, 32, 4186–4192. DOI: 10.1002/jssc.200900438.
  • Kaur, M.; Malik, A.; Singh, B. Determination of Phenylurea Herbicides in Tap Water and Soft Drink Samples by HPLC-UV and Solid-Phase Extraction. LCGC 2011, 29, 338–347.
  • Wang, C.-H.; Ma, X.-X.; Wang, C.; Wu, Q.-H.; Wang, Z. Poly(vinylidene Fluoride) Membrane Based Thin Film Microextraction for Enrichment of Benzoylurea Insecticides from Water Samples Followed by Their Determination with HPLC. Chin. Chem. Lett. 2014, 25, 1625–1629. DOI: 10.1016/j.cclet.2014.06.018.
  • Felicio, A. L.; Monteiro, A. M.; Almeida, M. B.; Madeira, T. B.; Nixdorf, S. L.; Yabe, M. J. Validation of a Liquid Chromatography Ultraviolet Method for Determination of Herbicide Diuron and Its Metabolites in Soil Samples. An. Acad. Bras. Ciênc. 2016, 88, 1235–1241. DOI: 10.1590/0001-3765201620150234.
  • Zhou, Q.; Bai, H.; Xie, G.; Xiao, J. Temperature-Controlled Ionic Liquid Dispersive Liquid Phase Micro-Extraction. J. Chromatogr. A 2008, 1177, 43–49. DOI: 10.1016/j.chroma.2007.10.103.
  • Geng, H. R.; Miao, S. S.; Jin, S. F.; Yang, H. A Newly Developed Molecularly Imprinted Polymer on the Surface of TiO2 for Selective Extraction of Triazine Herbicides Residues in Maize, Water, and Soil. Anal. Bioanal. Chem. 2015, 407, 8803–8812. DOI: 10.1007/s00216-015-9039-x.
  • Rodriguez-Gonzalez, N.; Beceiro-Gonzalez, E.; Gonzalez-Castro, M. J.; Muniategui-Lorenzo, S. An Environmentally Friendly Method for the Determination of Triazine Herbicides in Estuarine Seawater Samples by Dispersive Liquid-Liquid Microextraction. Environ. Sci. Pollut. Res. Int. 2015, 22, 618–626. DOI: 10.1007/s11356-014-3383-9.
  • Rodríguez-González, N.; González-Castro, M.-J.; Beceiro-González, E.; Muniategui-Lorenzo, S. Development of a Matrix Solid Phase Dispersion Methodology for the Determination of Triazine Herbicides in Marine Sediments. Microchem. J. 2017, 133, 137–143. DOI: 10.1016/j.microc.2017.03.022.
  • Wang, K.; Jiang, J.; Kang, M.; Li, D.; Zang, S.; Tian, S.; Zhang, H.; Yu, A.; Zhang, Z. Magnetical Hollow Fiber Bar Collection of Extract in Homogenous Ionic Liquid Microextraction of Triazine Herbicides in Water Samples. Anal. Bioanal. Chem. 2017, 409, 2569–2579. DOI: 10.1007/s00216-017-0201-5.
  • Lei, Y.; Chen, B.; You, L.; He, M.; Hu, B. Polydimethylsiloxane/MIL-100(Fe) Coated Stir Bar Sorptive Extraction-High Performance Liquid Chromatography for the Determination of Triazines in Environmental Water Samples. Talanta 2017, 175, 158–167. DOI: 10.1016/j.talanta.2017.05.040.
  • Lourencetti, C.; de Marchi, M. R. R.; Ribeiro, M. L., Determination of Sugar Cane Herbicides in Soil and Soil Treated with Sugar Cane Vinasse by Solid-Phase Extraction and HPLC-UV. Talanta 2008, 77, 701–709. DOI: 10.1016/j.talanta.2008.07.013.
  • Caldas, S. S.; Demoliner, A.; Primel, E. G. Validation of a Method Using Solid Phase Extraction and Liquid Chromatography for the Determination of Pesticide Residues in Groundwaters. J. Braz. Chem. Soc. 2009, 20, 125–132. DOI: 10.1590/S0103-50532009000100020.
  • Asensio-Ramos, M.; Hernández-Borges, J.; Borges-Miquel, T. M.; Rodríguez-Delgado, M. Á. Ionic Liquid-Dispersive Liquid–Liquid Microextraction for the Simultaneous Determination of Pesticides and Metabolites in Soils Using High-Performance Liquid Chromatography and Fluorescence Detection. J. Chromatogr. A 2011, 1218, 4808–4816. DOI: 10.1016/j.chroma.2010.11.030.
  • Kaur, M.; Rani, S.; Malik, A. K.; Aulakh, J. S. Microextraction by Packed Sorbent-High-Pressure Liquid Chromatographic-Ultra Violet Analysis of Endocrine Disruptor Pesticides in Various Matrices. J. Chromatogr. Sci. 2014, 52, 977–984. DOI: 10.1093/chromsci/bmt136.
  • Tadesse, B.; Teju, E.; Gure, A.; Megersa, N. Ionic-Liquid-Based Dispersive Liquid-Liquid Microextraction Combined with High-Performance Liquid Chromatography for the Determination of Multiclass Pesticide Residues in Water Samples. J. Sep. Sci. 2015, 38, 829–835. DOI: 10.1002/jssc.201401105.
  • Amde, M.; Tan, Z.-Q.; Liu, R.; Liu, J.-F. Nanofluid of Zinc Oxide Nanoparticles in Ionic Liquid for Single Drop Liquid Microextraction of Fungicides in Environmental Waters Prior to High Performance Liquid Chromatographic Analysis. J. Chromatogr. A 2015, 1395, 7–15. DOI: 10.1016/j.chroma.2015.03.049.
  • Yaqub, G.; Iqbal, K.; Sadiq, Z.; Hamid, A. Rapid Determination of Residual Pesticides and Polyaromatic Hydrocarbons Ins Different Environmental Samples by HPLC. Pak. J. Agric. Sci. 2017, 54, 355–361.
  • Bassett, M. V.; Wendelken, S. C.; Pepich, B. V.; Munch, D. J. Improvements to EPA Method 531.1 for the Analysis of Carbamates That Resulted in the Development of U.S. EPA Method 531.2. J. Chromatogr. Sci. 2003, 41, 100–106. DOI: 10.1093/chromsci/41.2.100.
  • Kumar, R. Simultaneous Determination of Some Organophosphorus Pesticides by High Performance Liquid Chromatography. Biomed. Chromatogr. 1989, 3, 272–273. DOI: 10.1002/bmc.1130030610.
  • United States Environmental Protection Agency. Method 532. Determination of Phenylurea Compounds in drinking water by solid phase extraction and high performance liquid chromatography with UV detection. Revision 1.0. Available from https://www.accustandard.com/assets/532.pdf (accesed Jan 30, 2019).
  • De la Pena, A. M.; Mahedero, M. C.; Bautista-Sanchez, A. Monitoring of Phenylurea and Propanil Herbicides in River Water by Solid-Phase-Extraction High Performance Liquid Chromatography with Photoinduced-Fluorimetric Detection. Talanta 2003, 60, 279–285. DOI: 10.1016/S0039-9140(03)00072-9.
  • Feo, M.; Eljarrat, E.; Barceló, D., Determination of Pyrethroid Insecticides in Environmental Samples. Trends Analyt. Chem. 2010, 29, 692–705. DOI: 10.1016/j.trac.2010.03.011.
  • Abbas, H. H.; Elbashir, A. A.; Aboul-Enein, H. Y. Chromatographic Methods for Analysis of Triazine Herbicides. Crit. Rev. Anal. Chem. 2015, 45, 226–240. DOI: 10.1080/10408347.2014.927731.
  • Rykowska, I.; Wasiak, W. Research Trends on Emerging Environment Pollutants—A Review. Open Chem. 2015, 13, 1353–1370. DOI: 10.1515/chem-2015-0151.
  • Tadeo, J. L.; Sánchez-Brunete, C.; Albero, B.; García-Valcárcel, A. I.; Pérez, R. A. Analysis of Emerging Organic Contaminants in Environmental Solid Samples. Cen. Eur. J. Chem. 2012, 10, 480–520.
  • Richardson, S. D. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2009, 81, 4645–4677. DOI: 10.1021/ac9008012.
  • Shishov, A.; Sviridov, I.; Timofeeva, I.; Chibisova, N.; Moskvin, L.; Bulatov, A. An Effervescence Tablet-Assisted Switchable Solvent-Based Microextraction: On-Site Preconcentration of Steroid Hormones in Water Samples Followed by HPLC-UV Determination. J. Mol. Liq. 2017, 247, 246–253. DOI: 10.1016/j.molliq.2017.09.120.
  • Babić, S.; Ašperger, D.; Mutavdžić, D.; Horvat, A. J. M.; Kaštelan-Macan, M. Solid Phase Extraction and HPLC Determination of Veterinary Pharmaceuticals in Wastewater. Talanta 2006, 70, 732–738. DOI: 10.1016/j.talanta.2006.07.003.
  • Lin, C.-Y.; Huang, S.-D. Application of Liquid–Liquid–Liquid Microextraction and High-Performance Liquid-Chromatography for the Determination of Sulfonamides in Water. Anal. Chim. Acta 2008, 612, 37–43. DOI: 10.1016/j.aca.2008.02.008.
  • Prado, N.; Renault, E.; Ochoa, J.; Amrane, A. Development and Validation of a Rapid Method for the Determination of Tetracycline in Activated Sludge by SPE Clean-Up and HPLC-UV Detection. Environ. Technol. 2009, 30, 469–476. DOI: 10.1080/09593330902772040.
  • Ašperger, D.; Babić, S.; Pavlović, D. M.; Dolar, D.; Košutić, K.; Horvat, A. J. M.; Kaštelan-Macan, M. SPE-HPLC/DAD Determination of Trimethoprim, Oxytetracycline and Enrofloxacin in Water Samples. Int. J. Environ. Anal. Chem. 2009, 89, 809–819. DOI: 10.1080/03067310902822896.
  • Sun, L.; Chen, L. G.; Sun, X.; Du, X. B.; Yue, Y. S.; He, D. Q.; Xu, H. Y.; Zeng, Q. L.; Wang, H.; Ding, L. Analysis of Sulfonamides in Environmental Water Samples Based on Magnetic Mixed Hemimicelles Solid-Phase Extraction Coupled with HPLC-UV Detection. Chemosphere 2009, 77, 1306–1312. DOI: 10.1016/j.chemosphere.2009.09.049.
  • Rodríguez-Flores, J.; Contento-Salcedo, A. M.; Muñoz-Fernández, L. Rapid HPLC Method for Monitoring Relevant Residues of Pharmaceuticals Products in Environmental Samples. Am. J. Anal. Chem. 2011, 2, 18–26. DOI: 10.4236/ajac.2011.21003.
  • Wang, P. H.; Yuan, T.; Hu, J. Y.; Tan, Y. M. Determination of Cephalosporin Antibiotics in Water Samples by Optimised Solid Phase Extraction and High Performance Liquid Chromatography with Ultraviolet Detector. Int. J. Environ. Anal. Chem. 2011, 91, 1267–1281. DOI: 10.1080/03067311003778649.
  • Leal, R. M. P.; Alleoni, L. R. F.; Tornisielo, V. L.; Regitano, J. B. Sorption of Fluoroquinolones and Sulfonamides in 13 Brazilian Soils. Chemosphere 2013, 92, 979–985. DOI: 10.1016/j.chemosphere.2013.03.018.
  • Ribeiro, C.; Tiritan, M. E.; Rocha, E.; Rocha, M. J. Development and Validation of a HPLC-DAD Method for Determination of Several Endocrine Disrupting Compounds in Estuarine Water. J. Liq. Chromatogr. Rel. Technol. 2007, 30, 2729–2746. DOI: 10.1080/10826070701560652.
  • Bravo, J. C.; Garcinuno, R. M.; Fernandez, P.; Durand, J. S. A New Molecularly Imprinted Polymer for the On-Column Solid-Phase Extraction of Diethylstilbestrol from Aqueous Samples. Anal. Bioanal. Chem. 2007, 388, 1039–1045. DOI: 10.1007/s00216-007-1219-x.
  • Ribeiro, C.; Pardal, M. A.; Martinho, F.; Margalho, R.; Tiritan, M. E.; Rocha, E.; Rocha, M. J. Distribution of Endocrine Disruptors in the Mondego River Estuary, Portugal. Environ. Monit. Assess. 2009, 149, 183–193. DOI: 10.1007/s10661-008-0192-y.
  • Patrolecco, L.; Ademollo, N.; Grenni, P.; Tolomei, A.; Barra Caracciolo, A.; Capri, S. Simultaneous Determination of Human Pharmaceuticals in Water Samples by Solid Phase Extraction and HPLC with UV-Fluorescence Detection. Microchem. J. 2013, 107, 165–171. DOI: 10.1016/j.microc.2012.05.035.
  • Amdany, R.; Chimuka, L.; Cukrowska, E. Determination of Naproxen, Ibuprofen and Triclosan in Wastewater Using the Polar Organic Chemical Integrative Sampler (POCIS): A Laboratory Calibration and Field Application. Wate SA 2014, 40, 407–414. DOI: 10.4314/wsa.v40i3.3.
  • Peng, G.; He, Q.; Al-Hamadani, S. M. Z. F.; Zhou, G.; Liu, M.; Zhu, H.; Chen, J. Dispersive Liquid–Liquid Microextraction Method Based on Solidification of Floating Organic Droplet for the Determination of Thiamphenicol and Florfenicol in Environmental Water Samples. Ecotoxicol. Environ. Saf. 2015, 115, 229–233. DOI: 10.1016/j.ecoenv.2015.02.025.
  • He, K.; Blaney, L. Systematic Optimization of an SPE with HPLC-FLD Method for Fluoroquinolone Detection in Wastewater. J. Hazard. Mater. 2015, 282, 96–105. DOI: 10.1016/j.jhazmat.2014.08.027.
  • Li, X. Y.; Li, Q. L.; Xue, A. F.; Chen, H.; Li, S. Q. Dispersive Liquid-Liquid Microextraction Coupled with Single-Drop Microextraction for the Fast Determination of Sulfonamides in Environmental Water Samples by High Performance Liquid Chromatography-Ultraviolet Detection. Anal. Methods 2016, 8, 517–525. DOI: 10.1039/C5AY02619A.
  • Zhong, C.; Chen, B. B.; He, M.; Hu, B. Covalent Triazine Framework-1 as Adsorbent for Inline Solid Phase Extraction-High Performance Liquid Chromatographic Analysis of Trace Nitroimidazoles in Porcine Liver and Environmental Waters. J. Chromatogr. A 2017, 1483, 40–47. DOI: 10.1016/j.chroma.2016.12.073.
  • Lima, D. L. D.; Silva, C. P.; Otero, M. Dispersive Liquid-Liquid Microextraction for the Quantification of Venlafaxine in Environmental Waters. J. Environ. Manage. 2018, 217, 71–77. DOI: 10.1016/j.jenvman.2018.03.060.
  • Shareef, A.; Li, G.; Kookana, R. S. Quantitative Determination of Fullerene (C60) in Soils by High Performance Liquid Chromatography and Accelerated Solvent Extraction Technique. Environ. Chem. 2010, 7, 292–297. DOI: 10.1071/EN09150.
  • Núñez, L.; Turiel, E.; Martin-Esteban, A.; Tadeo, J. L. Molecularly Imprinted Polymer for the Extraction of Parabens from Environmental Solid Samples Prior to Their Determination by High Performance Liquid Chromatography-Ultraviolet Detection. Talanta 2010, 80, 1782–1788. DOI: 10.1016/j.talanta.2009.10.023.
  • Delgado, B.; Pino, V.; Anderson, J. L.; Ayala, J. H.; Afonso, A. M.; González, V. An In-Situ Extraction–Preconcentration Method Using Ionic Liquid-Based Surfactants for the Determination of Organic Contaminants Contained in Marine Sediments. Talanta 2012, 99, 972–983. DOI: 10.1016/j.talanta.2012.07.073.
  • Díaz-Álvarez, M.; Turiel, E.; Martín-Esteban, A. Hollow Fibre Liquid-Phase Microextraction of Parabens from Environmental Waters. Int. J. Environ. Anal. Chem. 2013, 93, 727–738. DOI: 10.1080/03067319.2012.708749.
  • Rocio-Bautista, P.; Martinez-Benito, C.; Pino, V.; Pasan, J.; Ayala, J. H.; Ruiz-Perez, C.; Afonso, A. M. The Metal-Organic Framework HKUST-1 as Efficient Sorbent in a Vortex-Assisted Dispersive Micro Solid-Phase Extraction of Parabens from Environmental Waters, Cosmetic Creams, and Human Urine. Talanta 2015, 139, 13–20. DOI: 10.1016/j.talanta.2015.02.032.
  • Vicario, A.; Aragon, L.; Wang, C. C.; Bertolino, F.; Gomez, M. R. A Simple and Highly Selective Molecular Imprinting Polymer-Based Methodology for Propylparaben Monitoring in Personal Care Products and Industrial Waste Waters. J. Pharm. Biomed. Anal. 2018, 149, 225–233. DOI: 10.1016/j.jpba.2017.11.002.
  • Fountoulakis, M.; Drillia, P.; Pakou, C.; Kampioti, A.; Stamatelatou, K.; Lyberatos, G. Analysis of Nonylphenol and Nonylphenol Ethoxylates in Sewage Sludge by High Performance Liquid Chromatography following Microwave-Assisted Extraction. J. Chromatogr. A 2005, 1089, 45–51. DOI: 10.1016/j.chroma.2005.05.109.
  • Núñez, L.; Turiel, E.; Tadeo, J. L. Determination of Nonylphenol and Nonylphenol Ethoxylates in Environmental Solid Samples by Ultrasonic-Assisted Extraction and High Performance Liquid Chromatography-Fluorescence Detection. J. Chromatogr. A 2007, 1146, 157–163. DOI: 10.1016/j.chroma.2007.01.101.
  • Santos, J. L.; Aparicio, I.; Alonso, E. A New Method for the Routine Analysis of LAS and PAH in Sewage Sludge by Simultaneous Sonication-Assisted Extraction Prior to Liquid Chromatographic Determination. Anal. Chim. Acta 2007, 605, 102–109. DOI: 10.1016/j.aca.2007.10.027.
  • Villar, M.; Callejón, M.; Jiménez, J. C.; Alonso, E.; Guiráum, A. Optimization and Validation of a New Method for Analysis of Linear Alkylbenzene Sulfonates in Sewage Sludge by Liquid Chromatography after Microwave-Assisted Extraction. Anal. Chim. Acta 2007, 599, 92–97. DOI: 10.1016/j.aca.2007.07.065.
  • Guan, Z.; Huang, Y.; Wang, W. Carboxyl Modified Multi-Walled Carbon Nanotubes as Solid-Phase Extraction Adsorbents Combined with High-Performance Liquid Chromatography for Analysis of Linear Alkylbenzene Sulfonates. Anal. Chim. Acta 2008, 627, 225–231. DOI: 10.1016/j.aca.2008.08.035.
  • Bengoechea, C.; Cantarero, A. S. Analysis of Linear Alkylbenzene Sulfonate in Waste Water and Sludge by High Performance Liquid Chromatography: An Exercise of Validation. J. Surfact. Deterg. 2009, 12, 21–29. DOI: 10.1007/s11743-008-1100-8.
  • Jiménez-Díaz, I.; Ballesteros, O.; Zafra-Gómez, A.; Crovetto, G.; Vílchez, J. L.; Navalón, A.; Verge, C.; de Ferrer, J. A. New Sample Treatment for the Determination of Alkylphenols and Alkylphenol Ethoxylates in Agricultural Soils. Chemosphere 2010, 80, 248–255. DOI: 10.1016/j.chemosphere.2010.04.032.
  • Cantarero, S.; Zafra‐Gómez, A.; Ballesteros, O.; Navalón, A.; Vílchez, J. L.; Verge, C.; De Ferrer, J. A. Matrix Effect Study in the Determination of Linear Alkylbenzene Sulfonates in Sewage Sludge Samples. Environ. Toxicol. Chem. 2011, 30, 813–818. DOI: 10.1002/etc.447.
  • Yu, C.; Hu, B. Novel Combined Stir Bar Sorptive Extraction Coupled with Ultrasonic Assisted Extraction for the Determination of Brominated Flame Retardants in Environmental Samples Using High Performance Liquid Chromatography. J. Chromatogr. A 2007, 1160, 71–80. DOI: 10.1016/j.chroma.2007.05.042.
  • Pobozy, E.; Krol, E.; Wojcik, L.; Wachowicz, M.; Trojanowicz, M. HPLC Determination of Perfluorinated Carboxylic Acids with Fluorescence Detection. Microchim. Acta 2011, 172, 409–417. DOI: 10.1007/s00604-010-0513-z.
  • Kowalski, B.; Mazur, M. The Simultaneous Determination of Six Flame Retardants in Water Samples Using SPE Pre-Concentration and UHPLC-UV Method. Water Air Soil Pollut. 2014, 225, 9. DOI: 10.1007/s11270-014-1866-4.
  • Peixoto, P. S.; Tóth, I. V.; Segundo, M. A.; Lima, J. L. F. C. Fluoroquinolones and Sulfonamides: Features of Their Determination in Water. A Review. Int. J. Environ. Anal. Chem. 2016, 96, 185–202. DOI: 10.1080/03067319.2015.1128539.
  • Seifrtová, M.; Nováková, L.; Lino, C.; Pena, A.; Solich, P. An Overview of Analytical Methodologies for the Determination of Antibiotics in Environmental Waters. Anal. Chim. Acta 2009, 649, 158–179. DOI: 10.1016/j.aca.2009.07.031.
  • Kozlowska-Tylingo, K.; Namieśnik, J.; Górecki, T. Determination of Estrogenic Endocrine Disruptors in Environmental Samples—A Review of Chromatographic Methods. Crit. Rev. Anal. Chem. 2010, 40, 194–201. DOI: 10.1080/10408347.2010.490488.
  • Corradini, D., Handbook of HPLC, Second Edition. Taylor & Francis: 2010. Available from https://www.crcpress.com/Handbook-of-HPLC/Corradini/p/book/9781574445541 (accesed Jan 30, 2019).
  • Fekete, A.; Malik, A. K.; Kumar, A.; Schmitt-Kopplin, P. Amines in the Environment. Crit. Rev. Anal. Chem. 2010, 40, 102–121. DOI: 10.1080/10408340903517495.
  • Huang, K.-J.; Wei, C.-Y.; Xie, W.-Z.; Liu, Y.-M.; Chen, Y.-H.; Zhang, J.-F. LC Analysis of Aliphatic Primary Amines and Diamines After Derivatization with 2,6-Dimethyl-4-Quinolinecarboxylic Acid N-Hydroxysuccinimide Ester. Chromatographia 2009, 70, 747–752. DOI: 10.1365/s10337-009-1256-z.
  • Bornick, H.; Grischek, T.; Worch, E. Determination of Aromatic Amines in Surface Waters and Comparison of Their Behavior in HPLC and on Sediment Columns. Fresenius. J. Anal. Chem. 2001, 371, 607–613. DOI: 10.1007/s002160101011.
  • United States Environmental Protection Agency. SW-846 Test Method 8330A: Nitroaromatics and Nitramines by High Performance Liquid Chromatography (HPLC). Available from https://www.epa.gov/sites/production/files/2015-12/documents/8330a.pdf (accesed Jan 30, 2019).
  • Gaurav, D.; Malik, A. K.; Rai, P. K. High-Performance Liquid Chromatographic Methods for the Analysis of Explosives. Crit. Rev. Anal. Chem. 2007, 37, 227–268. DOI: 10.1080/10408340701244698.
  • Lindahl, S.; Gundersen, C. B.; Lundanes, E. A Review of Available Analytical Technologies for Qualitative and Quantitative Determination of Nitramines. Environ. Sci. Processes Impacts 2014, 16, 1825–1840. DOI: 10.1039/C4EM00095A.
  • Shah, A. D.; Dai, N.; Mitch, W. A. Application of Ultraviolet, Ozone, and Advanced Oxidation Treatments to Washwaters to Destroy Nitrosamines, Nitramines, Amines, and Aldehydes Formed during Amine-Based Carbon Capture. Environ. Sci. Technol. 2013, 47, 2799–2808. DOI: 10.1021/es304893m.
  • Mercader, F. d M.; Voice, A. K.; Trap, H.; Goetheer, E. L. V. Nitrosamine Degradation by UV Light in Post-Combustion CO2 Capture: Effect of Solvent Matrix. Energy Procedia 2013, 37, 701–716. DOI: 10.1016/j.egypro.2013.05.159.
  • Nawrocki, J.; Andrzejewski, P. Nitrosamines and Water. J. Hazard. Mater. 2011, 189, 1–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.