1,096
Views
57
CrossRef citations to date
0
Altmetric
Review Articles

Recent Developments in Detection Using Noble Metal Nanoparticles

, , , , &
Pages 97-110 | Published online: 27 Feb 2019

References

  • Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Xu, P.; Zhang, C.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; Yi, H. Gold Rush” in Modern Science: Fabrication Strategies and Typical Advanced Applications of Gold Nanoparticles in Sensing. Coord. Chem. Rev. 2018, 359, 1–31. DOI: 10.1016/j.ccr.2018.01.006.
  • Zhang, A.; Lieber, C. M. Nano-Bioelectronics. Chem. Rev. 2016, 116, 215–257. DOI: 10.1021/acs.chemrev.5b00608.
  • Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z. S.; Chen, G. Silver Nanoparticles: Synthesis, Properties, and Therapeutic Applications. Drug Discov. Today 2015, 20, 595–601. DOI: 10.1016/j.drudis.2014.11.014.
  • Xue, W.; Huang, D.; Zeng, G.; Wan, J.; Zhang, C.; Xu, R.; Cheng, M.; Deng, R. Nanoscale Zero-Valent Iron Coated with Rhamnolipid as an Effective Stabilizer for Immobilization of Cd and Pb in River Sediments. J. Hazard. Mater. 2018, 341, 381–389. DOI: 10.1016/j.jhazmat.2017.06.028.
  • Xue, W.; Peng, Z.; Huang, D.; Zeng, G.; Wan, J.; Xu, R.; Cheng, M.; Zhang, C.; Jiang, D.; Hu, Z. Nanoremediation of Cadmium Contaminated River Sediments: Microbial Response and Organic Carbon Changes. J. Hazard. Mater. 2018, 359, 290–299. DOI: 10.1016/j.jhazmat.2018.07.062.
  • Singh, P.; Kim, Y. J.; Zhang, D.; Yang, D. C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599. DOI: 10.1016/j.tibtech.2016.02.006.
  • Srivastava, A. K.; Dev, A.; Karmakar, S. Nanosensors and Nanobiosensors in Food and Agriculture. Environ. Chem. Lett. 2018, 16, 161–182. DOI: 10.1007/s10311-017-0674-7.
  • Smith, B. R.; Gambhir, S. S. Nanomaterials for in Vivo Imaging. Chem. Rev. 2017, 117, 901–986. DOI: 10.1021/acs.chemrev.6b00073.
  • Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical Sensor and Biosensor Platforms Based on Advanced Nanomaterials for Biological and Biomedical Applications. Biosens. Bioelectron. 2018, 103, 113–129. DOI: 10.1016/j.bios.2017.12.031.
  • Waqas, M.; Zulfiqar, A.; Ahmad, H. B.; Akhtar, N.; Hussain, M.; Shafiq, Z.; Abbas, Y.; Mehmood, K.; Ajmal, M.; Yang, M. Fabrication of Highly Stable Silver Nanoparticles with Shape-Dependent Electrochemical Efficacy. Electrochim. Acta 2018, 271, 641–651. DOI: 10.1016/j.electacta.2018.03.049.
  • Soh, J. H.; Lin, Y.; Rana, S.; Ying, J. Y.; Stevens, M. M. Colorimetric Detection of Small Molecules in Complex Matrixes via Target-Mediated Growth of Aptamer-Functionalized Gold Nanoparticles. Anal. Chem. 2015, 87, 7644–7652. DOI: 10.1021/acs.analchem.5b00875.
  • Faramarzi, M. A.; Sadighi, A. Insights into Biogenic and Chemical Production of Inorganic Nanomaterials and Nanostructures. Adv. Colloid Interface Sci. 2013, 189–190, 1–20. DOI: 10.1016/j.cis.2012.12.001.
  • Zhang, D.; Gokce, B.; Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017, 117, 3990–4103. DOI: 10.1021/acs.chemrev.6b00468.
  • Oku, T.; Kusunose, T.; Niihara, K.; Suganuma, K. Chemical Synthesis of Silver Nanoparticles Encapsulated in Boron Nitride Nanocages. J. Mater. Chem. 2000, 10, 255–257. DOI: 10.1039/a908351k.
  • Deshpande, J. B.; Kulkarni, A. A. Reaction Engineering for Continuous Production of Silver Nanoparticles. Chem. Eng. Technol. 2018, 41, 157–167. DOI: 10.1002/ceat.201700035.
  • Iravani, S.; K, H.; Mirmohammadi, S. V.; Zolfaghari, B. Synthesis of Silver Nanoparticles_ Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385–406.
  • Kück, A.; Steinfeldt, M.; Prenzel, K.; Swiderek, P.; Gleich, A. V.; Thöming, J. Green Nanoparticle Production Using Micro Reactor Technology. J. Phys.: Conf. Ser. 2011, 304, 012074. DOI: 10.1088/1742-6596/304/1/012074.
  • Alula, M. T.; Karamchand, L.; Hendricks, N. R.; Blackburn, J. M. Citrate-Capped Silver Nanoparticles as a Probe for Sensitive and Selective Colorimetric and Spectrophotometric Sensing of Creatinine in Human Urine. Anal. Chim. Acta 2018, 1007, 40–49. DOI: 10.1016/j.aca.2017.12.016.
  • Jung, J. H.; Cheol Oh, H.; Soo Noh, H.; Ji, J. H.; Soo Kim, S. Metal Nanoparticle Generation Using a Small Ceramic Heater with a Local Heating Area. J. Aerosol Sci. 2006, 37, 1662–1670. DOI: 10.1016/j.jaerosci.2006.09.002.
  • Magnusson, M. H.; Deppert, K.; Malm, J.-O.; Bovin, J.-O.; Samuelson, L. Gold Nanoparticles_ Production, Reshaping, and Thermal Charging. J. Nanopart. Res. 1999, 1, 243–251. DOI: 10.1023/A:1010012802415.
  • Sakamoto, M.; Fujistuka, M.; Majima, T. Light as a Construction Tool of Metal Nanoparticles: Synthesis and Mechanism. J. Photochem. Photobiol. C: Photochem. Rev. 2009, 10, 33–56. DOI: 10.1016/j.jphotochemrev.2008.11.002.
  • El-Sherbiny, I. M.; El-Shibiny, A.; Salih, E. Photo-Induced Green Synthesis and Antimicrobial Efficacy of Poly (varepsilon-caprolactone)/Curcumin/Grape Leaf Extract-Silver Hybrid Nanoparticles. J. Photochem. Photobiol. B 2016, 160, 355–363. DOI: 10.1016/j.jphotobiol.2016.04.029.
  • Siegel, J.; Kvítek, O.; Ulbrich, P.; Kolská, Z.; Slepička, P.; Švorčík, V. Progressive Approach for Metal Nanoparticle Synthesis. Mater. Lett. 2012, 89, 47–50. DOI: 10.1016/j.matlet.2012.08.048.
  • Kumar, V.; Bano, D.; Mohan, S.; Singh, D. K.; Hasan, S. H. Sunlight-Induced Green Synthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Polyalthia Longifolia and its Antioxidant Activity. Mater. Lett. 2016, 181, 371–377. DOI: 10.1016/j.matlet.2016.05.097.
  • Muthu, K.; Priya, S. Green Synthesis, Characterization and Catalytic Activity of Silver Nanoparticles Using Cassia auriculata Flower Extract Separated Fraction. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2017, 179, 66–72. DOI: 10.1016/j.saa.2017.02.024.
  • Chen, Z.; Li, Z.; Chen, G.; Zhu, J.; Liu, Q.; Feng, T. In Situ Formation of AgNPs on S-cerevisiae Surface as Bionanocomposites for Bacteria Killing and Heavy Metal Removal. Int. J. Environ. Sci. Technol. 2017, 14, 1635–1642. DOI: 10.1007/s13762-017-1261-y.
  • El-Sonbaty, S. M. Fungus-Mediated Synthesis of Silver Nanoparticles and Evaluation of Antitumor Activity. Cancer Nano. 2013, 4, 73–79. DOI: 10.1007/s12645-013-0038-3.
  • Guilger, M.; Pasquoto-Stigliani, T.; Bilesky-Jose, N.; Grillo, R.; Abhilash, P. C.; Fraceto, L. F.; Lima, R. Biogenic Silver Nanoparticles Based on Trichoderma harzianum: Synthesis, Characterization, Toxicity Evaluation and Biological Activity. Sci. Rep. 2017, 7, 44421. DOI: 10.1038/srep44421.
  • Ma, L.; Su, W.; Liu, J. X.; Zeng, X. X.; Huang, Z.; Li, W.; Liu, Z. C.; Tang, J. X. Optimization for Extracellular Biosynthesis of Silver Nanoparticles by Penicillium aculeatum Su1 and Their Antimicrobial Activity and Cytotoxic Effect Compared with Silver Ions. Mater. Sci. Eng. C: Mater. Biol. Appl. 2017, 77, 963–971. DOI: 10.1016/j.msec.2017.03.294.
  • Hulkoti, N. I.; Taranath, T. C. Biosynthesis of Nanoparticles Using Microbes-A Review. Colloids Surf B: Biointerfaces 2014, 121, 474–483. DOI: 10.1016/j.colsurfb.2014.05.027.
  • Kumar, V.; Singh, D. K.; Mohan, S.; Gundampati, R. K.; Hasan, S. H. Photoinduced Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Physalis angulata and Its Antibacterial and Antioxidant Activity. J. Environ. Chem. Eng. 2017, 5, 744–756. DOI: 10.1016/j.jece.2016.12.055.
  • Sankar, R.; Rahman, P. K. S. M.; Varunkumar, K.; Anusha, C.; Kalaiarasi, A.; Shivashangari, K. S.; Ravikumar, V. Facile Synthesis of Curcuma longa Tuber Powder Engineered Metal Nanoparticles for Bioimaging Applications. J. Mol. Struct. 2017, 1129, 8–16. DOI: 10.1016/j.molstruc.2016.09.054.
  • Duan, H.; Wang, D.; Li, Y. Green Chemistry for Nanoparticle Synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. DOI: 10.1039/C4CS00363B.
  • Fayaz, A. M.; Girilal, M.; Venkatesan, R.; Kalaichelvan, P. T. Biosynthesis of Anisotropic Gold Nanoparticles Using Maduca longifolia Extract and Their Potential in Infrared Absorption. Colloids Surf B: Biointerfaces 2011, 88, 287–291. DOI: 10.1016/j.colsurfb.2011.07.003.
  • Muzaffar, S.; Tahir, H. Enhanced Synthesis of Silver Nanoparticles by Combination of Plants Extract and Starch for the Removal of Cationic Dye from Simulated Waste Water Using Response Surface Methodology. J. Mol. Liq. 2018, 252, 368–382. DOI: 10.1016/j.molliq.2018.01.007.
  • Zhao, X.; Zhou, L.; Riaz Rajoka, M. S.; Yan, L.; Jiang, C.; Shao, D.; Zhu, J.; Shi, J.; Huang, Q.; Yang, H.; Jin, M. Fungal Silver Nanoparticles: Synthesis, Application and Challenges. Crit. Rev. Biotechnol. 2018, 38, 1–19. DOI: 10.1080/07388551.2017.1414141.
  • Saravanan, M.; Arokiyaraj, S.; Lakshmi, T.; Pugazhendhi, A. Synthesis of Silver Nanoparticles from Phenerochaete chrysosporium (MTCC-787) and Their Antibacterial Activity against Human Pathogenic Bacteria. Microb. Pathog. 2018, 117, 68–72. DOI: 10.1016/j.micpath.2018.02.008.
  • Markus, J.; Mathiyalagan, R.; Kim, Y. J.; Abbai, R.; Singh, P.; Ahn, S.; Perez, Z. E. J.; Hurh, J.; Yang, D. C. Intracellular Synthesis of Gold Nanoparticles with Antioxidant Activity by Probiotic Lactobacillus kimchicus DCY51(T) Isolated from Korean Kimchi. Enzyme Microb. Technol. 2016, 95, 85–93. DOI: 10.1016/j.enzmictec.2016.08.018.
  • Kitching, M.; Choudhary, P.; Inguva, S.; Guo, Y.; Ramani, M.; Das, S. K.; Marsili, E. Fungal Surface Protein Mediated One-Pot Synthesis of Stable and Hemocompatible Gold Nanoparticles. Enzyme Microb. Technol. 2016, 95, 76–84. DOI: 10.1016/j.enzmictec.2016.08.007.
  • Amanulla, B.; Subbu, H. K. R.; Ramaraj, S. K. A Sonochemical Synthesis of Cyclodextrin Functionalized Au-FeNPs for Colorimetric Detection of Cr(6+) in Different Industrial Waste Water. Ultrason. Sonochem. 2018, 42, 747–753. DOI: 10.1016/j.ultsonch.2017.12.041.
  • Baetsen-Young, A. M.; Vasher, M.; Matta, L. L.; Colgan, P.; Alocilja, E. C.; Day, B. Direct Colorimetric Detection of Unamplified Pathogen DNA by Dextrin-Capped Gold Nanoparticles. Biosens. Bioelectron. 2018, 101, 29–36. DOI: 10.1016/j.bios.2017.10.011.
  • Bai, J.; Zhang, X.; Peng, Y.; Hong, X.; Liu, Y.; Jiang, S.; Ning, B.; Gao, Z. Ultrasensitive Sensing of Diethylstilbestrol Based on AuNPs/MWCNTs-CS Composites Coupling with Sol-gel Molecularly Imprinted Polymer as a Recognition Element of an Electrochemical Sensor. Sensors Actuat B: Chem. 2017, 238, 420–426. DOI: 10.1016/j.snb.2016.07.035.
  • Tagad, C. K.; Dugasani, S. R.; Aiyer, R.; Park, S.; Kulkarni, A.; Sabharwal, S. Green Synthesis of Silver Nanoparticles and Their Application for the Development of Optical Fiber Based Hydrogen Peroxide Sensor. Sensors Actuat B: Chem. 2013, 183, 144–149. DOI: 10.1016/j.snb.2013.03.106.
  • Hui, G.; Jin, J.; Deng, S.; Ye, X.; Zhao, M.; Wang, M.; Ye, D. Winter Jujube (Zizyphus Jujuba Mill.) Quality Forecasting Method Based on Electronic Nose. Food Chem. 2015, 170, 484–491. DOI: 10.1016/j.foodchem.2014.08.009.
  • Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Zhang, C.; Yi, H.; Li, B.; Deng, R.; Liu, S.; Zhang, Y. Recent Advances in Sensors for Tetracycline Antibiotics and Their Applications. TrAC Trends Anal. Chem. 2018, 109, 260–274. DOI: 10.1016/j.trac.2018.10.011.
  • Csaki, A.; Stranik, O.; Fritzsche, W. Localized Surface Plasmon Resonance Based Biosensing. Expert. Rev. Mol. Diagn. 2018, 18, 279–296. DOI: 10.1080/14737159.2018.1440208.
  • Amirjani, A.; Bagheri, M.; Heydari, M.; Hesaraki, S. Colorimetric Determination of Timolol Concentration Based on Localized Surface Plasmon Resonance of Silver Nanoparticles. Nanotechnology 2016, 27, 375503. DOI: 10.1088/0957-4484/27/37/375503.
  • Detsri, E.; Seeharaj, P.; Sriwong, C. A Sensitive and Selective Colorimetric Sensor for Reduced Glutathione Detection Based on Silver Triangular Nanoplates Conjugated with Gallic Acid. Colloids Surf. A: Physicochem. Eng. Aspects 2018, 541, 36–42. DOI: 10.1016/j.colsurfa.2018.01.016.
  • Ma, Q.; Wang, Y.; Jia, J.; Xiang, Y. Colorimetric Aptasensors for Determination of Tobramycin in Milk and Chicken Eggs Based on DNA and Gold Nanoparticles. Food Chem 2018, 249, 98–103. DOI: 10.1016/j.foodchem.2018.01.022.
  • Gao, Y.; Wu, Y.; Di, J. Colorimetric Detection of Glucose Based on Gold Nanoparticles Coupled with Silver Nanoparticles. Spectrochim. Acta. Part A: Mol. Biomol. Spectrosc. 2017, 173, 207–212. DOI: 10.1016/j.saa.2016.09.023.
  • Qi, M.; Huang, X.; Zhou, Y.; Zhang, L.; Jin, Y.; Peng, Y.; Jiang, H.; Du, S. Label-Free Surface-Enhanced Raman Scattering Strategy for Rapid Detection of Penicilloic Acid in Milk Products. Food Chem. 2016, 197, 723–729. DOI: 10.1016/j.foodchem.2015.11.014.
  • Wang, X. X.; Liu, J. M.; Jiang, S. L.; Jiao, L.; Lin, L. P.; Cui, M. L.; Zhang, X. Y.; Zhang, L. H.; Zheng, Z. Y. Non-Aggregation Colorimetric Sensor for Detecting Vitamin C Based on Surface Plasmon Resonance of Gold Nanorods. Sens Actuators B: Chem. 2013, 182, 205–210. DOI: 10.1016/j.snb.2013.02.059.
  • Wang, G.; Chen, Z.; Chen, L. Mesoporous Silica-Coated Gold Nanorods: Towards Sensitive Colorimetric Sensing of Ascorbic Acid via Target-Induced Silver Overcoating. Nanoscale 2011, 3, 1756–1759. DOI: 10.1039/c0nr00863j.
  • Talan, A.; Mishra, A.; Eremin, S. A.; Narang, J.; Kumar, A.; Gandhi, S. Ultrasensitive Electrochemical Immuno-Sensing Platform Based on Gold Nanoparticles Triggering Chlorpyrifos Detection in Fruits and Vegetables. Biosens. Bioelectron. 2018, 105, 14–21. DOI: 10.1016/j.bios.2018.01.013.
  • Lai, C.; Liu, X.; Qin, L.; Zhang, C.; Zeng, G.; Huang, D.; Cheng, M.; Xu, P.; Yi, H.; Huang, D. Chitosan-Wrapped Gold Nanoparticles for Hydrogen-Bonding Recognition and Colorimetric Determination of the Antibiotic Kanamycin. Microchim. Acta. 2017, 184, 2097–2105. DOI: 10.1007/s00604-017-2218-z.
  • Zhao, Y.; Liu, R.; Sun, W.; Lv, L.; Guo, Z. Ochratoxin a Detection Platform Based on Signal Amplification by Exonuclease III and Fluorescence Quenching by Gold Nanoparticles. Sens. Actuators B: Chem. 2018, 255, 1640–1645. DOI: 10.1016/j.snb.2017.08.176.
  • Lv, L.; Li, D.; Liu, R.; Cui, C.; Guo, Z. Label-Free Aptasensor for Ochratoxin a Detection Using SYBR Gold as a Probe. Sens. Actuators B: Chem. 2017, 246, 647–652. DOI: 10.1016/j.snb.2017.02.143.
  • Wang, W.-F.; Qiang, Y.; Meng, X.-H.; Yang, J.-L.; Shi, Y.-P. Ultrasensitive Colorimetric Assay Melamine Based on In Situ Reduction to Formation of CQDs-Silver Nanocomposite. Sens. Actuators B: Chem. 2018, 260, 808–815. DOI: 10.1016/j.snb.2018.01.108.
  • Md Fazle Alam, A. A. L.; Younus, H. Colorimetric method for the detection of melamine using in-situ formed silver nanoparticles via tannic acid. Spectrochim Acta. 2017, 183, 17–22. DOI: 10.1016/j.saa.2017.04.021.
  • Kumar, N.; Seth, R.; Kumar, H. Colorimetric Detection of Melamine in Milk by Citrate-Stabilized Gold Nanoparticles. Anal. Biochem. 2014, 456, 43–49. DOI: 10.1016/j.ab.2014.04.002.
  • Giovannozzi, A. M.; Rolle, F.; Sega, M.; Abete, M. C.; Marchis, D.; Rossi, A. M. Rapid and Sensitive Detection of Melamine in Milk with Gold Nanoparticles by Surface Enhanced Raman Scattering. Food Chem. 2014, 159, 250–256. DOI: 10.1016/j.foodchem.2014.03.013.
  • Kumar, N.; Kumar, H.; Mann, B.; Seth, R. Colorimetric Determination of Melamine in Milk Using Unmodified Silver Nanoparticles. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2016, 156, 89–97. DOI: 10.1016/j.saa.2015.11.028.
  • Zhao, B.; Cao, X.; De La Torre-Roche, R.; Tan, C.; Yang, T.; White, J. C.; Xiao, H.; Xing, B.; He, L. A Green, Facile, and Rapid Method for Microextraction and Raman Detection of Titanium Dioxide Nanoparticles from Milk Powder. RSC Adv. 2017, 7, 21380–21388. DOI: 10.1039/C7RA02520C.
  • Shih-Yu Tseng, S.-Y. L.; Yi, S.-Y. Food Quality Monitor_ Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection of Biogenic Amine Odorants. ACS Appl. Mater. Interfaces 2017, 9, 1–30.
  • Rohit, J. V.; Kailasa, S. K. Simple and Selective Detection of Pendimethalin Herbicide in Water and Food Samples Based on the Aggregation of Ractopamine-Dithiocarbamate Functionalized Gold Nanoparticles. Sens. Actuators B: Chem. 2017, 245, 541–550. DOI: 10.1016/j.snb.2017.02.007.
  • Kailasa, S. K.; Rohit, J. V. Multi-Functional Groups of Dithiocarbamate Derivative Assembly on Gold Nanoparticles for Competitive Detection of Diafenthiuron. Sens. Actuators B: Chem. 2017, 244, 796–805. DOI: 10.1016/j.snb.2017.01.075.
  • Shrivas, K.; Nirmalkar, N.; Thakur, S. S.; Deb, M. K.; Shinde, S. S.; Shankar, R. Sucrose Capped Gold Nanoparticles as a Plasmonic Chemical Sensor Based on Non-Covalent Interactions: Application for Selective Detection of Vitamins B1 and B6 in Brown and White Rice Food Samples. Food Chem. 2018, 250, 14–21. DOI: 10.1016/j.foodchem.2018.01.002.
  • Yakoh, A.; Rattanarat, P.; Siangproh, W.; Chailapakul, O. Simple and Selective Paper-Based Colorimetric Sensor for Determination of Chloride Ion in Environmental Samples Using Label-Free Silver Nanoprisms. Talanta 2018, 178, 134–140. DOI: 10.1016/j.talanta.2017.09.013.
  • Chaiyo, S.; Siangproh, W.; Apilux, A.; Chailapakul, O. Highly Selective and Sensitive Paper-Based Colorimetric Sensor Using Thiosulfate Catalytic Etching of Silver Nanoplates for Trace Determination of Copper Ions. Anal. Chim. Acta 2015, 866, 75–83. DOI: 10.1016/j.aca.2015.01.042.
  • Zeng, G.; Zhu, Y.; Zhang, Y.; Zhang, C.; Tang, L.; Guo, P.; Zhang, L.; Yuan, Y.; Cheng, M.; Yang, C. Electrochemical DNA Sensing Strategy Based on Strengthening Electronic Conduction and a Signal Amplifier Carrier of NanoAu/MCN Composited Nanomaterials for Sensitive Lead Detection. Environ. Sci: Nano. 2016, 3, 1504–1509. DOI: 10.1039/C6EN00323K.
  • Zhu, Y.; Zeng, G. M.; Zhang, Y.; Tang, L.; Chen, J.; Cheng, M.; Zhang, L. H.; He, L.; Guo, Y.; He, X. X.; et al. Highly Sensitive Electrochemical Sensor Using a MWCNTs/GNPs-Modified Electrode for Lead (II) Detection Based on Pb(2+)-Induced G-rich DNA Conformation. Analyst 2014, 139, 5014–5020. DOI: 10.1039/C4AN00874J.
  • Jin, W.; Huang, P.; Wei, G.; Cao, Y.; Wu, F. Visualization and Quantification of Hg2+ Based on Anti-Aggregation of Label-free Gold Nanoparticles in the Presence of 2-Mercaptobenzothiazole. Sens. Actuators B: Chem. 2016, 233, 223–229. DOI: 10.1016/j.snb.2016.04.071.
  • Wang, Y.; Yang, F.; Yang, X. Colorimetric Detection of Mercury(II) ion Using Unmodified Silver Nanoparticles and Mercury-Specific Oligonucleotides. ACS Appl. Mater. Interfaces 2010, 2, 339–342. DOI: 10.1021/am9007243.
  • Zhang, X.; Qu, Y.; Shen, W.; You, S.; Pei, X.; Li, S.; Wang, J.; Zhou, J. Colorimetric Response of Biogenetic Gold Nanoparticles to Mercury (II) Ions. Colloids Surf. A: Physicochem. Eng. Aspects 2016, 508, 360–365. DOI: 10.1016/j.colsurfa.2016.08.072.
  • Zhao, Y.; Gui, L.; Chen, Z. Colorimetric Detection of Hg2+ Based on Target-Mediated Growth of Gold Nanoparticles. Sens. Actuators B: Chem. 2017, 241, 262–267. DOI: 10.1016/j.snb.2016.10.084.
  • Zhou, Y.; Ma, Z. Colorimetric Detection of Hg2+ by Au Nanoparticles Formed by H2O2 Reduction of HAuCl4 Using Au Nanoclusters as the Catalyst. Sens. Actuators B: Chem. 2017, 241, 1063–1068. DOI: 10.1016/j.snb.2016.10.035.
  • Aldewachi, H.; Chalati, T.; Woodroofe, M. N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold Nanoparticle-Based Colorimetric Biosensors. Nanoscale 2018, 10, 18–33. DOI: 10.1039/C7NR06367A.
  • Huang, D.; Liu, X.; Lai, C.; Qin, L.; Zhang, C.; Yi, H.; Zeng, G.; Li, B.; Deng, R.; Liu, S.; Zhang, Y. Colorimetric Determination of Mercury(II) Using Gold Nanoparticles and Double Ligand Exchange. Mikrochim. Acta 2018, 186, 31. DOI: 10.1007/s00604-018-3126-6.
  • Sun, X.; Liu, R.; Liu, Q.; Fei, Q.; Feng, G.; Shan, H.; Huan, Y. Colorimetric Sensing of Mercury (II) ion Based on Anti-Aggregation of Gold Nanoparticles in the Presence of Hexadecyl Trimethyl Ammonium Bromide. Sens. Actuators B: Chem. 2018, 260, 998–1003. DOI: 10.1016/j.snb.2018.01.083.
  • Li, Y.; Wu, P.; Xu, H.; Zhang, Z.; Zhong, X. Highly Selective and Sensitive Visualizable Detection of Hg2+ Based on Anti-Aggregation of Gold Nanoparticles. Talanta 2011, 84, 508–512. DOI: 10.1016/j.talanta.2011.01.037.
  • Morteza Bahram, S. A. Simple and Rapid Simultaneously Colorimetric Determination of Betamethasone. Int. J. Biotechnol. Bioeng. 2018, 4, 17–29.
  • Luo, Q.; Lai, J.; Qiu, P.; Wang, X. An Ultrasensitive Fluorescent Sensor for Organophosphorus Pesticides Detection Based on RB-Ag/Au Bimetallic Nanoparticles. Sens. Actuators B: Chem. 2018, 263, 517–523. DOI: 10.1016/j.snb.2018.02.101.
  • Xie, J.; Zheng, Y.; Ying, J. Y. Highly Selective and Ultrasensitive Detection of Hg(2+) Based on Fluorescence Quenching of Au Nanoclusters by Hg(2+)-Au(+) Interactions. Chem. Commun. (Camb) 2010, 46, 961–963. DOI: 10.1039/B920748A.
  • Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L. Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. Adv. Funct. Mater. 2010, 20, 951–956. DOI: 10.1002/adfm.200902062.
  • Mo, Q.; Liu, F.; Gao, J.; Zhao, M.; Shao, N. Fluorescent Sensing of Ascorbic Acid Based on Iodine Induced Oxidative Etching and Aggregation of Lysozyme-Templated Silver Nanoclusters. Anal. Chim. Acta. 2018, 1003, 49–55. DOI: 10.1016/j.aca.2017.11.068.
  • Panpan Liu, A. Z.; Guo, M.; Yang, S. Fluorescence-Enhanced Bio-Detection Platforms Obtained Through Controlled “Step-by-Step” Clustering of Silver Nanoparticles. Nanoscale 2018, 10, 848–855. DOI: 10.1039/C7NR07486G.
  • Cui, M. L.; Liu, J. M.; Wang, X. X.; Lin, L. P.; Jiao, L.; Zheng, Z. Y.; Zhang, L. H.; Jiang, S. L. A Promising Gold Nanocluster Fluorescent Sensor for the Highly Sensitive and Selective Detection of S2−. Sens. Actuators B: Chem. 2013, 188, 53–58. DOI: 10.1016/j.snb.2013.05.098.
  • Thirumalraj, B.; Dhenadhayalan, N.; Chen, S.-M.; Liu, Y.-J.; Chen, T.-W.; Liang, P.-H.; Lin, K.-C. Highly Sensitive Fluorogenic Sensing of L-Cysteine in Live Cells Using Gelatin-Stabilized Gold Nanoparticles Decorated Graphene Nanosheets. Sens. Actuators B: Chem. 2018, 259, 339–346. DOI: 10.1016/j.snb.2017.12.028.
  • Rawat, K. A.; Bhamore, J. R.; Singhal, R. K.; Kailasa, S. K. Microwave Assisted Synthesis of Tyrosine Protected Gold Nanoparticles for Dual (Colorimetric and Fluorimetric) Detection of Spermine and Spermidine in Biological Samples. Biosens. Bioelectron. 2017, 88, 71–77. DOI: 10.1016/j.bios.2016.07.069.
  • Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. One-Pot Synthesis of Near-Infrared Fluorescent Gold Clusters for Cellular Fluorescence Lifetime Imaging. Small 2011, 7, 2614–2620. DOI: 10.1002/smll.201100746.
  • Li, L.; Yuan, Y.; Chen, Y.; Zhang, P.; Bai, Y.; Bai, L. Aptamer Based Voltammetric Biosensor for Mycobacterium tuberculosis Antigen ESAT-6 Using a Nanohybrid Material Composed of Reduced Graphene Oxide and a Metal-Organic Framework. Mikrochim. Acta 2018, 185, 379. DOI: 10.1007/s00604-018-2884-5.
  • Labib, M.; Sargent, E. H.; Kelley, S. O. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem. Rev. 2016, 116, 9001–9090. DOI: 10.1021/acs.chemrev.6b00220.
  • Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. DOI: 10.1021/ac5039863.
  • Maduraiveeran, G.; Jin, W. Nanomaterials Based Electrochemical Sensor and Biosensor Platforms for Environmental Applications. Trends Environ. Anal. Chem. 2017, 13, 10–23. DOI: 10.1016/j.teac.2017.02.001.
  • Bui, M. N.; Brockgreitens, J.; Ahmed, S.; Abbas, A. Dual Detection of Nitrate and Mercury in Water Using Disposable Electrochemical Sensors. Biosens. Bioelectron. 2016, 85, 280–286. DOI: 10.1016/j.bios.2016.05.017.
  • Kariuki, V. M.; Fasih-Ahmad, S. A.; Osonga, F. J.; Sadik, O. A. An Electrochemical Sensor for Nitrobenzene Using pi-Conjugated Polymer-Embedded Nanosilver. Analyst 2016, 141, 2259–2269. DOI: 10.1039/C6AN00029K.
  • Liu, Y.; Wei, M.; Hu, Y.; Zhu, L.; Du, J. An Electrochemical Sensor Based on a Molecularly Imprinted Polymer for Determination of Anticancer Drug Mitoxantrone. Sens. Actuators B: Chem. 2018, 255, 544–551. DOI: 10.1016/j.snb.2017.08.023.
  • Duan, D.; Yang, H.; Ding, Y.; Ye, D.; Li, L.; Ma, G. Three-Dimensional Molecularly Imprinted Electrochemical Sensor Based on AuNPs@Ti-Based Metal-Organic Frameworks for Ultra-Trace Detection of Bovine Serum Albumin. Electrochim. Acta 2018, 261, 160–166. DOI: 10.1016/j.electacta.2017.12.146.
  • Fekry, A. M. A New Simple Electrochemical Moxifloxacin Hydrochloride Sensor Built on Carbon Paste Modified with Silver Nanoparticles. Biosens. Bioelectron. 2017, 87, 1065–1070. DOI: 10.1016/j.bios.2016.07.077.
  • Kumar-Krishnan, S.; Hernandez-Rangel, A.; Pal, U.; Ceballos-Sanchez, O.; Flores-Ruiz, F. J.; Prokhorov, E.; Arias de Fuentes, O.; Esparza, R.; Meyyappan, M. Surface Functionalized Halloysite Nanotubes Decorated with Silver Nanoparticles for Enzyme Immobilization and Biosensing. J. Mater. Chem. B 2016, 4, 2553–2560. DOI: 10.1039/C6TB00051G.
  • Godfrey, I. J.; Dent, A. J.; Parkin, I. P.; Maenosono, S.; Sankar, G. Structure of Gold–Silver Nanoparticles. J. Phys. Chem. C 2017, 121, 1957–1963. DOI: 10.1021/acs.jpcc.6b11186.
  • Wang, H.; Yao, S.; Liu, Y.; Wei, S.; Su, J.; Hu, G. Molecularly Imprinted Electrochemical Sensor Based on Au Nanoparticles in Carboxylated Multi-Walled Carbon Nanotubes for Sensitive Determination of Olaquindox in Food and Feedstuffs. Biosens. Bioelectron. 2017, 87, 417–421. DOI: 10.1016/j.bios.2016.08.092.
  • Liu, X.; Mao, L.-G.; Wang, Y.-L.; Shi, X.-B.; Liu, Y.; Yang, Y.; He, Z. Electrochemical Sensor Based on Imprinted Sol-Gel Polymer on AuNPs-MWCNTs-CS Modified Electrode for the Determination of Acrylamide. Food Anal. Methods 2016, 9, 114–121. DOI: 10.1007/s12161-015-0172-0.
  • Baldim, V.; Ismail, A.; Taladriz-Blanco, P.; Griveau, S.; de Oliveira, M. G.; Bedioui, F. Amperometric Quantification of s-nitrosoglutathione Using Gold Nanoparticles: A Step Toward Determination of s-nitrosothiols in Plasma. Anal. Chem. 2016, 88, 3115–3120. DOI: 10.1021/acs.analchem.5b04035.
  • Taladriz-Blanco, P.; Pastoriza-Santos, V.; Perez-Juste, J.; Herves, P. Controllable Nitric Oxide Release in the Presence of Gold Nanoparticles. Langmuir 2013, 29, 8061–8069. DOI: 10.1021/la4014762.
  • Martin-Yerga, D.; Rama, E. C.; Costa-Garcia, A. Electrochemical Study and Applications of Selective Electrodeposition of Silver on Quantum Dots. Anal. Chem. 2016, 88, 3739–3746. DOI: 10.1021/acs.analchem.5b04568.
  • Yusoff, N.; Rameshkumar, P.; Mehmood, M. S.; Pandikumar, A.; Lee, H. W.; Huang, N. M. Ternary Nanohybrid of Reduced Graphene Oxide-nafion@silver Nanoparticles for Boosting the Sensor Performance in Non-enzymatic Amperometric Detection of Hydrogen Peroxide. Biosens. Bioelectron. 2017, 87, 1020–1028. DOI: 10.1016/j.bios.2016.09.045.
  • Sheng, Q.; Shen, Y.; Zhang, J.; Zheng, J. Ni Doped Ag@C Core–shell Nanomaterials and Their Application in Electrochemical H2O2 Sensing. Anal. Methods 2017, 9, 163–169. DOI: 10.1039/C6AY02196D.
  • Wang, Y.; Wang, L.; Chen, H.; Hu, X.; Ma, S. Fabrication of Highly Sensitive and Stable Hydroxylamine Electrochemical Sensor Based on Gold Nanoparticles and Metal-Metalloporphyrin Framework Modified Electrode. ACS Appl. Mater. Interfaces 2016, 8, 18173–18181. DOI: 10.1021/acsami.6b04819.
  • Liangsheng Hu, C.-C. F.; Zhang, X. Au Nanoparticles Fecorated TiO2 Nanotube Arrays as a Recyclable Sensor for Photoenhanced Electrochemical Detection of Bisphenol A. Environ. Sci. Technol. 2016, 50, 4430. DOI: 10.1021/acs.est.5b05857.
  • Debe, M. K. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells. Nature 2012, 486, 43–51. DOI: 10.1038/nature11115.
  • Gao, Z.; Lv, S.; Xu, M.; Tang, D. High-index {hk0} faceted Platinum Concave Nanocubes with Enhanced Peroxidase-like Activity for an Ultrasensitive Colorimetric Immunoassay of the Human Prostate-Specific Antigen. Analyst 2017, 142, 911–917. DOI: 10.1039/C6AN02722A.
  • Qiu, Z.; Shu, J.; Tang, D. Bioresponsive Release System for Visual Fluorescence Detection of Carcinoembryonic Antigen from Mesoporous Silica Nanocontainers Mediated Optical Color on Quantum Dot-Enzyme-Impregnated Paper. Anal. Chem. 2017, 89, 5152–5160. DOI: 10.1021/acs.analchem.7b00989.
  • Waqas, M.; Zulfiqar, A.; Ahmad, H. B.; Akhtar, N.; Hussain, M.; Shafiq, Z.; Abbas, Y.; Mehmood, K.; Ajmal, M.; Yang, M. Fabrication of Highly Stable Silver Nanoparticles with Shape-Dependent Electrochemical Efficacy. Electrochim. Acta 2018, 271, 641–651. DOI: 10.1016/j.electacta.2018.03.049.
  • Zhao, X.; Zhou, L.; Riaz Rajoka, M. S.; Yan, L.; Jiang, C.; Shao, D.; Zhu, J.; Shi, J.; Huang, Q.; Yang, H.; Jin, M. Fungal Silver Nanoparticles: Synthesis, Application and Challenges. Crit. Rev. Biotechnol. 2018, 38, 817–835. DOI: 10.1080/07388551.2017.1414141.
  • Kumar, V.; Gundampati, R. K.; Singh, D. K.; Bano, D.; Jagannadham, M. V.; Hasan, S. H. Photoinduced Green Synthesis of Silver Nanoparticles with Highly Effective Antibacterial and Hydrogen Peroxide Sensing Properties. J. Photochem. Photobiol. B 2016, 162, 374–385. DOI: 10.1016/j.jphotobiol.2016.06.037.
  • Sengan, M.; Veeramuthu, D.; Veerappan, A. Photosynthesis of Silver Nanoparticles Using Durio Zibethinus Aqueous Extract and Its Application in Catalytic Reduction of Nitroaromatics, Degradation of Hazardous Dyes and Selective Colorimetric Sensing of Mercury Ions. Mater. Res. Bull. 2018, 100, 386–393. DOI: 10.1016/j.materresbull.2017.12.038.
  • El Khoury, E.; Abiad, M.; Kassaify, Z. G.; Patra, D. Green Synthesis of Curcumin Conjugated Nanosilver for the Applications in Nucleic Acid Sensing and Anti-Bacterial Activity. Colloids Surf B: Biointerfaces 2015, 127, 274–280. DOI: 10.1016/j.colsurfb.2015.01.050.
  • Neethu, S.; Midhun, S. J.; Radhakrishnan, E. K.; Jyothis, M. Green Synthesized Silver Nanoparticles by Marine Endophytic Fungus Penicillium polonicum and Its Antibacterial Efficacy Against Biofilm Forming, Multidrug-Resistant Acinetobacter baumanii. Microb. Pathog. 2018, 116, 263–272. DOI: 10.1016/j.micpath.2018.01.033.
  • Ocsoy, I.; Demirbas, A.; McLamore, E. S.; Altinsoy, B.; Ildiz, N.; Baldemir, A. Green Synthesis with Incorporated Hydrothermal Approaches for Silver Nanoparticles Formation and Enhanced Antimicrobial Activity Against Bacterial and Fungal Pathogens. J. Mol. Liquids 2017, 238, 263–269. DOI: 10.1016/j.molliq.2017.05.012.
  • Prakash, S.; Soni, N. Synthesis of Gold Nanoparticles by the Fungus Aspergillus niger and Its Efficacy against Mosquito Larvae. Rep. Parasitol. 2012, 2, 1–7. DOI: 10.2147/rip.s29033.
  • Saravanakumar, K.; Wang, M. H. Trichoderma Based Synthesis of Anti-Pathogenic Silver Nanoparticles and Their Characterization, Antioxidant and Cytotoxicity Properties. Microb. Pathog. 2018, 114, 269–273. DOI: 10.1016/j.micpath.2017.12.005.
  • Saravanan, M.; Arokiyaraj, S.; Lakshmi, T.; Pugazhendhi, A. Synthesis of Silver Nanoparticles from Phenerochaete Chrysosporium (MTCC-787) and Their Antibacterial Activity against Human Pathogenic Bacteria. Microb. Pathog. 2018, 117, 68–72. DOI: 10.1016/j.micpath.2018.02.008.
  • Shivakumar, M.; Nagashree, K. L.; Yallappa, S.; Manjappa, S.; Manjunath, K. S.; Dharmaprakash, M. S. Biosynthesis of Silver Nanoparticles Using Pre-Hydrolysis Liquor of Eucalyptus Wood and Its Effective Antimicrobial Activity. Enzyme Microb. Technol. 2017, 97, 55–62. DOI: 10.1016/j.enzmictec.2016.11.006.
  • Umamaheswari, C.; Lakshmanan, A.; Nagarajan, N. S. Green Synthesis, Characterization and Catalytic Degradation Studies of Gold Nanoparticles Against Congo Red and Methyl Orange. J. Photochem. Photobiol. B 2018, 178, 33–39. DOI: 10.1016/j.jphotobiol.2017.10.017.
  • Singh, P.; Singh, H.; Kim, Y. J.; Mathiyalagan, R.; Wang, C.; Yang, D. C. Extracellular Synthesis of Silver and Gold Nanoparticles by Sporosarcina koreensis DC4 and Their Biological Applications. Enzyme Microb. Technol. 2016, 86, 75–83. DOI: 10.1016/j.enzmictec.2016.02.005.
  • Tolessa, T.; Tan, Z. Q.; Liu, J. F. Hydride Generation Coupled with Thioglycolic Acid Coated Gold Nanoparticles as Simple and Sensitive Headspace Colorimetric Assay for Visual Detection of Sb(III). Anal. Chim. Acta 2018, 1004, 67–73. DOI: 10.1016/j.aca.2017.11.073.
  • Li, J.; Wang, Y.; Sun, Y.; Ding, C.; Lin, Y.; Sun, W.; Luo, C. A Novel Ionic Liquid Functionalized Graphene Oxide Supported Gold Nanoparticle Composite Film for Sensitive Electrochemical Detection of Dopamine. RSC Adv. 2017, 7, 2315–2322. DOI: 10.1039/C6RA25627A.
  • Hou, W.; Chen, Y.; Lu, Q.; Liu, M.; Zhang, Y.; Yao, S. Silver Ions Enhanced AuNCs Fluorescence as a Turn-off Nanoprobe for Ultrasensitive Detection of Iodide. Talanta 2018, 180, 144–149. DOI: 10.1016/j.talanta.2017.12.047.
  • Lv, L.; Jin, Y.; Kang, X.; Zhao, Y.; Cui, C.; Guo, Z. PVP-Coated Gold Nanoparticles for the Selective Determination of Ochratoxin a via Quenching Fluorescence of the Free Aptamer. Food Chem. 2018, 249, 45–50. DOI: 10.1016/j.foodchem.2017.12.087.
  • Pourreza, N.; Ghomi, M. In Situ Synthesized and Embedded Silver Nanoclusters into Poly Vinyl Alcohol-borax Hydrogel as a Novel Dual Mode "On and Off" Fluorescence Sensor for Fe (III) and Thiosulfate. Talanta 2018, 179, 92–99. DOI: 10.1016/j.talanta.2017.10.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.