624
Views
27
CrossRef citations to date
0
Altmetric
Review Articles

Advancements in the Analytical Quantification of Nitroxidative Stress Biomarker 3-Nitrotyrosine in Biological Matrices

ORCID Icon, & ORCID Icon
Pages 265-289 | Published online: 08 Jun 2019

References

  • Ho, E.; Karimi Galougahi, K.; Liu, C.-C.; Bhindi, R.; Figtree, G. A. Biological Markers of Oxidative Stress: Applications to Cardiovascular Research and Practice. Redox Biol. 2013, 1, 483–491. DOI: 10.1016/j.redox.2013.07.006.
  • Cruz, D. F.; Fardilha, M. Relevance of Peroxynitrite Formation and 3-Nitrotyrosine on Spermatozoa Physiology. Porto Biomed. J. 2016, 1, 129–135. DOI: DOI: 10.1016/j.pbj.2016.07.004.
  • Klandorf, H.; Van Dyke, K. Oxidative and Nitrosative Stresses: Their Role in Health and Disease in Man and Birds. In Oxidative Stress-Molecular Mechanisms and Biological Effects. IntechOpen, 2012, DOI: 10.5772/33879.
  • Ryberg, H.; Caidahl, K. Chromatographic and Mass Spectrometric Methods for Quantitative Determination of 3-Nitrotyrosine in Biological Samples and Their Application to Human Samples. J. Chromatogr. B 2007, 851, 160–171. DOI: 10.1016/j.jchromb.2007.02.001.
  • Zhan, X.; Wang, X.; Desiderio, D. M. Mass Spectrometry Analysis of Nitrotyrosine‐Containing Proteins. Mass Spec. Rev. 2015, 34, 423–448. DOI: 10.1002/mas.21413.
  • Yeo, W. S.; Kim, Y. J.; Kabir, M. H.; Kang, J. W.; Kim, K. P. Mass Spectrometric Analysis of Protein Tyrosine Nitration in Aging and Neurodegenerative Diseases. Mass Spec. Rev. 2015, 34, 166–183. 10.1002/mas.21429
  • Teixeira, D.; Fernandes, R.; Prudêncio, C.; Vieira, M. 3-Nitrotyrosine Quantification Methods: Current Concepts and Future Challenges. Biochimie 2016, 125, 1–11. DOI: 10.1016/j.biochi.2016.02.011.
  • Tsikas, D. What we—Authors, Reviewers and Editors of Scientific Work—Can Learn from the Analytical History of Biological 3-Nitrotyrosine. J. Chromatogr. B 2017, 1058, 68–72. DOI: 10.1016/j.jchromb.2017.05.012.
  • Sies, H. Oxidative Stress: Oxidants and Antioxidants. Exp. Physiol. 1997, 82, 291–295. DOI: 10.1113/expphysiol.1997.sp004024.
  • Lancaster, J. R. Nitroxidative, Nitrosative, and Nitrative Stress: Kinetic Predictions of Reactive Nitrogen Species Chemistry under Biological Conditions. Chem. Res. Toxicol. 2006, 19, 1160–1174. DOI: 10.1021/tx060061w.
  • Paloczi, J.; Varga, Z. V.; Hasko, G.; Pacher, P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxidants Redox Signal. 2018, 29, 75–108. DOI: 10.1089/ars.2017.7144.
  • Lin, M. T.; Beal, M. F. Mitochondrial Dysfunction and Oxidative Stress in Neurodegenerative Diseases. Nature 2006, 443, 787. DOI: 10.1038/nature05292.
  • Kim, G. H.; Kim, J. E.; Rhie, S. J.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325–340. DOI: 10.5607/en.2015.24.4.325.
  • Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative Stress in Neurodegenerative Diseases. Mol. Neurobiol. 2016, 53, 4094–4125. DOI: 10.1007/s12035-015-9337-5.
  • Bartesaghi, S.; Radi, R. Fundamentals on the Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Redox Biol. 2018, 14, 618–625. DOI: 10.1016/j.redox.2017.09.009.
  • Maurya, P. K.; Noto, C.; Rizzo, L. B.; Rios, A. C.; Nunes, S. O. V.; Barbosa, D. S.; Sethi, S.; Zeni, M.; Mansur, R. B.; Maes, M.; Brietzke, E. The Role of Oxidative and Nitrosative Stress in Accelerated Aging and Major Depressive Disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 65, 134–144. DOI: 10.1016/j.pnpbp.2015.08.016.
  • Radi, R. Peroxynitrite, a Stealthy Biological Oxidant. J. Biol. Chem. 2013, jbc. R113, 472936. DOI: 10.1074/jbc.R113.472936.
  • Radi, R. Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of Functional Effects. Acc. Chem. Res. 2013, 46, 550–559. DOI: 10.1021/ar300234c.
  • Abdelmegeed, M. A.; Song, B.-J. Functional Roles of Protein Nitration in Acute and Chronic Liver Diseases. Oxidative Med. Cell. Longevity 2014, 2014, 1. DOI: 10.1155/2014/149627.
  • Ikeda, K.; Hiraoka, B. Y.; Iwai, H.; Matsumoto, T.; Mineki, R.; Taka, H.; Takamori, K.; Ogawa, H.; Yamakura, F. Detection of 6-Nitrotryptophan in Proteins by Western Blot Analysis and Its Application for Peroxynitrite-Treated PC12 Cells. Nitric Oxide 2007, 16, 18–28. DOI: 10.1016/j.niox.2006.04.263.
  • Seeley, K.; Fertig, A.; Dufresne, C.; Pinho, J.; Jr, S. Evaluation of a Method for Nitrotyrosine Site Identification and Relative Quantitation Using a Stable Isotope-Labeled Nitrated Spike-in Standard and High Resolution Fourier Transform MS and MS/MS Analysis. Ijms. 2014, 15, 6265–6285. DOI: 10.3390/ijms15046265.
  • Hodara, R.; Norris, E. H.; Giasson, B. I.; Mishizen-Eberz, A. J.; Lynch, D. R.; Lee, V. M.; Ischiropoulos, H. Functional Consequences of a-Synuclein Tyrosine Nitration: Diminished Binding to Lipid Vesicles and Increased Fibril Formation. J. Biol. Chem. 2004, 279, 47746–47753. DOI: 10.1074/jbc.M408906200.
  • Lennon, C. W.; Cox, H. D.; Hennelly, S. P.; Chelmo, S. J.; McGuirl, M. A. Probing Structural Differences in Prion Protein Isoforms by Tyrosine Nitration. Biochemistry 2007, 46, 4850–4860. DOI: 10.1021/bi0617254.
  • Jiao, K.; Mandapati, S.; Skipper, P. L.; Tannenbaum, S. R.; Wishnok, J. S. Site-Selective Nitration of Tyrosine in Human Serum Albumin by Peroxynitrite. Anal. Biochem. 2001, 293, 43–52. DOI: 10.1006/abio.2001.5118.
  • Xu, Y.; Wen, X.; Wen, L.-S.; Wu, L.-Y.; Deng, N.-Y.; Chou, K.-C. iNitro-Tyr: Prediction of Nitrotyrosine Sites in Proteins with General Pseudo Amino Acid Composition. PloS One 2014, 9, e105018. DOI: 10.1371/journal.pone.0105018.
  • Liu, Z.; Cao, J.; Ma, Q.; Gao, X.; Ren, J.; Xue, Y. GPS-YNO2: Computational Prediction of Tyrosine Nitration Sites in Proteins. Mol. Biosyst. 2011, 7, 1197–1204. DOI: 10.1039/c0mb00279h.
  • Hasan, M. M.; Khatun, M. S.; Mollah, M. N. H.; Yong, C.; Dianjing, G. NTyroSite: Computational Identification of Protein Nitrotyrosine Sites Using Sequence Evolutionary Features. Molecules (Basel, Switzerland) 2018, 23, 1667. DOI: 10.3390/molecules23071667.
  • Blanchard-Fillion, B.; Prou, D.; Polydoro, M.; Spielberg, D.; Tsika, E.; Wang, Z.; Hazen, S. L.; Koval, M.; Przedborski, S.; Ischiropoulos, H. Metabolism of 3-Nitrotyrosine Induces Apoptotic Death in Dopaminergic Cells. J. Neurosci. 2006, 26, 6124–6130. DOI: 10.1523/JNEUROSCI.1038-06.2006.
  • de M Bandeira, S.; da Fonseca, L. J. S.; da S Guedes, G.; Rabelo, L. A.; Goulart, M. O.; Vasconcelos, S. M. L. Oxidative Stress as an Underlying Contributor in the Development of Chronic Complications in Diabetes Mellitus. Ijms. 2013, 14, 3265–3284. DOI: 10.3390/ijms14023265.
  • Sengupta, S.; Bhattacharjee, A. Dynamics of Protein Tyrosine Nitration and Denitration: A Review. J. Proteo Genom. 2016, 1, 105. DOI: https://pdfs.semanticscholar.org/3b00/74e035cb523dd87948ef0ba0a615c1226b5b.pdf
  • Bryan, N. S.; Grisham, M. B. Methods to Detect Nitric Oxide and Its Metabolites in Biological Samples. Free Radical Biol. Med. 2007, 43, 645–657. DOI: 10.1016/j.freeradbiomed.2007.04.026.
  • Surmeli, N. B.; Litterman, N. K.; Miller, A.-F.; Groves, J. T. Peroxynitrite Mediates Active Site Tyrosine Nitration in Manganese Superoxide Dismutase. Evidence of a Role for the Carbonate Radical Anion. J. Am. Chem. Soc. 2010, 132, 17174–17185. DOI: 10.1021/ja105684w.
  • Yeo, W.-S.; Lee, S.-J.; Lee, J.-R.; Kim, K.-P. Nitrosative Protein Tyrosine Modifications: Biochemistry and Functional Significance. BMB Rep. 2008, 41, 194–203. DOI: 10.5483/BMBRep.2008.41.3.194.
  • Shao, B.; Bergt, C.; Fu, X.; Green, P.; Voss, J. C.; Oda, M. N.; Oram, J. F.; Heinecke, J. W. Tyrosine 192 in Apolipoprotein AI Is the Major Site of Nitration and Chlorination by Myeloperoxidase, but Only Chlorination Markedly Impairs ABCA1-Dependent Cholesterol Transport. J. Biol. Chem. 2005, 280, 5983–5993. DOI: 10.1074/jbc.M411484200.
  • Mani, A. R.; Pannala, A. S.; Orie, N. N.; Ollosson, R.; Harry, D.; Rice-Evans, C. A.; Moore, K. P. Nitration of Endogenous Para-Hydroxyphenylacetic Acid and the Metabolism of Nitrotyrosine. Biochem. J. 2003, 374, 521–527. DOI: 10.1074/jbc.M704270200.
  • Tsikas, D. Analytical Methods for 3-Nitrotyrosine Quantification in Biological Samples: The Unique Role of Tandem Mass Spectrometry. Amino Acids 2012, 42, 45–63. DOI: 10.1007/s00726-010-0604-5.
  • Giustarini, D.; Milzani, A.; Dalle-Donne, I.; Rossi, R. Detection of S-Nitrosothiols in Biological Fluids: A Comparison among the Most Widely Applied Methodologies. J. Chromatogr. B 2007, 851, 124–139. DOI: 10.1016/j.jchromb.2006.09.031.
  • Shu, L.; Vivekanandan-Giri, A.; Pennathur, S.; Smid, B. E.; Aerts, J. M.; Hollak, C. E.; Shayman, J. A. Establishing 3-Nitrotyrosine as a Biomarker for the Vasculopathy of Fabry Disease. Kidney Int. 2014, 86, 58–66. DOI: 10.1038/ki.2013.520.
  • Shah, D.; Mahajan, N.; Sah, S.; Nath, S. K.; Paudyal, B. Oxidative Stress and Its Biomarkers in Systemic Lupus Erythematosus. J. Biomed. Sci. 2014, 21, 23. DOI: 10.1186/1423-0127-21-23.
  • Kagota, S.; Fukushima, K.; Umetani, K.; Tada, Y.; Nejime, N.; Nakamura, K.; Mori, H.; Sugimura, K.; Kunitomo, M.; Shinozuka, K. Coronary Vascular Dysfunction Promoted by Oxidative‐Nitrative Stress in SHRSP. Z‐Leprfa/IzmDmcr Rats with Metabolic Syndrome. Clin. Exp. Pharmacol. Physiol. 2010, 37, 1035–1043. DOI: 10.1111/j.1440-1681.2010.05432.x.
  • Pourfarzam, M.; Movahedian, A.; Sarrafzadegan, N.; Basati, G.; Samsamshariat, S. Z. Association between Plasma Myeloperoxidase and Free 3-Nitrotyrosine Levels in Patients with Coronary Artery Disease. Ijcm. 2013, 04, 158. DOI: 10.4236/ijcm.2013.43028.
  • Sucu, N.; Tamer, L.; Aytacoglu, B.; Ercan, B.; Dikmengil, M.; Atik, U. 3-Nitrotyrosine in Atherosclerotic Blood Vessels. Clin. Chem. Lab. Med. 2003, 41, 23–25. DOI: 10.1515/CCLM.2003.005.
  • Daiber, A.; Münzel, T. Increased Circulating Levels of 3-Nitrotyrosine Autoantibodies: Marker for and/or Maker of Cardiovascular Disease? Am. Heart Assoc. 2012, 126, 2371–2373. DOI: 10.1161/CIRCULATIONAHA.112.143214.
  • Teng, R.-J.; Wu, T.-J.; Bisig, C. G.; Eis, A.; Pritchard, K. A.; Konduri, G. G. Nitrotyrosine Impairs Angiogenesis and Uncouples eNOS Activity of Pulmonary Artery Endothelial Cells Isolated from Developing Sheep Lungs. Pediatr. Res. 2011, 69, 112. DOI: 10.1203/PDR.0b013e318204dcb8.
  • Misko, T.; Radabaugh, M.; Highkin, M.; Abrams, M.; Friese, O.; Gallavan, R.; Bramson, C.; Le Graverand, M. H.; Lohmander, L. S.; Roman, D. Characterization of Nitrotyrosine as a Biomarker for Arthritis and Joint Injury. Osteoarthritis and Cartilage 2013, 21, 151–156. DOI: 10.1016/j.joca.2012.09.005.
  • Shimizu, K.; Ogawa, F.; Muroi, E.; Hara, T.; Komura, K.; Bae, S.; Sato, S. Increased Serum Levels of Nitrotyrosine, A Market for Peroxynitrite Production, in Systemic Sclerosis. Clin. Exp. Rheumatol. 2007, 25, 281. DOI; https://www.clinexprheumatol.org/article.asp/a=3063
  • Dhiman, M.; Nakayasu, E. S.; Madaiah, Y. H.; Reynolds, B. K.; Wen, J-j.; Almeida, I. C.; Garg, N. J. Enhanced Nitrosative Stress during Trypanosoma cruzi Infection Causes Nitrotyrosine Modification of Host Proteins: Implications in Chagas' Disease. Am. J. Pathol. 2008, 173, 728–740. DOI: 10.2353/ajpath.2008.080047.
  • Voraphani, N.; Gladwin, M. T.; Trudeau, J. B.; Wenzel, S. E. P6: Th1/Th2 Cytokines Promote Nitrite/H2O2-Mediated Tyrosine Nitration in Airway Epithelial Cells: Potential Role in Severe Asthma. Nitric Oxide 2013, 31, S15–S16. DOI: https://doi.org/10.1016/j.niox.2013.02.008
  • Rose, S.; Melnyk, S.; Pavliv, O.; Bai, S.; Nick, T.; Frye, R.; James, S. Evidence of Oxidative Damage and Inflammation Associated with Low Glutathione Redox Status in the Autism Brain. Transl. Psychiatr. 2012, 2, e134. DOI: 10.1038/tp.2012.61.
  • Dietrich-Muszalska, A.; Malinowska, J.; Olas, B.; Głowacki, R.; Bald, E.; Wachowicz, B.; Rabe-Jabłońska, J. The Oxidative Stress May Be Induced by the Elevated Homocysteine in Schizophrenic Patients. Neurochem. Res. 2012, 37, 1057–1062. DOI: 10.1007/s11064-012-0707-3.
  • Parakh, S.; Spencer, D. M.; Halloran, M. A.; Soo, K. Y.; Atkin, J. D. Redox Regulation in Amyotrophic Lateral Sclerosis. Oxidative Med. Cell. Longevity 2013, 2013, 1. DOI: 10.1155/2013/408681.
  • Mangialasche, F.; Polidori, M. C.; Monastero, R.; Ercolani, S.; Camarda, C.; Cecchetti, R.; Mecocci, P. Biomarkers of Oxidative and Nitrosative Damage in Alzheimer's Disease and Mild Cognitive Impairment. Ageing Res. Rev. 2009, 8, 285–305. DOI: 10.1016/j.arr.2009.04.002.
  • Pop-Busui, R.; Oral, E.; Raffel, D.; Byun, J.; Bajirovic, V.; Vivekanandan-Giri, A.; Kellogg, A.; Pennathur, S.; Stevens, M. J. Impact of Rosiglitazone and Glyburide on Nitrosative Stress and Myocardial Blood Flow Regulation in Type 2 Diabetes Mellitus. Metabolism 2009, 58, 989–994. DOI: 10.1016/j.metabol.2009.02.020.
  • Nemirovskiy, O. V.; Radabaugh, M. R.; Aggarwal, P.; Funckes-Shippy, C. L.; Mnich, S. J.; Meyer, D. M.; Sunyer, T.; Mathews, W. R.; Misko, T. P. Plasma 3-Nitrotyrosine Is a Biomarker in Animal Models of Arthritis: Pharmacological Dissection of iNOS’role in Disease. Nitric Oxide 2009, 20, 150–156. DOI: 10.1016/j.metabol.2009.02.020.
  • Baraldi, E.; Giordano, G.; Pasquale, M.; Carraro, S.; Mardegan, A.; Bonetto, G.; Bastardo, C.; Zacchello, F.; Zanconato, S. 3‐Nitrotyrosine, a Marker of Nitrosative Stress, Is Increased in Breath Condensate of Allergic Asthmatic Children. Allergy 2005, 61, 90–96. DOI: 10.1016/j.niox.2008.12.005.
  • Wayenberg, J.-L.; Ransy, V.; Vermeylen, D.; Damis, E.; Bottari, S. P. Nitrated Plasma Albumin as a Marker of Nitrative Stress and Neonatal Encephalopathy in Perinatal Asphyxia. Free Radical Biol. Med. 2009, 47, 975–982. DOI: 10.1016/j.freeradbiomed.2009.07.003.
  • Pham, V. V.; Stichtenoth, D. O.; Tsikas, D. Nitrite Correlates with 3-Nitrotyrosine but Not with the F2-Isoprostane 15 (S)-8-iso-PGF2α in Urine of Rheumatic Patients. Nitric Oxide 2009, 21, 210–215. DOI: 10.1016/j.niox.2009.09.001.
  • Cao, J.; Xu, R.; Tang, H.; Tang, S.; Cao, M. Synthesis of Monodispersed CMC-Stabilized Fe–Cu Bimetal Nanoparticles for in Situ Reductive Dechlorination of 1, 2, 4-Trichlorobenzene. Sci. Total Environ. 2011, 409, 2336–2341. DOI: 10.1016/j.scitotenv.2011.02.045.
  • Ryberg, H.; Söderling, A.-S.; Davidsson, P.; Blennow, K.; Caidahl, K.; Persson, L. I. Cerebrospinal Fluid Levels of Free 3-Nitrotyrosine Are Not Elevated in the Majority of Patients with Amyotrophic Lateral Sclerosis or Alzheimer’s Disease. Neurochem. Int. 2004, 45, 57–62. DOI: 10.1016/j.neuint.2003.12.012.
  • Ahmed, N.; Ahmed, U.; Thornalley, P. J.; Hager, K.; Fleischer, G.; Münch, G. Protein Glycation, Oxidation and Nitration Adduct Residues and Free Adducts of Cerebrospinal Fluid in Alzheimer's Disease and Link to Cognitive Impairment. J. Neurochem. 2005, 92, 255–263. DOI: 10.1111/j.1471-4159.2004.02864.x.
  • Tohgi, H.; Abe, T.; Yamazaki, K.; Murata, T.; Ishizaki, E.; Isobe, C. Remarkable Increase in Cerebrospinal Fluid 3‐Nitrotyrosine in Patients with Sporadic Amyotrophic Lateral Sclerosis. Ann. Neurol. 1999, 46, 129–131. DOI: 10.1002/1531-8249(199907)46:1<129::AID-ANA21>3.0.CO;2-Y.
  • Seven, A.; Aslan, M.; İncir, S.; Altıntaș, A. Evaluation of Oxidative and Nitrosative Stress in Relapsing Remitting Multiple Sclerosis: Effect of Corticosteroid Therapy. fn. 2013, 51, 58–64. DOI: DOI: 10.5114/fn.2013.34197.
  • Zhao, Y.; Huang, Y.; Fang, Y.; Zhao, H.; Shi, W.; Li, J.; Duan, Y.; Sun, Y.; Gao, L.; Y., Chrysophanol, L. Attenuates Nitrosative/Oxidative Stress Injury in A Mouse Model of Focal Cerebral Ischemia/Reperfusion. J. Pharmacol. Sci. 2018, 291, 264–270. DOI: 10.1016/j.jphs.2018.08.002.
  • Wadley, A. J.; van Zanten, J. J. V.; Stavropoulos-Kalinoglou, A.; Metsios, G. S.; Smith, J. P.; Kitas, G. D.; Aldred, S. Three Months of Moderate-Intensity Exercise Reduced Plasma 3-Nitrotyrosine in Rheumatoid Arthritis Patients. Eur. J. Appl. Physiol. 2014, 114, 1483–1492. DOI: 10.1007/s00421-014-2877-y.
  • Hui, Y.; Wong, M.; Zhao, S. S.; Love, J. A.; Ansley, D. M.; Chen, D. D. A Simple and Robust LC-MS/MS Method for Quantification of Free 3-Nitrotyrosine in Human Plasma from Patients Receiving on-Pump CABG Surgery. Electrophoresis 2012, 33, 697–704. DOI: 10.1002/elps.201100368.
  • Safinowski, M.; Wilhelm, B.; Reimer, T.; Weise, A.; Thomé, N.; Hänel, H.; Forst, T.; Pfützner, A. Determination of Nitrotyrosine Concentrations in Plasma Samples of Diabetes Mellitus Patients by Four Different Immunoassays Leads to Contradictive Results and Disqualifies the Majority of the Tests. Clin. Chem. Lab. Med. 2009, 47, 483–488. DOI: 10.1515/CCLM.2009.095.
  • Kato, Y.; Dozaki, N.; Nakamura, T.; Kitamoto, N.; Yoshida, A.; Naito, M.; Kitamura, M.; Osawa, T. Quantification of Modified Tyrosines in Healthy and Diabetic Human Urine Using Liquid Chromatography/Tandem Mass Spectrometry. J. Clin. Biochem. Nutr. 2009, 44, 67–78. DOI: 10.3164/jcbn.08-185.
  • Lärstad, M.; Söderling, A.-S.; Caidahl, K.; Olin, A.-C. Selective Quantification of Free 3-Nitrotyrosine in Exhaled Breath Condensate in Asthma Using Gas Chromatography/Tandem Mass Spectrometry. Nitric Oxide 2005, 13, 134–144. DOI: 10.1016/j.niox.2005.05.009.
  • Butterfield, D. A.; Reed, T. T.; Perluigi, M.; De Marco, C.; Coccia, R.; Keller, J. N.; Markesbery, W. R.; Sultana, R. Elevated Levels of 3-Nitrotyrosine in Brain from Subjects with Amnestic Mild Cognitive Impairment: Implications for the Role of Nitration in the Progression of Alzheimer's Disease. Brain Res. 2007, 1148, 243–248. DOI: 10.1016/j.brainres.2007.02.084.
  • Ueshima, K.; Minakata, Y.; Sugiura, H.; Yanagisawa, S.; Ichikawa, T.; Akamatsu, K.; Hirano, T.; Nakanishi, M.; Matsunaga, K.; Yamagata, T. The Influence of Free 3-Nitrotyrosine and Saliva on the Quantitative Analysis of Protein-Bound 3-Nitrotyrosine in Sputum. Anal. Chem. Insights. 2007, 2, 1389–1396. DOI: 10.4137/117739010700200006.
  • Khan, F.; Siddiqui, A.; Ali, R. Measurement and Significance of 3‐Nitrotyrosine in Systemic Lupus Erythematosus. Scand. J. Immunol. 2006, 64, 507–514. DOI: 10.1111/j.1365-3083.2006.01794.x.
  • Afifi, M. A.; Jiman-Fatani, A. A.; Al-Rabia, M. W.; Al-Hussainy, N. H.; El Saadany, S.; Mayah, W. More than an Association: Latent Toxoplasmosis Might Provoke a Local Oxidative Stress That Triggers the Development of Bipolar Disorder. J. Microsc. Ultrastruct. 2018, 6, 139–144. DOI: 10.4103/JMAU.JMAU_22_18.
  • Bankoglu, E. E.; Seyfried, F.; Rotzinger, L.; Nordbeck, A.; Corteville, C.; Jurowich, C.; Germer, C. T.; Otto, C.; Stopper, H. Impact of Weight Loss Induced by Gastric Bypass or Caloric Restriction on Oxidative Stress and Genomic Damage in Obese Zucker Rats. Free Radical Biol. Med. 2016, 94, 208–217. DOI: 10.1016/j.freeradbiomed.2016.02.033.
  • Kalezic, A.; Macanovic, B.; Garalejic, E.; Korac, A.; Otasevic, V.; Korac, B. Level of NO/Nitrite and 3-Nitrotyrosine in Seminal Plasma of Infertile Men: Correlation with Sperm Number, Motility and Morphology. Chemico-Biol. Interactions 2018, 291, 264–270. DOI: 10.1016/j.cbi.2018.07.002.
  • Radabaugh, M. R.; Nemirovskiy, O. V.; Misko, T. P.; Aggarwal, P.; Mathews, W. R. Immunoaffinity Liquid Chromatography–Tandem Mass Spectrometry Detection of Nitrotyrosine in Biological Fluids: Development of a Clinically Translatable Biomarker. Anal. Biochem. 2008, 380, 68–76. DOI: 10.1016/j.ab.2008.05.019.
  • Vanova, N.; Muckova, L.; Schmidt, M.; Herman, D.; Dlabkova, A.; Pejchal, J.; Jun, D. Simultaneous Determination of Malondialdehyde and 3‐Nitrotyrosine in Cultured Human Hepatoma Cells by Liquid Chromatography–Mass Spectrometry. Biomed. Chromatogr. 2018, 32, e4349. DOI: 10.1002/bmc.4349.
  • Franz, A.; Joseph, L.; Mayer, C.; Harmsen, J.-F.; Schrumpf, H.; Fröbel, J.; Ostapczuk, M. S.; Krauspe, R.; Zilkens, C. The Role of Oxidative and Nitrosative Stress in the Pathology of Osteoarthritis: Novel Candidate Biomarkers for Quantification of Degenerative Changes in the Knee Joint. Orthopedic Rev. 2018, 10, 48–57. DOI: 10.4081/or.2018.7460.
  • Knight, A. R.; Taylor, E. L.; Lukaszewski, R.; Jensen, K. T.; Jones, H. E.; Carré, J. E.; Isupov, M. N.; Littlechild, J. A.; Bailey, S. J.; Brewer, E.; et al. A High-Sensitivity Electrochemiluminescence-Based ELISA for the Measurement of the Oxidative Stress Biomarker, 3-Nitrotyrosine, in Human Blood Serum and Cells. Free Radical Biol. Med. 2018, 120, 246–254. DOI: 10.1016/j.freeradbiomed.2018.03.026.
  • Teixeira, D.; Prudencio, C.; Vieira, M.; Development, o.; A New, H. Based Method for 3-Nitrotyrosine Quantification in Different Biological Matrices. J. Chromatogr. B 2017, 1046, 48–57. DOI: 10.1016/j.biochi.2016.02.011.
  • Li, X. S.; Li, S.; Ahrens, M.; Kellermann, G. Integration of Miniaturized Solid Phase Extraction and LC-MS/MS Detection of 3-Nitrotyrosine in Human Urine for Clinical Applications. J. Visualized Exp: JoVE 2017, 441, 1–17. DOI: 10.3791/55778.
  • Torres-Cuevas, I.; Kuligowski, J.; Cárcel, M.; Cháfer-Pericás, C.; Asensi, M.; Solberg, R.; Cubells, E.; Nuñez, A.; Saugstad, O. D.; Vento, M.; Escobar, J. Protein-Bound Tyrosine Oxidation, Nitration and Chlorination by-Products Assessed by Ultraperformance Liquid Chromatography Coupled to Tandem Mass Spectrometry. Anal. Chim. Acta 2016, 913, 104–110. DOI: 10.1016/j.aca.2016.01.054.
  • Li, X. S.; Li, S.; Kellermann, G. A Novel Mixed-Mode Solid Phase Extraction Coupled with LC-MS/MS for the Re-Evaluation of Free 3-Nitrotyrosine in Human Plasma as an Oxidative Stress Biomarker. Talanta 2015, 140, 45–51. DOI: 10.1016/j.talanta.2015.02.053.
  • Li, X. S.; Li, S.; Kellermann, G. Tailored 96-Well μElution Solid-Phase Extraction Combined with UFLC-MS/MS: A Significantly Improved Approach for Determination of Free 3-Nitrotyrosine in Human Urine. Anal. Bioanal. Chem. 2015, 407, 7703–7712. DOI: 10.1007/s00216-015-8934-5.
  • Chao, M. R.; Hsu, Y. W.; Liu, H. H.; Lin, J. H.; Hu, C. W. Simultaneous Detection of 3-Nitrotyrosine and 3-Nitro-4-Hydroxyphenylacetic Acid in Human Urine by Online SPE LC-MS/MS and Their Association with Oxidative and Methylated DNA Lesions. Chem. Res. Toxicol. 2015, 28, 997–1006. DOI: 10.1021/acs.chemrestox.5b00031.
  • Guvenç, D.; Aksoy, A.; Kursad, Y.; Atmaca, E.; Yavuz, O. 3-nitrotyrosine Levels in Dichlorvos-Induced Neurotoxicity. Arch. Ind. Hygiene Toxicol. 2014, 65, 109–112. DOI: 10.2478/10004-1254-65-2014-2416.
  • Mergola, L.; Scorrano, S.; Del Sole, R.; Lazzoi, M. R.; Vasapollo, G. Developments in the Synthesis of a Water Compatible Molecularly Imprinted Polymer as Artificial Receptor for Detection of 3-Nitro-l-Tyrosine in Neurological Diseases. Biosensors Bioelectr. 2013, 40, 336–341. DOI: 10.1016/j.bios.2012.07.074.
  • Weber, D.; Kneschke, N.; Grimm, S.; Bergheim, I.; Breusing, N.; Grune, T. Rapid and Sensitive Determination of Protein-Nitrotyrosine by ELISA: Application to Human Plasma. Free Radical Res. 2012, 46, 276–285. DOI: 10.1016/j.redox.2013.01.012.
  • Jin, H.; Zangar, R. C. High‐Throughput, Multiplexed Analysis of 3‐Nitrotyrosine in Individual Proteins. Curr. Protocols Toxicol. 2012, 51, 17.15. 1–17.15. 16. DOI: 10.1002/0471140856.tx1715s51.
  • Jialal, I.; Devaraj, S.; Adams-Huet, B.; Chen, X.; Kaur, H. Increased Cellular and Circulating Biomarkers of Oxidative Stress in Nascent Metabolic Syndrome. J. Clin. Endocrinol. Metabolism 2012, 97, E1844–E1850. DOI: 10.1210/jc.2012-2498.
  • Iwasaki, Y.; Mochizuki, K.; Nakano, Y.; Maruya, N.; Goto, M.; Maruyama, Y.; Ito, R.; Saito, K.; Nakazawa, H. Comparison of Fluorescence Reagents for Simultaneous Determination of Hydroxylated Phenylalanine and Nitrated Tyrosine by High‐Performance Liquid Chromatography with Fluorescence Detection. Biomed. Chromatogr. 2012, 26, 41–50. DOI: 10.1002/bmc.1623.
  • Bircan, F. S.; Balabanli, B.; Turkozkan, N.; Ozan, G. Effects of Taurine on Nitric Oxide and 3-Nitrotyrosine Levels in Spleen during Endotoxemia. Neurochem. Res. 2011, 36, 1978–1983. DOI: 10.1007/s11064-011-0521-3.
  • Yang, H.; Zhang, Y.; Pöschl, U. Quantification of Nitrotyrosine in Nitrated Proteins. Anal. Bioanal. Chem. 2010, 397, 879–886. DOI: 10.1007/s00216-010-3557-3.
  • Fitzpatrick, A. M.; Brown, L. A. S.; Holguin, F.; Teague, W. G.; Program, S. A. R.; Health, N. I. o., Levels of Nitric Oxide Oxidation Products Are Increased in the Epithelial Lining Fluid of Children with Persistent Asthma. J. Allergy Clin. Immunol. 2009, 124, 990–996. e9. DOI: 10.1016/j.jaci.2009.08.039.
  • Magné, J.; Huneau, J. F.; Tsikas, D.; Delemasure, S.; Rochette, L.; Tomé, D.; Mariotti, F. Rapeseed Protein in a High-Fat Mixed Meal Alleviates Postprandial Systemic and Vascular Oxidative Stress and Prevents Vascular Endothelial Dysfunction in Healthy Rats. J. Nutrition 2009, 139, 1660–1666. DOI: 10.3945/jn.109.107441.
  • Schwedhelm, E.; Tsikas, D.; Gutzki, F.-M.; Frölich, J. C. Gas Chromatographic–Tandem Mass Spectrometric Quantification of Free 3-Nitrotyrosine in Human Plasma at the Basal State. Anal. Biochem. 1999, 276, 195–203. DOI: DOI: 10.1006/abio.1999.4361.
  • Pavlovic, R.; Santaniello, E.; Chiesa, L. M.; Biondi, P. A. New Procedure for the Determination of 3-Nitrotyrosine in Plasma by GC–ECD. Chroma. 2009, 70, 637–641. DOI: 10.1365/s10337-009-1191-z.
  • Chen, H. J.; Chiu, W. L. Simultaneous Detection and Quantification of 3-Nitrotyrosine and 3-Bromotyrosine in Human Urine by Stable Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry. Toxicol. Lett. 2008, 181, 31–39. DOI: 10.1016/j.toxlet.2008.06.867.
  • Nuriel, T.; Deeb, R. S.; Hajjar, D. P.; Gross, S. S. Protein 3-Nitrotyrosine in Complex Biological Samples: Quantification by High-Pressure Liquid Chromatography/Electrochemical Detection and Emergence of Proteomic Approaches for Unbiased Identification of Modification Sites. In Methods in Enzymology. Amsterdam, Netherlands: Elsevier, 2008; Vol. 441, pp 1–17. DOI: 10.1016/S0076-6879(08)01201-9.
  • Duraiyan, J.; Govindarajan, R.; Kaliyappan, K.; Palanisamy, M. Applications of Immunohistochemistry. J. Pharm. Bioall. Sci. 2012, 4, S307–S309. DOI: 10.4103/0975-7406.100281.
  • Hinson, J. A.; Michael, S. L.; Ault, S. G.; Pumford, N. R. Western Blot Analysis for Nitrotyrosine Protein Adducts in Livers of Saline-Treated and Acetaminophen-Treated Mice. Toxicol. Sci. 2000, 53, 467–473. DOI: 10.1093/toxsci/53.2.467.
  • Tong, H.; Zhang, X.; Meng, X.; Lu, L.; Mai, D.; Qu, S. Simvastatin Inhibits Activation of NADPH Oxidase/p38 MAPK Pathway and Enhances Expression of Antioxidant Protein in Parkinson Disease Models. Frontiers Mol. Neurosci. 2018, 11, 3195–3203. DOI: 10.3389/fnmol.2018.00165.
  • Majkutewicz, I.; Kurowska, E.; Podlacha, M.; Myślińska, D.; Grembecka, B.; Ruciński, J.; Pierzynowska, K.; Wrona, D. Age-Dependent Effects of Dimethyl Fumarate on Cognitive and Neuropathological Features in the Streptozotocin-Induced Rat Model of Alzheimer’s Disease. Brain Res. 2018, 1686, 19–33. DOI: 10.1016/j.brainres.2018.02.016.
  • Sun, Y.-C.; Chang, P.-Y.; Tsao, K.-C.; Wu, T.-L.; Sun, C.-F.; Wu, L. L.; Wu, J. T. Establishment of a Sandwich ELISA Using Commercial Antibody for Plasma or Serum 3-Nitrotyrosine (3NT). Elevation in Inflammatory Diseases and Complementary between 3NT and Myeloperoxidase. Clin. Chim. Acta 2007, 378, 175–180. DOI: 10.1016/j.cca.2006.11.014.
  • Alhalwani, A. Y.; Repine, J. E.; Knowles, M. K.; Huffman, J. A. Development of a Sandwich ELISA with Potential for Selective Quantification of Human Lactoferrin Protein Nitrated through Disease or Environmental Exposure. Anal. Bioanal. Chem. 2018, 410, 1389–1396. DOI: 10.1007/s00216-017-0779-7.
  • Arya, A.; Gangwar, A.; Sharma, N. K.; Sethy, N. K.; Bhargava, K. Computational Method for Semi-Quantitative Analysis of Immunoblots of Modified Proteins Using ImageJ. J. Proteins & Proteomics 2015, 6, 60–68. http://jpp.org.in/index.php/jpp/article/view/138/113
  • Coskun, O. Separation Techniques: Chromatography. Northern Clin. of Istanbul 2016, 3, 156–160. DOI: 10.14744/nci.2016.32757.
  • Kaur, H.; Halliwell, B. Evidence for Nitric Oxide-Mediated Oxidative Damage in Chronic Inflammation. Nitrotyrosine in Serum and Synovial Fluid from Rheumatoid Patients. FEBS Lett. 1994, 350, 9–12. DOI: 10.1006/niox.1998.0192.
  • Herce-Pagliai, C.; Kotecha, S.; Shuker, D. E. Analytical Methods for 3-Nitrotyrosine as a Marker of Exposure to Reactive Nitrogen Species: A Review. Nitric Oxide 1998, 2, 324–336. DOI: 10.1006/niox.1998.0192.
  • Selzle, K.; Ackaert, C.; Kampf, C. J.; Kunert, A. T.; Duschl, A.; Oostingh, G. J.; Pöschl, U. Determination of Nitration Degrees for the Birch Pollen Allergen Bet v 1. Anal. Bioanal. Chem. 2013, 405, 8945–8949. DOI: 10.1007/s00216-013-7324-0.
  • Maruyama, W.; Hashizume, Y.; Matsubara, K.; Naoi, M. Identification of 3-nitro-L-Tyrosine, a Product of Nitric Oxide and Superoxide, as an Indicator of Oxidative Stress in the Human Brain. J. Chromatogr. B 1996, 676, 153–158. DOI: 10.1016/0378-4347(95)00400-9.
  • Zhang, W. Z.; Lang, C.; Kaye, D. M. Determination of Plasma Free 3‐Nitrotyrosine and Tyrosine by Reversed‐Phase Liquid Chromatography with 4‐Fluoro‐7‐Nitrobenzofurazan Derivatization. Biomed. Chromatogr. 2007, 21, 273–278. DOI: 10.1002/bmc.750.
  • Liu, F.; Reinmuth-Selzle, K.; Lai, S.; Weller, M. G.; Pöschl, U.; Kampf, C. J. Simultaneous Determination of Nitrated and Oligomerized Proteins by Size Exclusion High-Performance Liquid Chromatography Coupled to Photodiode Array Detection. J. Chromatogr. A 2017, 1495, 76–82. DOI: 10.1016/j.chroma.2017.03.015.
  • Ghesquière, B.; Colaert, N.; Helsens, K.; Dejager, L.; Vanhaute, C.; Verleysen, K.; Kas, K.; Timmerman, E.; Goethals, M.; Libert, C. In Vitro and in Vivo Protein-Bound Tyrosine Nitration Characterized by Diagonal Chromatography. Mol. Cell. Proteomics 2009, 8, 2642–2652. DOI: 10.1074/mcp.M900259-MCP200.
  • Gaut, J. P.; Byun, J.; Tran, H. D.; Heinecke, J. W. Artifact-Free Quantification of Free 3-Chlorotyrosine, 3-Bromotyrosine, and 3-Nitrotyrosine in Human Plasma by Electron Capture-Negative Chemical Ionization Gas Chromatography Mass Spectrometry and Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Anal. Biochem. 2002, 300, 252–259. DOI: 10.1006/abio.2001.5469.
  • Tsikas, D.; Duncan, M. W. Mass Spectrometry and 3-Nitrotyrosine: Strategies, Controversies, and Our Current Perspective. Mass Spec. Rev. 2014, 33, 237–276. DOI: 10.1002/mas.21396.
  • Keimer, R.; Stutzer, F. K.; Tsikas, D.; Troost, R.; Gutzki, F.-M.; Frölich, J. C. Lack of Oxidative Stress during Sustained Therapy with Isosorbide Dinitrate and Pentaerythrityl Tetranitrate in Healthy Humans: A Randomized, Double-Blind Crossover Study. J. Cardiovas. Pharmacol. 2003, 41, 284–292. https://journals.lww.com/cardiovascularpharm/Fulltext/2003/02000/Lack_of_Oxidative_Stress_during_Sustained_Therapy.18.aspx DOI: 10.1097/00005344-200302000-00018.
  • Svatikova, A.; Wolk, R.; Wang, H. H.; Otto, M. E.; Bybee, K. A.; Singh, R. J.; Somers, V. K. Circulating Free Nitrotyrosine in Obstructive Sleep Apnea. Am. J. Physiol.-Regulatory, Integrative Compar. Physiol. 2004, 287, R284–R287. DOI: 10.1152/ajpregu.00241.2004.
  • Chaki, M.; Sánchez-Calvo, B.; Carreras, A.; Valderrama, R.; Begara-Morales, J. C.; Corpas, F. J.; Barroso, J. B. Identification of Tyrosine and Nitrotyrosine with a Mixed-Mode Solid-Phase Extraction Cleanup Followed by Liquid Chromatography–Electrospray Time-of-Flight Mass Spectrometry in Plants. Methods Mol Biol 2018, 1747, 161–169. DOI: 10.1007/978-1-4939-7695-9_13.
  • Hanff, E.; Eisenga, M. F.; Beckmann, B.; Bakker, S. J.; Tsikas, D. Simultaneous Pentafluorobenzyl Derivatization and GC-ECNICI-MS Measurement of Nitrite and Malondialdehyde in Human Urine: Close Positive Correlation between These Disparate Oxidative Stress Biomarkers. J. Chromatogr. B 2017, 1043, 167–175. DOI: 10.1016/j.jchromb.2016.07.027.
  • Henderson, M.; Rice, B.; Sebastian, A.; Sullivan, P. G.; King, C.; Robinson, R. A.; Reed, T. T. Neuroproteomic Study of Nitrated Proteins in Moderate Traumatic Brain Injured Rats Treated with Gamma Glutamyl Cysteine Ethyl Ester Administration Post Injury: Insight into the Role of Glutathione Elevation in Nitrosative Stress. Prot. Clin. Appl. 2016, 10, 1218–1224. DOI: 10.1002/prca.201600004.
  • Peng, F.; Li, J.; Guo, T.; Yang, H.; Li, M.; Sang, S.; Li, X.; Desiderio, D. M.; Zhan, X. Nitroproteins in Human Astrocytomas Discovered by Gel Electrophoresis and Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2015, 26, 2062–2076. DOI: 10.1007/s13361-015-1270-3.
  • Saito, A.; Hamano, M.; Kataoka, H. Simultaneous Analysis of Multiple Urinary Biomarkers for the Evaluation of Oxidative Stress by Automated Online in‐Tube Solid‐Phase Microextraction Coupled with Negative/Positive Ion‐Switching Mode Liquid Chromatography–Tandem Mass Spectrometry. J. Separation Sci. 2018, 18, 767–777. DOI: 10.1002/jssc.201800175.
  • Zhao, Y.; Zhang, Y.; Sun, H.; Maroto, R.; Brasier, A. R. Selective Affinity Enrichment of Nitrotyrosine-Containing Peptides for Quantitative Analysis in Complex Samples. J. Proteome Res. 2017, 16, 2983–2992. DOI: 10.1021/acs.jproteome.7b00275.
  • Song, Y.; Liao, J.; Zha, C.; Wang, B.; Liu, C. C. Simultaneous Determination of 3-Chlorotyrosine and 3-Nitrotyrosine in Human Plasma by Direct Analysis in Real Time–Tandem Mass Spectrometry. Acta Pharm. Sin. B 2015, 5, 482–486. DOI: 10.1016/j.apsb.2015.07.004.
  • Zhang, Y.; Yang, H.; Pöschl, U. Analysis of Nitrated Proteins and Tryptic Peptides by HPLC-chip-MS/MS: Site-Specific Quantification, Nitration Degree, and Reactivity of Tyrosine Residues. Anal. Bioanal. Chem. 2011, 399, 459–471. DOI: 10.1007/s00216-010-4280-9.
  • Yang, Y. Specific Enrichment of a Targeted Nitrotyrosine-Containing Peptide from Complex Matrices and Relative Quantification for Liquid Chromatography–Mass Spectrometry Analysis. J. Chromatogr. A 2017, 1485, 90–100. DOI: 10.1016/j.chroma.2017.01.036.
  • Boichenko, A.; Govorukhina, N.; van der Zee, A. G.; Bischoff, R. Simultaneous Serum Desalting and Total Protein Determination by Macroporous Reversed-Phase Chromatography. Anal. Bioanal. Chem. 2013, 405, 3195–3203. DOI: 10.1007/s00216-013-6749-9.
  • Govindasamy, M.; Manavalan, S.; Chen, S.-M.; Umamaheswari, R.; Chen, T.-W.; Mani, V. Determination of Oxidative Stress Biomarker 3-nitro-L-Tyrosine Using CdWO 4 Nanodots Decorated Reduced Graphene Oxide. Sensors and Actuators B: Chem. 2018. 28, 997–1006. DOI: 10.1016/j.snb.2018.05.138.
  • Jalili, R.; Amjadi, M. Bio-Inspired Molecularly Imprinted Polymer–Green Emitting Carbon Dot Composite for Selective and Sensitive Detection of 3-Nitrotyrosine as a Biomarker. Sensors and Actuators B: Chem. 2018, 255, 1072–1078. DOI: DOI: 10.1016/j.snb.2017.08.145.
  • Li, H.; Huang, Y.; Zhang, B.; Pan, X.; Zhu, X.; Li, G. Method to Study Stoichiometry of Protein Post-Translational Modification. Anal. Chem. 2014, 86, 12138–12142. DOI: 10.1021/ac503077f.
  • Martins, G. V.; Marques, A. C.; Fortunato, E.; Sales, M. G. F. Wax-Printed Paper-Based Device for Direct Electrochemical Detection of 3-Nitrotyrosine. Electrochim. Acta 2018, 284, 60–68. DOI: DOI: 10.1016/j.electacta.2018.07.150.
  • Attia, M. S.; Al-Radadi, N. S. Nano Optical Sensor Binuclear Pt-2-Pyrazinecarboxylic Acid –Bipyridine for Enhancement of the Efficiency of 3-Nitrotyrosine Biomarker for Early Diagnosis of Liver Cirrhosis with Minimal Hepatic Encephalopathy. Biosensors Bioelectr. 2016, 86, 406–412. DOI: 10.1016/j.bios.2016.06.074.
  • Chen, S.-M.; Umamaheswari, R.; Mani, G.; Chen, T.-W.; Ali, M. A.; Fahad, M. A.; A.-H.; Elshikh, M. S.; Farah, M. A. Hierarchically Structured CuFe2O4 ND@RGO Composite for the Detection of Oxidative Stress Biomarker in Biological Fluids. Inorg. Chem. Front. 2018, 5, 944–950. DOI: 10.1039/C7QI00799J.
  • Wang, S.; Sun, G.; Chen, Z.; Liang, Y.; Zhou, Q.; Pan, Y.; Zhai, H. Constructing a Novel Composite of Molecularly Imprinted Polymer-Coated AuNPs Electrochemical Sensor for the Determination of 3-Nitrotyrosine. Electrochim. Acta 2018, 259, 893–902. DOI: DOI: 10.1016/j.electacta.2017.11.033.
  • Dragusanu, M.; Petre, B.-A.; Slamnoiu, S.; Vlad, C.; Tu, T.; Przybylski, M. On-Line Bioaffinity-Electrospray Mass Spectrometry for Simultaneous Detection, Identification, and Quantification of Protein–Ligand Interactions. J. Am. Soc. Mass Spectrom. 2010, 21, 1643–1648. DOI: 10.1016/j.jasms.2010.06.011.
  • Schmidt, P.; Youhnovski, N.; Daiber, A.; Balan, A.; Arsic, M.; Bachschmid, M.; Przybylski, M.; Ullrich, V. Specific Nitration at Tyrosine-430 Revealed by High Resolution Mass Spectrometry as Basis for Redox Regulation of Bovine Prostacyclin Synthase. J. Biol. Chem. 2003, 139, 1660–1666. DOI: 10.1074/jbc.M208080200.
  • Ng, S. P.; Qiu, G.; Ding, N.; Lu, X.; Wu, C. L. Label-Free Detection of 3-Nitro-l-Tyrosine with Nickel-Doped Graphene Localized Surface Plasmon Resonance Biosensor. Biosensors Bioelectr. 2017, 89, 468–476. DOI: 10.1016/j.bios.2016.04.017.
  • Roy, E.; Patra, S.; Madhuri, R.; Sharma, P. K. Developing Electrochemical Sensor for Point-of-Care Diagnostics of Oxidative Stress Marker Using Imprinted Bimetallic Fe/Pd Nanoparticle. Talanta 2015, 132, 406–415. DOI: 10.1016/j.talanta.2014.09.033.
  • Wang, X.; Zhu, M.; Liu, H.; Ma, J.; Li, F. Modification of Pd–Fe Nanoparticles for Catalytic Dechlorination of 2, 4-Dichlorophenol. Sci. Total Environ. 2013, 449, 157–167. DOI: 10.1016/j.scitotenv.2013.01.008.
  • Tohgi, H.; Abe, T.; Yamazaki, K.; Murata, T.; Ishizaki, E.; Isobe, C. Alterations of 3-Nitrotyrosine Concentration in the Cerebrospinal Fluid during Aging and in Patients with Alzheimer's Disease. Neurosci. Lett. 1999, 269, 52–54. DOI: 10.1016/S0304-3940(99)00406-1.
  • Chen, H.; Luo, H.; Lan, Y.; Dong, T.; Hu, B.; Wang, Y. Removal of Tetracycline from Aqueous Solutions Using Polyvinylpyrrolidone (PVP-K30) Modified Nanoscale Zero Valent Iron. J. Hazardous Mater. 2011, 192, 44–53. DOI: 10.1016/j.jhazmat.2011.04.089.
  • Han, Y.; Li, W.; Zhang, M.; Tao, K. Catalytic Dechlorination of Monochlorobenzene with a New Type of Nanoscale Ni (B)/Fe (B) bimetallic Catalytic Reductant. Chemosphere 2008, 72, 53–58. DOI: 10.1016/j.chemosphere.2008.02.002.
  • Chang, J. Y.; Chow, L. W.; Dismuke, W. M.; Ethier, C. R.; Stevens, M. M.; Stamer, W. D.; Overby, D. R. Peptide‐Functionalized Fluorescent Particles for in Situ Detection of Nitric Oxide via Peroxynitrite‐Mediated Nitration. Adv. Healthcare Mater. 2017, 6, 1700383. DOI: 10.1002/adhm.201700383.
  • Lindermayr, C.; Durner, J. Nitric Oxide Sensor Proteins with Revolutionary Potential. J. Exp. Botany 2018, 69, 3507–3510. DOI: 10.1093/jxb/ery193.
  • Calvo-Begueria, L.; Rubio, M. C.; Martínez, J. I.; Pérez-Rontomé, C.; Delgado, M. J.; Bedmar, E. J.; Becana, M. Redefining Nitric Oxide Production in Legume Nodules through Complementary Insights from Electron Paramagnetic Resonance Spectroscopy and Specific Fluorescent Probes. J. Exp. Botany. 2018, 13, 134–144. DOI: 10.1093/jxb/ery159.
  • Rezende Valim, L.; Davies, J. A.; Tveen Jensen, K.; Guo, R.; Willison, K. R.; Spickett, C. M.; Pitt, A. R.; Klug, D. R. Identification and Relative Quantification of Tyrosine Nitration in a Model Peptide Using Two-Dimensional Infrared Spectroscopy. J. Phys. Chem. B 2014, 118, 12855–12864. DOI: 10.1021/jp509053q.
  • Maeso, N.; Cifuentes, A.; Barbas, C. Large-Volume Sample Stacking-Capillary Electrophoresis Used for the Determination of 3-Nitrotyrosine in Rat Urine. J. Chromatogr. B 2004, 809, 147–152. DOI: 10.1016/j.jchromb.2004.06.017.
  • Perera, M. T.; Higdon, R.; Richards, D. A.; Silva, M. A.; Murphy, N.; Kolker, E.; Mirza, D. F. Biomarker Differences between Cadaveric Grafts Used in Human Orthotopic Liver Transplantation as Identified by Coulometric Electrochemical Array Detection (CEAD) Metabolomics. Omics: A J. Integr. Biol. 2014, 18, 767–777. DOI: 10.1089/omi.2014.0094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.