1,890
Views
96
CrossRef citations to date
0
Altmetric
Review Article

Nanocatalytic Assemblies for Catalytic Reduction of Nitrophenols: A Critical Review

ORCID Icon, , , , , & show all
Pages 322-338 | Published online: 13 Jul 2019

References

  • Chiou, J. R.; Lai, B. H.; Hsu, K. C.; Chen, D. H. One-Pot Green Synthesis of Silver/Iron Oxide Composite Nanoparticles for 4-Nitrophenol Reduction. J. Hazard. Mater. 2013, 248, 394–400. DOI:10.1016/j.jhazmat.2013.01.030.
  • Yang, P.; Xu, A. D.; Xia, J.; He, J.; Xing, H. L.; Zhang, X. M.; Wei, S. Y.; Wang, N.-N. Facile Synthesis of Highly Catalytic Activity Ni–Co–Pd–P Composite for Reduction of the P-Nitrophenol. Appl. Catal. 2014, 470, 89–96. DOI:10.1016/j.apcata.2013.10.043
  • Shaoqing, Y.; Jun, H.; Jianlong, W. Radiation-Induced Catalytic Degradation of P-Nitrophenol (P-NP) in the Presence of TiO2 Nanoparticles. Radiat. Phys. Chem. 2010, 79, 1039–1046. DOI:10.1016/j.radphyschem.2010.05.008.
  • Maurino, V.; Minero, C.; Pelizzetti, E.; Piccinini, P.; Serpone, N.; Hidaka, H. The Fate of Organic Nitrogen under Photocatalytic Conditions: Degradation of Nitrophenols and Aminophenols on Irradiated TiO2. J. Photochem. Photobiol. A 1997, 109, 171–176. DOI:10.1016/S1010-6030(97)00124-X.
  • Xiong, P.; Fu, Y.; Wang, L.; Wang, X. Multi-Walled Carbon Nanotubes Supported Nickel Ferrite: A Magnetically Recyclable Photocatalyst with High Photocatalytic Activity on Degradation of Phenols. Chem. Eng. J. 2012, 195, 149–157. DOI:10.1016/j.cej.2012.05.007.
  • Donaldson, J. D.; Grimes, S. M.; Yasri, N. G.; Wheals, B.; Parrick, J.; Errington, W. E. Anodic Oxidation of the Dye Materials Methylene Blue, Acid Blue 25, Reactive Blue 2 and Reactive Blue 15 and the Characterisation of Novel Intermediate Compounds in the Anodic Oxidation of Methylene Blue. J. Chem. Technol. Biotechnol. 2002, 77, 756–760. DOI:10.1002/jctb.642.
  • Zaggout, F. R.; Ghalwa, N. A. Removal of O-Nitrophenol from Water by Electrochemical Degradation Using a Lead Oxide/Titanium Modified Electrode. J. Environ. Manage. 2008, 86, 291–296. DOI:10.1016/j.jenvman.2006.12.033.
  • Zhu, X.; Ni, J. The Improvement of Boron-Doped Diamond Anode System in Electrochemical Degradation of P-Nitrophenol by Zero-Valent Iron. Electrochim. Acta 2011, 56, 10371–10377. DOI:10.1016/j.electacta.2011.05.062.
  • Singh, S.; Kumar, N.; Kumar, M.; Agarwal, A.; Mizaikoff, B. Electrochemical Sensing and Remediation of 4-Nitrophenol Using Bio-Synthesized Copper Oxide Nanoparticles. Chem. Eng. J. 2017, 313, 283–292. DOI:10.1016/j.cej.2016.12.049
  • Rizhi, C.; Yan, D.; Weihong, X.; Nanping, X. Effect of Alumina Particle Size on Ni/Al2O3 Catalysts for P-Nitrophenol Hydrogenation. Chin. J. Chem. Eng. 2007, 15, 884–888. DOI:10.1016/S1004-9541(08)60019-1.
  • Wu, Z.; Chen, J.; Di, Q.; Zhang, M. Size-Controlled Synthesis of a Supported Ni Nanoparticle Catalyst for Selective Hydrogenation of P-Nitrophenol to P-Aminophenol. Catal. Commun. 2012, 18, 55–59. DOI:10.1016/j.catcom.2011.11.015.
  • Dai, R.; Chen, J.; Lin, J.; Xiao, S.; Chen, S.; Deng, Y. Reduction of Nitro Phenols Using Nitroreductase from E. Coli in the Presence of NADH. J. Hazard. Mater. 2009, 170, 141–143. DOI:10.1016/j.jhazmat.2009.04.122.
  • Marais, E.; Nyokong, T. Adsorption of 4-Nitrophenol onto Amberlite® Ira-900 Modified with Metallophthalocyanines. J. Hazard. Mater. 2008, 152, 293–301. DOI:10.1016/j.jhazmat.2007.06.096.
  • Zhang, A.; Wang, N.; Zhou, J.; Jiang, P.; Liu, G. Heterogeneous Fenton-Like Catalytic Removal of P-Nitrophenol in Water Using Acid-Activated Fly Ash. J. Hazard. Mater. 2012, 201, 68–73. DOI:10.1016/j.jhazmat.2011.11.033.
  • Apolinário, Â. C.; Silva, A. M.; Machado, B. F.; Gomes, H. T.; Araújo, P. P.; Figueiredo, J. L.; Faria, J. L. Wet Air Oxidation of Nitro-Aromatic Compounds: Reactivity on Single-and Multi-Component Systems and Surface Chemistry Studies with a Carbon Xerogel. Appl. Catal. B 2008, 84, 75–86. DOI:10.1016/j.apcatb.2007.12.018.
  • Narayanan, R. K.; Devaki, S. J. Brawny Silver-Hydrogel Based Nanocatalyst for Reduction of Nitrophenols: Studies on Kinetics and Mechanism. Ind. Eng. Chem. Res. 2015, 54, 1197–1203. DOI:10.1021/ie5038352.
  • Kupeta, A.; Naidoo, E.; Ofomaja, A. Kinetics and Equilibrium Study of 2-Nitrophenol Adsorption onto Polyurethane Cross-Linked Pine Cone Biomass. J. Cleaner Prod. 2018, 179, 191–209. DOI:10.1016/j.jclepro.2018.01.034.
  • Yadav, H. M.; Lee, J.-J. One-Pot Synthesis of Copper Nanoparticles on Glass: Applications for Non-Enzymatic Glucose Detection and Catalytic Reduction of 4-Nitrophenol. J. Solid State Electrochem. 2019, 23, 503–512. DOI:10.1007/s10008-018-4137-2.
  • Najeeb, J.; Ahmad, G.; Nazir, S.; Naseem, K.; Kanwal, A. Critical Analysis of Various Supporting Mediums Employed for the Incapacitation of Silver Nanomaterial for Aniline and Phenolic Pollutants: A Review. Korean J. Chem. Eng. 2017, 1–16. DOI:10.1007/s11814-017-0192-0
  • Yasri, N. G.; Gunasekaran, S. Electrochemical Technologies for Environmental Remediation. In Enhancing Cleanup of Environmental Pollutants; Springer, 2017; pp 5–73. DOI:10.1007/978-3-319-55423-5_2
  • Hu, H.; Xin, J. H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y. Synthesis and Stabilization of Metal Nanocatalysts for Reduction Reactions – A Review. J. Mater. Chem. A 2015, 3, 11157–11182. DOI:10.1039/C5TA00753D.
  • Begum, R.; Rehan, R.; Farooqi, Z. H.; Butt, Z.; Ashraf, S. Physical Chemistry of Catalytic Reduction of Nitroarenes Using Various Nanocatalytic Systems: Past, Present, and Future. J. Nanopart. Res. 2016, 18, 231. DOI:10.1007/s11051-016-3536-5
  • Naseem, K.; Begum, R.; Farooqi, Z. H. Catalytic Reduction of 2-Nitroaniline: A Review. Environ. Sci. Pollut. Res. Int. 2017, 24, 6446–6460. DOI:10.1007/s11356-016-8317-2.
  • Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir 2010, 26, 2885–2893. DOI:10.1021/la902950x.
  • Sahiner, N.; Ozay, H.; Ozay, O.; Aktas, N. New Catalytic Route: Hydrogels as Templates and Reactors for in Situ Ni Nanoparticle Synthesis and Usage in the Reduction of 2-and 4-Nitrophenols. Appl. Catal. A 2010, 385, 201–207. DOI:10.1016/j.apcata.2010.07.004.
  • Rambabu, D.; Pradeep, C. P.; Pooja, P.; Dhir, A. Self-Assembled Material of Palladium Nanoparticles and a Thiacalix [4] Arene Cd (II) Complex as an Efficient Catalyst for Nitro-Phenol Reduction. New J. Chem. 2015, 39, 8130–8135. DOI:10.1039/C5NJ01304F.
  • Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of Dyes in Textile Effluent: A Critical Review on Current Treatment Technologies with a Proposed Alternative. Bioresour. Technol. 2001, 77, 247–255. DOI:10.1016/S0960-8524(00)00080-8.
  • Corma, A.; Garcia, H. Supported Gold Nanoparticles as Catalysts for Organic Reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. DOI:10.1039/b707314n.
  • Srinivas, P. R.; Philbert, M.; Vu, T. Q.; Huang, Q.; Kokini, J. L.; Saos, E.; Chen, H.; Peterson, C. M.; Friedl, K. E.; McDade-Ngutter, C.; et al. Nanotechnology Research: Applications in Nutritional Sciences. J. Nutr. 2010, 140, 119–124. DOI:10.3945/jn.109.115048.
  • Scheu, M.; Veefkind, V.; Verbandt, Y.; Galan, E. M.; Absalom, R.; Förster, W. Mapping Nanotechnology Patents: The EPO Approach. World Pat. Inf. 2006, 28, 204–211. DOI:10.1016/j.wpi.2006.03.005.
  • Kung, H. H.; Kung, M. C. Nanotechnology: Applications and Potentials for Heterogeneous Catalysis. Catal. Today 2004, 97, 219–224. DOI:10.1016/j.cattod.2004.07.055.
  • Noguez, C. Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment. J. Phys. Chem. C 2007, 111, 3806–3819. DOI:10.1021/jp066539m
  • Hanke, T.; Cesar, J.; Knittel, V.; Trügler, A.; Hohenester, U.; Leitenstorfer, A.; Bratschitsch, R. Tailoring Spatiotemporal Light Confinement in Single Plasmonic Nanoantennas. Nano Lett. 2012, 12, 992–996. DOI:10.1021/nl2041047.
  • Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. 668–677. ACS Publications 2003, Springer: Nature Switzerland AG. Part of Springer Nature.
  • Wu, Y-g.; Wen, M.; Wu, Q-s.; Fang, H. Ni/Graphene Nanostructure and Its Electron-Enhanced Catalytic Action for Hydrogenation Reaction of Nitrophenol. J. Phys. Chem. C 2014, 118, 6307–6313. DOI:10.1021/jp412711b.
  • Zhang, M.; Liu, L.; Wu, C.; Fu, G.; Zhao, H.; He, B. Synthesis, Characterization and Application of Well-Defined Environmentally Responsive Polymer Brushes on the Surface of Colloid Particles. Polymer 2007, 48, 1989–1997. DOI:10.1016/j.polymer.2007.01.069.
  • Begum, R.; Farooqi, Z. H.; Ahmed, E.; Naseem, K.; Ashraf, S.; Sharif, A.; Rehan, R. Catalytic Reduction of 4‐Nitrophenol Using Silver Nanoparticles‐Engineered Poly(N‐Isopropylacrylamide‐Co‐Acrylamide) Hybrid Microgels. Appl. Organometal. Chem. 2017, 31, e3563. DOI:10.1002/aoc.3563.
  • Farooqi, Z. H.; Butt, Z.; Begum, R.; Khan, S. R.; Sharif, A.; Ahmed, E. Poly(N-Isopropylacrylamide-Co-Methacrylic Acid) Microgel Stabilized Copper Nanoparticles for Catalytic Reduction of Nitrobenzene. Mater. Sci. Pol. 2015, 33, 627–634. DOI:10.1515/msp-2015-0074.
  • Farooqi, Z. H.; Khan, S. R.; Hussain, T.; Begum, R.; Ejaz, K.; Majeed, S.; Ajmal, M.; Kanwal, F.; Siddiq, M. Effect of Crosslinker Feed Content on Catalaytic Activity of Silver Nanoparticles Fabricated in Multiresponsive Microgels. Korean J. Chem. Eng. 2014, 31, 1674–1680. DOI:10.1007/s11814-014-0117-0.
  • Farooqi, Z. H.; Iqbal, S.; Khan, S. R.; Kanwal, F.; Begum, R. Cobalt and Nickel Nanoparticles Fabricated P(NIPAM-co-MAA) Microgels for Catalytic Applications. e-Polymers 2014, 14, 313–321. DOI:DOI:10.1515/epoly-2014-0111
  • Yang, D.; Viitasuo, M.; Pooch, F.; Tenhu, H.; Hietala, S. Poly(N-Acryloylglycinamide) Microgels as Nanocatalyst Platform. Polym. Chem. 2018, 9, 517–524. DOI:10.1039/C7PY01950E.
  • Palem, R. R.; Ganesh, S. D.; Saha, N.; Kronek, J.; Sáha, P. Green’ synthesis of Silver Polymer Nanocomposites of Poly(2-Isopropenyl-2-Oxazoline-Co-N-Vinylpyrrolidone) and Its Catalytic Activity. J. Polym. Res. 2018, 25, 152. DOI:10.1007/s10965-018-1548-9
  • Farooqi, Z. H.; Tariq, N.; Begum, R.; Khan, S. R.; Iqbal, Z.; Khan, A. Fabrication of Silver Nanoparticles in Poly(N-Isopropylacrylamide-Co-Allylacetic Acid) Microgels for Catalytic Reduction of Nitroarenes. Turk. J. Chem. 2015, 39, 576–588. DOI:10.3906/kim-1412-15.
  • Ashraf, S.; Begum, R.; Rehan, R.; Wu, W.; Farooqi, Z. H. Synthesis and Characterization of Ph-Responsive Organic–Inorganic Hybrid Material with Excellent Catalytic Activity. J. Inorg. Organomet. Polym Mater. 2018, 28, 1–13. DOI:10.1007/s10904-018-0879-7
  • Begum, R.; Naseem, K.; Ahmed, E.; Sharif, A.; Farooqi, Z. H. Simultaneous Catalytic Reduction of Nitroarenes Using Silver Nanoparticles Fabricated in Poly(N-Isopropylacrylamide-Acrylic Acid-Acrylamide) Microgels. Colloids Surf. A 2016, 511, 17–26. DOI:10.1016/j.colsurfa.2016.09.076.
  • Begum, R.; Farooqi, Z. H.; Butt, Z.; Wu, Q.; Wu, W.; Irfan, A. Engineering of Responsive Polymer Based Nano-Reactors for Facile Mass Transport and Enhanced Catalytic Degradation of 4-Nitrophenol. J. Environ. Sci. 2018, 72, 43–52. DOI:10.1016/j.jes.2017.12.003
  • Satapathy, S. S.; Bhol, P.; Chakkarambath, A.; Mohanta, J.; Samantaray, K.; Bhat, S. K.; Panda, S. K.; Mohanty, P. S.; Si, S. Thermo-Responsive Pnipam-Metal Hybrids: An Efficient Nanocatalyst for the Reduction of 4-Nitrophenol. Appl. Surf. Sci. 2017, 420, 753–763. DOI:10.1016/j.apsusc.2017.05.172.
  • Shah, L. A.; Haleem, A.; Sayed, M.; Siddiq, M. Synthesis of Sensitive Hybrid Polymer Microgels for Catalytic Reduction of Organic Pollutants. J. Environ. Chem. Eng. 2016, 4, 3492–3497. DOI:10.1016/j.jece.2016.07.029.
  • Farooqi, Z. H.; Khan, S. R.; Begum, R.; Kanwal, F.; Sharif, A.; Ahmed, E.; Majeed, S.; Ejaz, K.; Ijaz, A. Effect of Acrylic Acid Feed Contents of Microgels on Catalytic Activity of Silver Nanoparticles Fabricated Hybrid Microgels. Turk. J. Chem. 2015, 39, 96–107. DOI:10.3906/kim-1406-40.
  • Kazeminava, F.; Arsalani, N.; Akbari, A. Poss Nanocrosslinked Poly(Ethylene Glycol) Hydrogel as Hybrid Material Support for Silver Nanocatalyst. Appl. Organometal. Chem. 2018, 32, e4359. DOI:10.1002/aoc.4359.
  • Khan, S. R.; Farooqi, Z. H.; Ajmal, M.; Siddiq, M.; Khan, A. Synthesis, Characterization, and Silver Nanoparticles Fabrication in N-Isopropylacrylamide-Based Polymer Microgels for Rapid Degradation of P-Nitrophenol. J. Dispersion Sci. Technol. 2013, 34, 1324–1333. DOI:10.1080/01932691.2012.744690.
  • Sun, X.; Sun, L.; Zheng, Y.; Lin, Q.; Su, H.; Li, F.; Qi, C. One-Pot Fabrication of Core-Shell Fly Ash@Polypyrrole/Au Composite Microspheres and Their Performance for the Reduction of Nitrophenol. Synth. Met. 2016, 220, 635–642. DOI:10.1016/j.synthmet.2016.08.005.
  • Huang, J.; Zhang, L.; Chen, B.; Ji, N.; Chen, F.; Zhang, Y.; Zhang, Z. Nanocomposites of Size-Controlled Gold Nanoparticles and Graphene Oxide: Formation and Applications in Sers and Catalysis. Nanoscale 2010, 2, 2733–2738. DOI:10.1039/c0nr00473a.
  • Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C 2010, 114, 8814–8820. DOI:10.1021/jp101125j
  • Shah, L. A.; Sayed, M.; Siddiq, M. Fabrication of Ag and Au Nanoparticles in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study. Mater. Sci. Pol. 2017, 35, 651–659. DOI:10.1515/msp-2017-0073.
  • Dai, Y.; Li, Y.; Wang, S. Abc Triblock Copolymer-Stabilized Gold Nanoparticles for Catalytic Reduction of 4-Nitrophenol. J. Catal. 2015, 329, 425–430. DOI:10.1016/j.jcat.2015.06.006.
  • Dai, Y.; Yu, P.; Zhang, X.; Zhuo, R. Gold Nanoparticles Stabilized by Amphiphilic Hyperbranched Polymers for Catalytic Reduction of 4-Nitrophenol. J. Catal. 2016, 337, 65–71. DOI:10.1016/j.jcat.2016.01.014.
  • Kuroda, K.; Ishida, T.; Haruta, M. Reduction of 4-Nitrophenol to 4-Aminophenol over Au Nanoparticles Deposited on PMMA. J. Mol. Catal. A: Chem. 2009, 298, 7–11. DOI:10.1016/j.molcata.2008.09.009.
  • Lu, Y.; Yuan, J.; Polzer, F.; Drechsler, M.; Preussner, J. In Situ Growth of Catalytic Active Au–Pt Bimetallic Nanorods in Thermoresponsive Core–Shell Microgels. ACS Nano 2010, 4, 7078–7086. DOI:10.1021/nn102622d.
  • Marcelo, G.; López-González, M.; Mendicuti, F.; Tarazona, M. P.; Valiente, M. Poly(N-Isopropylacrylamide)/Gold Hybrid Hydrogels Prepared by Catechol Redox Chemistry. Characterization and Smart Tunable Catalytic Activity. Macromolecules 2014, 47, 6028–6036. DOI:10.1021/ma501214k.
  • Lü, J.; Fu, Y.; Song, Y.; Wang, D.; Lü, C. Temperature-Dependent Catalytic Reduction of 4-Nitrophenol Based on Silver Nanoclusters Protected by a Thermo-Responsive Copolymer Ligand. RSC Adv. 2016, 6, 14247–14252. DOI:10.1039/C5RA23158B.
  • Guria, M. K.; Majumdar, M.; Bhattacharyya, M. Green Synthesis of Protein Capped Nano-Gold Particle: An Excellent Recyclable Nano-Catalyst for the Reduction of Nitro-Aromatic Pollutants at Higher Concentration. J. Mol. Liq. 2016, 222, 549–557. DOI:10.1016/j.molliq.2016.07.087.
  • Mohanta, J.; Satapathy, S.; Si, S. Porous Silica‐Coated Gold Nanorods: A Highly Active Catalyst for the Reduction of 4‐Nitrophenol. ChemPhysChem 2016, 17, 364–368. DOI:10.1002/cphc.201501127.
  • Pham, T. A.; Choi, B. C.; Lim, K. T.; Jeong, Y. T. A Simple Approach for Immobilization of Gold Nanoparticles on Graphene Oxide Sheets by Covalent Bonding. Appl. Surf. Sci. 2011, 257, 3350–3357. DOI:10.1016/j.apsusc.2010.11.023.
  • Ansar, S. M.; Kitchens, C. L. Impact of Gold Nanoparticle Stabilizing Ligands on the Colloidal Catalytic Reduction of 4-Nitrophenol. ACS Catal. 2016, 6, 5553–5560. DOI:10.1021/acscatal.6b00635.
  • Gangula, A.; Podila, R.; M, R.; Karanam, L.; Janardhana, C.; Rao, A. M. Catalytic Reduction of 4-Nitrophenol Using Biogenic Gold and Silver Nanoparticles Derived from Breynia rhamnoides. Langmuir 2011, 27, 15268–15274. DOI:10.1021/la2034559.
  • Zayed, M. F.; Eisa, W. H. Phoenix dactylifera L. Leaf Extract Phytosynthesized Gold Nanoparticles; Controlled Synthesis and Catalytic Activity. Spectrochim. Acta Part A 2014, 121, 238–244. DOI:10.1016/j.saa.2013.10.092.
  • Aromal, S. A.; Philip, D. Green Synthesis of Gold Nanoparticles Using Trigonella foenum-graecum and Its Size-Dependent Catalytic Activity. Spectrochim. Acta Part A 2012, 97, 1–5. DOI:10.1016/j.saa.2012.05.083.
  • Dauthal, P.; Mukhopadhyay, M. Prunus domestica Fruit Extract-Mediated Synthesis of Gold Nanoparticles and Its Catalytic Activity for 4-Nitrophenol Reduction. Ind. Eng. Chem. Res. 2012, 51, 13014–13020. DOI:10.1021/ie300369g.
  • Narayanan, K. B.; Sakthivel, N. Synthesis and Characterization of Nano-Gold Composite Using Cylindrocladium floridanum and Its Heterogeneous Catalysis in the Degradation of 4-Nitrophenol. J. Hazard. Mater. 2011, 189, 519–525. DOI:10.1016/j.jhazmat.2011.02.069.
  • Huang, X.; Liao, X.; Shi, B. Synthesis of Highly Active and Reusable Supported Gold Nanoparticles and Their Catalytic Applications to 4-Nitrophenol Reduction. Green Chem. 2011, 13, 2801–2805. DOI:10.1039/c1gc15873b.
  • Dash, S. S.; Majumdar, R.; Sikder, A. K.; Bag, B. G.; Patra, B. K. Saraca indica Bark Extract Mediated Green Synthesis of Polyshaped Gold Nanoparticles and Its Application in Catalytic Reduction. Appl. Nanosci. 2014, 4, 485–490. DOI:10.1007/s13204-013-0223-z.
  • Yu, J.; Xu, D.; Guan, H. N.; Wang, C.; Huang, L. K.; Chi, D. F. Facile One-Step Green Synthesis of Gold Nanoparticles Using Citrus Maxima Aqueous Extracts and Its Catalytic Activity. Mater. Lett. 2016, 166, 110–112. DOI:10.1016/j.matlet.2015.12.031.
  • Reddy, V.; Torati, R. S.; Oh, S.; Kim, C. Biosynthesis of Gold Nanoparticles Assisted by Sapindus mukorossi Gaertn. Fruit Pericarp and Their Catalytic Application for the Reduction of P-Nitroaniline. Ind. Eng. Chem. Res. 2013, 52, 556–564. DOI:10.1021/ie302037c.
  • Jebaranjitham, J. N.; Mageshwari, C.; Saravanan, R.; Mu, N. Fabrication of Amine Functionalized Graphene Oxide–Agnps Nanocomposite with Improved Dispersibility for Reduction of 4-Nitrophenol. Compos., Part B 2019, 171, 302–309. DOI:10.1016/j.compositesb.2019.05.018
  • Alayoglu, S.; Eichhorn, B. Rh–Pt Bimetallic Catalysts: Synthesis, Characterization, and Catalysis of Core–Shell, Alloy, and Monometallic Nanoparticles. J. Am. Chem. Soc. 2008, 130, 17479–17486. DOI:10.1021/ja8061425.
  • Toshima, N.; Yonezawa, T. Bimetallic Nanoparticles – Novel Materials for Chemical and Physical Applications. New J. Chem. 1998, 22, 1179–1201. DOI:10.1039/a805753b.
  • Sinfelt, J. Supported “Bimetallic Cluster” Catalysts. J. Catal. 1973, 29, 308–315. DOI:10.1016/0021-9517(73)90234-0.
  • Sinfelt, J. H. Bimetallic Catalysts: Discoveries, Concepts, and Applications; Wiley-Interscience: Hoboken, 1983.
  • Ghosh, S. K.; Mandal, M.; Kundu, S.; Nath, S.; Pal, T. Bimetallic Pt–Ni Nanoparticles Can Catalyze Reduction of Aromatic Nitro Compounds by Sodium Borohydride in Aqueous Solution. Appl. Catal. A 2004, 268, 61–66. DOI:10.1016/j.apcata.2004.03.017.
  • Ma, Y.; Wu, X.; Zhang, G. Core-Shell Ag@ Pt Nanoparticles Supported on Sepiolite Nanofibers for the Catalytic Reduction of Nitrophenols in Water: Enhanced Catalytic Performance and DFT Study. Appl. Catal. 2017, 205, 262–270. DOI:10.1016/j.apcatb.2016.12.025.
  • Pozun, Z. D.; Rodenbusch, S. E.; Keller, E.; Tran, K.; Tang, W.; Stevenson, K. J.; Henkelman, G. A Systematic Investigation of P-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles. J. Phys. Chem. C 2013, 117, 7598–7604. DOI:10.1021/jp312588u.
  • Wu, T.; Zhang, L.; Gao, J.; Liu, Y.; Gao, C.; Yan, J. Fabrication of Graphene Oxide Decorated with Au–Ag Alloy Nanoparticles and Its Superior Catalytic Performance for the Reduction of 4-Nitrophenol. J. Mater. Chem. A 2013, 1, 7384–7390. DOI:10.1039/C3TA10684E.
  • Xu, Z.; He, X.; Liang, M.; Sun, L.; Li, D.; Xie, K.; Liao, L. Catalytic Reduction of 4-Nitrophenol over Graphene Supported Cu@ Ni Bimetallic Nanowires. Mater. Chem. Phys. 2019, 227, 64–71. DOI:10.1016/j.matchemphys.2019.01.065.
  • Gao, X.; Zhao, H.; Liu, Y.; Ren, Z.; Lin, C.; Tao, J.; Zhai, Y. Facile Synthesis of Pdnip/Reduced Graphene Oxide Nanocomposites for Catalytic Reduction of 4-Nitrophenol. Mater. Chem. Phys. 2019, 222, 391–397. DOI:10.1016/j.matchemphys.2018.10.037.
  • Esumi, K.; Isono, R.; Yoshimura, T. Preparation of Pamam– and Ppi–Metal (Silver, Platinum, and Palladium) Nanocomposites and Their Catalytic Activities for Reduction of 4-Nitrophenol. Langmuir 2004, 20, 237–243. DOI:10.1021/la035440t.
  • Hayakawa, K.; Yoshimura, T.; Esumi, K. Preparation of Gold–Dendrimer Nanocomposites by Laser Irradiation and Their Catalytic Reduction of 4-Nitrophenol. Langmuir 2003, 19, 5517–5521. DOI:10.1021/la034339l.
  • Rajesh, R.; Venkatesan, R. Encapsulation of Silver Nanoparticles into Graphite Grafted with Hyperbranched Poly(Amidoamine) Dendrimer and Their Catalytic Activity Towards Reduction of Nitro Aromatics. J. Mol. Catal. A: Chem. 2012, 359, 88–96. DOI:10.1016/j.molcata.2012.04.001.
  • Ajmal, M.; Farooqi, Z. H.; Siddiq, M. Silver Nanoparticles Containing Hybrid Polymer Microgels with Tunable Surface Plasmon Resonance and Catalytic Activity. Korean J. Chem. Eng. 2013, 30, 2030–2036. DOI:10.1007/s11814-013-0150-4.
  • Özay, H.; Kubilay, S.; Aktas, N.; Sahiner, N. Utilization of Environmentally Benign Hydrogels and Their Networks as Reactor Media in the Catalytic Reduction of Nitrophenols. Int. J. Polym. Mater. 2010, 60, 163–173. DOI:10.1080/00914037.2010.504168.
  • Ur Rehman, S.; Siddiq, M.; Al-Lohedan, H.; Sahiner, N. Cationic Microgels Embedding Metal Nanoparticles in the Reduction of Dyes and Nitro-Phenols. Chem. Eng. J. 2015, 265, 201–209. DOI:10.1016/j.cej.2014.12.061.
  • Yao, T.; Cui, T.; Fang, X.; Cui, F.; Wu, J. Preparation of Yolk–Shell FeXOY/Pd@ Mesoporous SiO2 Composites with High Stability and Their Application in Catalytic Reduction of 4-Nitrophenol. Nanoscale 2013, 5, 5896–5904. DOI:10.1039/c3nr01470c.
  • Lu, Y.; Mei, Y.; Ballauff, M.; Drechsler, M. Thermosensitive Core–Shell Particles as Carrier Systems for Metallic Nanoparticles. J. Phys. Chem. B 2006, 110, 3930–3937. DOI:10.1021/jp057149n.
  • Mei, Y.; Sharma, G.; Lu, Y.; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R. High Catalytic Activity of Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes. Langmuir 2005, 21, 12229–12234. DOI:10.1021/la052120w.
  • Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M.; Drechsler, M. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core–Shell Microgels. Chem. Mater. 2007, 19, 1062–1069. DOI:10.1021/cm062554s.
  • Lu, Y.; Mei, Y.; Schrinner, M.; Ballauff, M.; Möller, M. W.; Breu, J. In Situ Formation of Ag Nanoparticles in Spherical Polyacrylic Acid Brushes by UV Irradiation. J. Phys. Chem. C 2007, 111, 7676–7681. DOI:10.1021/jp070973m.
  • Park, J. C.; Song, H. Metal@ Silica Yolk-Shell Nanostructures as Versatile Bifunctional Nanocatalysts. Nano Res. 2011, 4, 33–49. DOI:10.1007/s12274-010-0039-z.
  • Khoa, N. T.; Kim, S. W.; Yoo, D.-H.; Kim, E. J.; Hahn, S. H. Size-Dependent Work Function and Catalytic Performance of Gold Nanoparticles Decorated Graphene Oxide Sheets. Appl. Catal., A 2014, 469, 159–164. DOI:10.1016/j.apcata.2013.08.046.
  • Feng, J.; Su, L.; Ma, Y.; Ren, C.; Guo, Q.; Chen, X. Cufe2o4 Magnetic Nanoparticles: A Simple and Efficient Catalyst for the Reduction of Nitrophenol. Chem. Eng. J. 2013, 221, 16–24. DOI:10.1016/j.cej.2013.02.009.
  • Lu, L.; Liu, J.; Hu, Y.; Zhang, Y.; Chen, W. Graphene‐Stabilized Silver Nanoparticle Electrochemical Electrode for Actuator Design. Adv. Mater. 2013, 25, 1270–1274. DOI:10.1002/adma.201203655.
  • Song, Y.; Jiang, H.; Wang, B.; Kong, Y.; Chen, J. Silver-Incorporated Mussel-Inspired Polydopamine Coatings on Mesoporous Silica as an Efficient Nanocatalyst and Antimicrobial Agent. ACS Appl. Mater. Interfaces 2018, 10, 1792–1801. DOI:10.1021/acsami.7b18136.
  • Das, T. K.; Ganguly, S.; Bhawal, P.; Remanan, S.; Mondal, S.; Das, N. Mussel Inspired Green Synthesis of Silver Nanoparticles-Decorated Halloysite Nanotube Using Dopamine: Characterization and Evaluation of Its Catalytic Activity. Appl. Nanosci. 2018, 8, 173–186. DOI:10.1007/s13204-018-0658-3.
  • Arumugam, V.; Sriram, P.; Yen, T.-J.; Redhi, G. G.; Gengan, R. M. Nano-Material as an Excellent Catalyst for Reducing a Series of Nitroanilines and Dyes: Triphosphonated Ionic Liquid-Cufe2o4-Modified Boron Nitride. Appl. Catal., B 2018, 222, 99–114. DOI:10.1016/j.apcatb.2017.08.059.
  • Sarkar, A. K.; Saha, A.; Midya, L.; Banerjee, C.; Mandre, N.; Panda, A. B.; Pal, S. Cross-Linked Biopolymer Stabilized Exfoliated Titanate Nanosheet-Supported Agnps: A Green Sustainable Ternary Nanocomposite Hydrogel for Catalytic and Antimicrobial Activity. ACS Sustain. Chem. Eng. 2017, 5, 1881–1891. DOI:10.1021/acssuschemeng.6b02594
  • Xing, Z.-M.; Gao, Y.-X.; Shi, L.-Y.; Liu, X.-Q.; Jiang, Y.; Sun, L.-B. Fabrication of Gold Nanoparticles in Confined Spaces Using Solid-Phase Reduction: Significant Enhancement of Dispersion Degree and Catalytic Activity. Chem. Eng. Sci. 2017, 158, 216–226. DOI:10.1016/j.ces.2016.10.029.
  • Yilmaz, E.; Soylak, M. Facile and Green Solvothermal Synthesis of Palladium Nanoparticle-Nanodiamond-Graphene Oxide Material with Improved Bifunctional Catalytic Properties. J. Iran. Chem. Soc. 2017, 14, 2503–2512. DOI:10.1007/s13738-017-1185-y.
  • Sravanthi, K.; Ayodhya, D.; Swamy, P. Y. Green Synthesis, Characterization and Catalytic Activity of 4-Nitrophenol Reduction and Formation of Benzimidazoles Using Bentonite Supported Zero Valent Iron Nanoparticles. Mater. Sci. Energy Technol. 2019, 2, 298–307. DOI:10.1016/j.mset.2019.02.003
  • Anand, K.; Gengan, R.; Phulukdaree, A.; Chuturgoon, A. Agroforestry Waste Moringa Oleifera Petals Mediated Green Synthesis of Gold Nanoparticles and Their anti-Cancer and Catalytic Activity. J. Ind. Eng. Chem. 2015, 21, 1105–1111. DOI:10.1016/j.jiec.2014.05.021.
  • Pich, A.; Karak, A.; Lu, Y.; Ghosh, A. K.; Adler, H.-J. P. Tuneable Catalytic Properties of Hybrid Microgels Containing Gold Nanoparticles. J. Nanosci. Nanotechnol. 2006, 6, 3763–3769. DOI:10.1166/jnn.2006.621.
  • Wang, Y.; Wei, G.; Zhang, W.; Jiang, X.; Zheng, P.; Shi, L.; Dong, A. Responsive Catalysis of Thermoresponsive Micelle-Supported Gold Nanoparticles. J. Mol. Catal. A: Chem. 2007, 266, 233–238. DOI:10.1016/j.molcata.2006.11.014.
  • Liu, W.; Yang, X.; Huang, W. Catalytic Properties of Carboxylic Acid Functionalized-Polymer Microsphere-Stabilized Gold Metallic Colloids. J. Colloid Interface Sci. 2006, 304, 160–165. DOI:10.1016/j.jcis.2006.08.040.
  • Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T. Synthesis and Size-Selective Catalysis by Supported Gold Nanoparticles: Study on Heterogeneous and Homogeneous Catalytic Process. J. Phys. Chem. C 2007, 111, 4596–4605. DOI:10.1021/jp067554u.
  • Gao, Y.; Ding, X.; Zheng, Z.; Cheng, X.; Peng, Y. Template-Free Method to Prepare Polymer Nanocapsules Embedded with Noble Metal Nanoparticles. Chem. Commun. 2007, 36, 3720–3722. DOI:10.1039/b706490j.
  • Wu, H.; Liu, Z.; Wang, X.; Zhao, B.; Zhang, J.; Li, C. Preparation of Hollow Capsule-Stabilized Gold Nanoparticles through the Encapsulation of the Dendrimer. J. Colloid Interface Sci. 2006, 302, 142–148. DOI:10.1016/j.jcis.2006.06.019.
  • Schrinner, M.; Polzer, F.; Mei, Y.; Lu, Y.; Haupt, B.; Ballauff, M.; Göldel, A.; Drechsler, M.; Preussner, J.; Glatzel, U. Mechanism of the Formation of Amorphous Gold Nanoparticles within Spherical Polyelectrolyte Brushes. Macromol. Chem. Phys. 2007, 208, 1542–1547. DOI:10.1002/macp.200700161.
  • Liu, Y.; Liu, L.; Yuan, M.; Guo, R. Preparation and Characterization of Casein-Stabilized Gold Nanoparticles for Catalytic Applications. Colloids Surf. A 2013, 417, 18–25. DOI:10.1016/j.colsurfa.2012.08.050.
  • Wang, Y.; Wei, G.; Wen, F.; Zhang, X.; Zhang, W.; Shi, L. Synthesis of Gold Nanoparticles Stabilized with Poly (N-Isopropylacrylamide)-Co-Poly (4-Vinyl Pyridine) Colloid and Their Application in Responsive Catalysis. J. Mol. Catal. A: Chem. 2008, 280, 1–6. DOI:10.1016/j.molcata.2007.10.014.
  • Ur Rehman, S.; Khan, A. R.; Shah, A.; Badshah, A.; Siddiq, M. Preparation and Characterization of Poly (N-Isoproylacrylamide-Co-Dimethylaminoethyl Methacrylate) Microgels and Their Composites of Gold Nanoparticles. Colloids Surf. A 2017, 520, 826–833. DOI:10.1016/j.colsurfa.2017.02.060.
  • Naseer, F.; Ajmal, M.; Bibi, F.; Farooqi, Z. H.; Siddiq, M. Copper and Cobalt Nanoparticles Containing Poly(Acrylic Acid‐Co‐Acrylamide) Hydrogel Composites for Rapid Reduction of 4‐Nitrophenol and Fast Removal of Malachite Green from Aqueous Medium. Polym. Compos. 2018, 9, 3187–3198. DOI:10.1002/pc.24329.
  • Wu, S.; Wen, G.; Zhong, B.; Zhang, B.; Gu, X.; Wang, N.; Su, D. Reduction of Nitrobenzene Catalyzed by Carbon Materials. Chin. J. Catal. 2014, 35, 914–921. DOI:10.1016/S1872-2067(14)60102-9.
  • Liu, G.; Wang, D.; Zhou, F.; Liu, W. Electrostatic Self‐Assembly of Au Nanoparticles onto Thermosensitive Magnetic Core‐Shell Microgels for Thermally Tunable and Magnetically Recyclable Catalysis. Small 2015, 11, 2807–2816. DOI:10.1002/smll.201403305.
  • Agrawal, G.; Schürings, M. P.; Van Rijn, P.; Pich, A. Formation of Catalytically Active Gold–Polymer Microgel Hybrids via a Controlled in Situ Reductive Process. J. Mater. Chem. A 2013, 1, 13244–13251. DOI:10.1039/c3ta12370g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.