971
Views
32
CrossRef citations to date
0
Altmetric
Review Article

Applications of Graphene and Its Derivatives in Chemical Analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 445-471 | Published online: 08 Nov 2019

References

  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Brumfiel, G. Graphene Gets Ready for the Big Time. Nature 2009, 458, 390–391. DOI: 10.1038/458390a.
  • Ferrari, A.C.; Robertson, J., Eds. Raman spectroscopy in carbons: From nanotubes to diamond. Philos. Trans. R. Soc. Ser. A., 2004, 362, 2267–2565 (and the literature ibidem).
  • Ferrari, A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. DOI: 10.1016/j.ssc.2007.03.052.
  • Page, A. J.; Chou, C.-P.; Pham, B. Q.; Witek, H. A.; Irle, S.; Morokuma, K. Quantum Chemical Investigation of Epoxide and Ether Groups in Graphene Oxide and Their Vibrational Spectra. Phys. Chem. Chem. Phys. 2013, 15, 3725–3735. DOI: 10.1039/c3cp00094j.
  • Chen, J.; Shi, W.; Gao, Z.; Wang, T.; Wang, S.; Dong, L.; Yang, Q.; Xiong, C. Facile Preparation of Pristine Graphene Using Urea/Glycerol as Efficient Stripping Agents. Nano Res. 2018, 11, 820–830. DOI: 10.1007/s12274-017-1691-3.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197–200. DOI: 10.1038/nature04233.
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. DOI: 10.1126/science.1157996.
  • Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351–355. DOI: 10.1016/j.ssc.2008.02.024.
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. DOI: 10.1021/nl0731872.
  • Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E. Reduced Graphene Oxide Molecular Sensors. Nano Lett. 2008, 8, 3137–3140. DOI: 10.1021/nl8013007.
  • Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.
  • Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. Facile Synthesis and Characterization of Graphene Nanosheets. J. Phys. Chem. C. 2008, 112, 8192–8195. DOI: 10.1021/jp710931h.
  • Yang, Z.-Z.; Zheng, Q.-B.; Qiu, H.-X.; Li, J.; Yang, J.-H. A Simple Method for the Reduction of Graphene Oxide by Sodium Borohydride with CaCl2 as a Catalyst. New Carbon Mater. 2015, 30, 41–47. DOI: 10.1016/S1872-5805(15)60174-3.
  • Toh, S. Y.; Loh, K. S.; Kamarudin, S. K.; Daud, W. R. W. Graphene Production via Electrochemical Reduction of Graphene Oxide: Synthesis and Characterization. Chem. Eng. J. 2014, 251, 422–434. DOI: 10.1016/j.cej.2014.04.004.
  • Liu, X.; Kim, H.; Guo, L. J. Optimization of Thermally Reduced Graphene Oxide for an Efficient Hole Transport Layer in Polymer Solar Cells. Org. Electron. 2013, 14, 591–598. DOI: 10.1016/j.orgel.2012.11.020.
  • Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S. Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectroscopy. Carbon 2009, 47, 145–152. DOI: 10.1016/j.carbon.2008.09.045.
  • Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240. DOI: 10.1039/B917103G.
  • Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027–6053. DOI: 10.1021/cr300115g.
  • Ray, S. C. Chapter, 2. Application and Uses of Graphene Oxide and Reduced Graphene Oxide. In Series Micro and Nano Technologies, Applications of Graphene and Graphene-Oxide based Nanomaterials, 1st Ed.; Elsevier: New York, 2015; pp 39–55. DOI: 10.1016/B978-0-323-37521-4.00002-9.
  • Qu, Q.; Shen, Y.; Gu, C.; Gu, Z.; Gu, Q.; Wang, C.; Hu, X. Capillary Column Coated with Graphene Oxide as Stationary Phase for Gas Chromatography. Anal. Chim. Acta. 2012, 757, 83–87. DOI: 10.1016/j.aca.2012.10.032.
  • de Toffoli, A. L.; Maciel, E. V. S.; Fumes, B. E.; Lanças, F. M. The Role of Graphene-Based Sorbents in Modern Sample Preparation Techniques. J. Sep. Sci. 2018, 41, 288–302. DOI: 10.1002/jssc.201700870.
  • Picó, Y.; Fernández, M.; Ruiz, M. J.; Font, G. Current Trends in Solid-Phase-Based Extraction Techniques for the Determination of Pesticides in Food and Environment. J. Biochem. Biophys. Meth. 2007, 70, 117–131. DOI: 10.1016/j.jbbm.2006.10.010.
  • Pearson, R. G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. DOI: 10.1021/ja00905a001.
  • Stankovich, S.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets. Carbon 2006, 44, 3342–3347. DOI: 10.1016/j.carbon.2006.06.004.
  • Eda, G.; Chhowalla, M. Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv. Mater. 2010, 22, 2392–2415. DOI: 10.1002/adma.200903689.
  • Kasprzak, A.; Zuchowska, A.; Poplawska, M. Functionalization of Graphene: Does the Organic Chemistry Matter? Beilstein J. Org. Chem. 2018, 14, 2018–2026. DOI: 10.1080/10.3762/bjoc.14.177.
  • Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. DOI: 10.1038/nnano.2007.451.
  • Kim, D.; Kim, D. W.; Lim, H.-K.; Jeon, J.; Kim, H.; Jung, H.-T.; Lee, H. Intercalation of Gas Molecules in Graphene Oxide Interlayer: The Role of Water. J. Phys. Chem. C. 2014, 118, 11142–11148. DOI: 10.1021/jp5026762.
  • Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly Conducting Graphene Sheets and Langmuir-Blodgett Films. Nat. Nanotech. 2008, 3, 538–542. DOI: 10.1038/nnano.2008.210.
  • Wu, C.-K.; Wang, G.-J.; Dai, J.-F. Controlled Functionalization of Graphene Oxide through Surface Modification with Acetone. J. Mater. Sci. 2013, 48, 3436–3442. DOI: 10.1007/s10853-012-7131-6.
  • Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-Based Composite Materials. Nature 2006, 442, 282–286. DOI: 10.1038/nature04969.
  • Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 2008, 319, 1229–1232. DOI: 10.1126/science.1150878.
  • Bianco, A.; Cheng, H.-M.; Enoki, T.; Gogotsi, Y.; Hurt, R. H.; Koratkar, N.; Kyotani, T.; Monthioux, M.; Park, C. R.; Tascon, J. M. D.; Zhang, J. All in the Graphene Family – A Recommended Nomenclature for Two-Dimensional Carbon Materials. Carbon 2013, 65, 1–6. DOI: 10.1016/j.carbon.2013.08.038.
  • Hofmann, U.; Holst, R. Über die Säurenatur und die Methylierung von Graphitoxyd. Ber. Dtsch. Chem. Ges. A/B. 1939, 72, 754–771. (in German). DOI: 10.1002/cber.19390720417.
  • Ruess, G. Über Das Graphitoxyhydroxyd (Graphitoxyd). Monatsh. Chem. 1947, 76, 381–417. (in German). DOI: 10.1007/BF00898987.
  • Clauss, A.; Plass, R.; Boehm, H.-P.; Hoffman, U. Untersuchungen zur Struktur des Graphitoxyds. Z. Anorg. Allg. Chem. 1957, 291, 205–344. DOI: 10.1002/zaac.19572910502.
  • Boehm, H. P.; Clauss, A.; Fischer, G. O.; Hofmann, U. Dünnste Kohlenstoff-Folien. Zeitschirift für Naturforschung 1962, 17 b, 150–153. (in German). DOI: 10.1515/znb-1962-0302.
  • Boehm, H. P.; Clauss, A.; Fischer, G. O.; Hofmann, U. Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien. Z. Anorg. Allg. Chem. 1962, 316, 119–127. in German) DOI: 10.1002/zaac.19623160303.
  • Scholz, W.; Boehm, H.-P. Betrachtungen zur Struktur des Graphitoxids. Z Anorg. Allg. Chem. 1969, 369, 327–340. DOI: 10.1002/zaac.19693690322.
  • Nakajima, T.; Mabuchi, A.; Hagiwara, R. A New Structure Model of Graphite Oxide. Carbon 1988, 26, 357–361. DOI: 10.1016/0008-6223(88)90227-8.
  • Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater. 2006, 18, 2740–2749. DOI: 10.1021/cm060258.
  • Jia, T.-T.; Sun, B.-Z.; Lin, H.-X.; Li, Y.; Chen, W.-K. Bonding of Hydroxyl and Epoxy Groups on Graphene: Insights from Density Functional Calculations. Chinese J. Struct. Chem. 2013, 32, 1475–1484. DOI: 10.14102/j.cnki.0254-5861.2013.10.006.
  • Lee, D.; Seo, J.; Zhu, X.; Cole, J. M.; Su, H. Magnetism in Graphene Oxide Induced by Epoxy Groups. Appl. Phys. Lett. 2015, 106, 172402. DOI: 10.1063/1.4919529.
  • Amadei, C. A.; Montessori, A.; Kadow, J. P.; Succi, S.; Vecitis, C. D. Role of Oxygen Functionalities in Graphene Oxide Architectural Laminates (GOAL) Sub-Nanometer-s Pacing and Water Transport. Environ. Sci. Technol. 2017, 51, 4280–4288. DOI: 10.1021/acs.est.6b05711.
  • Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. DOI: 10.1080/10.1021/cr3000412.
  • Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B. 1998, 102, 4477–4482. DOI: 10.1021/jp9731821.
  • Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B Lett. 2006, 110, 8535–8539. DOI: 10.1021/jp060936f.
  • Vryonis, O.; Virtanen, S. T. H.; Andritsch, T.; Vaughan, A. S.; Lewin, P. L. Understanding the Cross-Linking Reactions in Highly Oxidized Graphene/Epoxy Nanocomposite Systems. J. Mater. Sci. 2019, 54, 3035–3051. DOI: 10.1007/s10853-018-3076-8.
  • Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and Electronic Structure of Graphene-Oxide. Nano Lett. 2009, 9, 1058–1063. DOI: 10.1021/nl8034256.
  • Larciprete, R.; Fabris, S.; Sun, T.; Lacovig, P.; Baraldi, A.; Lizzit, S. Dual Path Mechanism in the Thermal Reduction of Graphene Oxide. J. Am. Chem. Soc. 2011, 133, 17315–17321. DOI: 10.1021/ja205168x.
  • Li, R.; Mansukhani, N. D.; Guiney, L. M.; Ji, Z.; Zhao, Y.; Chang, C. H.; Ch, H.; French, C. T.; Miller, J. F.; Hersam, M. C.; et al. Identification and Optimization of Carbon Radicals on Hydrated Graphene Oxide for Ubiquitous Antibacterial Coatings. ACS Nano. 2016, 10, 10966–10980. DOI: 10.1021/acsnano.6b05692.
  • Sa, K.; Mahakul, P. C.; Das, B.; Subramanyam, B. V. R. S.; Mukherjee, J.; Saha, S.; Raiguru, J.; Patra, K. C.; Nanda, K. K.; Mahanandia, P. Large Scale Synthesis of Reduced Graphene Oxide Using Ferrocene and HNO3. Mater. Lett. 2018, 211, 335–338. DOI: 10.1016/j.matlet.2017.10.031.
  • Wu, Y.; Wang, P.; Zhu, X.; Zhang, Q.; Wang, Z.; Liu, Y.; Zou, G.; Dai, Y.; Whangbo, M.-H.; Huang, B. Composite of CH3NH3PbI3 with Reduced Graphene Oxide as a Highly Efficient and Stable Visible-Light Photocatalyst for Hydrogen Evolution in Aqueous HI Solution. Adv. Mater. 2018, 30, 1704342. DOI: 10.1002/adma.201704342.
  • Grajek, H.; Farczak, Ł.; Wawer, T.; Jabłoński, P.; Purchała, M. The Characteristic of the Adsorption and Energetic Properties of the Oxidised and Reduced Graphene. ABiD 2015, 3, 224–233.
  • Grajek, H.; Jonik, J.; Rutkowski, L.; Purchała, M.; Wawer, T. The Optimisation of Chromatographic Conditions for the Determination of Acceptor-Donor Properties of Graphene Oxide and Reduced Graphene Oxide. Acta Innov. 2018, 5–20. DOI: 10.32933/ActaInnovations.26.1.
  • Jin, L.; Wang, Z.; Zheng, S.; Mi, B. Polyamide-Crosslinked Graphene Oxide Membrane for Forward Osmosis. J. Membr. Sci. 2018, 545, 11–18. DOI: 10.1016/j.memsci.2017.09.023.
  • Pei, S.; Wei, Q.; Huang, K.; Cheng, H.-M.; Ren, W. Green Synthesis of Graphene Oxide by Seconds Timescale Water Electrolytic Oxidation. Nat. Commun. 2018, 9, 1–9. DOI: 10.1038/s41467-017-02479-z.
  • Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. DOI: 10.1021/nl802558y.
  • Xu, B.; Yue, S.; Sui, Z.; Zhang, X.; Hou, S.; Cao, G.; Yang, Y. What Is the Choice for Supercapacitors: Graphene or Graphene Oxide? Energy Environ. Sci. 2011, 4, 2826–2830. DOI: 10.1039/c1ee01198g.
  • Luan, V. H.; Tien, H. N.; Hoa, L. T.; Hien, N. T. M.; Oh, E.-S.; Chung, J. S.; Kim, E. J.; Choi, W. M.; Kong, B.-S.; Hur, S. H. Synthesis of a Highly Conductive and Large Surface Area Graphene Oxide Hydrogel and Its Use in a Supercapacitor. J. Mater. Chem. A. 2013, 1, 208–211. DOI: 10.1039/C2TA00444E.
  • Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679–1682. DOI: 10.1021/nl080604h.
  • Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res. 2008, 1, 203–212. DOI: 10.1007/s12274-008-8021-8.
  • Huang, X.; Liu, F.; Jiang, P.; Tanaka, T. Is Graphene Oxide an Insulating Material? 2013 IEEE International Conference on Solid Dielectrics, Bologna, Italy, June 30–July 4, 2013.
  • Li, H. J.; Chen, J. A.; Han, S.; Niu, W. X.; Liu, X. Q.; Xu, G. B. Electrochemiluminescence from Tris(2bipyridyl)Ruthenium(II)-graphene-Nafion Modified Electrode. Talanta 2009, 79, 165–170. DOI: 10.1016/j.talanta.2009.03.020.
  • Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene Oxide as a Chemically Tunable Platform for Optical Applications. Nature Chem. 2010, 2, 1015–1024. DOI: 10.1038/nchem.907.
  • Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22, 1027–1036. DOI: 10.1002/elan.200900571.
  • Wang, X.; Zhang, W. Application of Graphene Derivatives in Cancer Therapy: A Review. Carbon 2014, 67, 795–797. DOI: 10.1016/j.carbon.2013.10.043.
  • Toda, K.; Furue, R.; Hayami, S. Recent Progress in Applications of Graphene Oxide for Gas Sensing: A Review. Anal. Chim. Acta 2015, 878, 43–53. DOI: 10.1016/j.aca.2015.02.002.
  • Suvarnaphaet, P.; Pechprasarn, S. Graphene-Based Materials for Biosensors: A Review. Sensors 2017, 17, 2161. DOI: 10.3390/s17102161.
  • Rowley-Neale, S. J.; Randviir, E. P.; Dena, A. S. A.; Banks, C. E. An Overview of Recent Applications of Reduced Graphene Oxide as a Basis of Electroanalytical Sensing Platforms. Appl. Mat. Today 2018, 10, 218–226. DOI: 10.1016/j.apmt.2017.11.010.
  • Guo, H.; Jiao, T.; Zhang, Q.; Guo, W.; Peng, Q.; Yan, X. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment. Nanoscale Res. Lett. 2015, 10, 272. DOI: 10.1186/s11671-015-0931-2.
  • Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. DOI: 10.1021/cr900070d.
  • Kim, I.-D.; Choi, S.-J.; Cho, H.-J. Chapter 3. Graphene-Based Composite Materials for Chemical Sensor Application. In Electrospinning for High Performance Sensors, NanoScience and Technology, Macagnano, A., Ed.; Springer International Publishing: Switzerland, 2015. DOI: 10.1007/978-3-319-14406-1.
  • Yang, L.; Guo Xiao, T.; Yang, J.; Z, X.; Qin, M. Graphene-Based Materials Used in as Stationary Phase for Chromatography: A Mini Review. J. Chromatogr. Sep. Tech. 2018, 9, 399. DOI: 10.4172/2157-7064.1000399.
  • Ibrahim, W. A. W.; Nodeh, H. R.; Sanagi, M. M. Graphene-Based Materials as Solid Phase Extraction Sorbent for Trace Metal Ions, Organic Compounds, and Biological Sample Preparation. Crit. Rev. Anal. Chem. 2016, 46, 267–283. DOI: 10.1080/10408347.2015.1034354.
  • Chien, C. T.; Li, S. S.; Lai, W. J.; Yeh, Y.; Chen, H. A.; Chen, I. S.; Chen, L.; Chen, K. H.; Nemoto, T.; Isoda, S.; et al. Tunable Photoluminescence from Graphene Oxide. Angew. Chem. Int. Ed. 2012, 51, 6662–6666. DOI: 10.1002/anie.201200474.
  • Mei, Q. S.; Zhang, K.; Guan, G. J.; Liu, B. H.; Wang, S. H.; Zhang, Z. P. Highly Efficient Photoluminescent Graphene Oxide with Tunable Surface Properties. Chem. Commun. 2010, 46, 7319–7321. DOI: 10.1039/c0cc02374d.
  • Gan, Z. X.; Xiong, S. J.; Wu, X. L.; He, C. Y.; Shen, J. C.; Chu, P. K. Mn2+-Bonded Reduced Graphene Oxide with Strong Radiative Recombination in Broad Visible Range Caused by Resonant Energy Transfer. Nano Lett. 2011, 11, 3951–3956. DOI: 10.1021/nl202240s.
  • Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S.; Chen, C. W.; Chhowalla, M. Blue Photoluminescence from Chemically Derived Graphene Oxide. Adv. Mater. 2010, 22, 505–509. DOI: 10.1002/adma.200901996.
  • Luo, Z.; Vora, P. M.; Mele, E. J.; Johnson, A. T. C.; Kikkawa, J. M. Photoluminescence and Band Gap Modulation in Graphene Oxide. Appl. Phys. Lett. 2009, 94, 111909–111903. DOI: 10.1063/1.3098358.
  • Shang, J.; Ma, L.; Li, J.; Ai, W.; Yu, T.; Gurzadyan, G. G. The Origin of Fluorescence from Graphene Oxide. Sci. Rep. 2012, 2, 792. DOI: 10.1038/srep00792.
  • Hernaez, M.; Zamarreño, C. R.; Melendi-Espina, S.; Bird, L. R.; Mayes, A. G.; Arregui, F. J. Optical Fibre Sensors Using Graphene-Based Materials: A Review. Sensors. 2017, 17, 155–179. (and the literature ibidem). DOI: 10.3390/s17010155.
  • Zhao, Y.; Li, X.; Zhou, X.; Zhang, Y. Review on the Graphene Based Optical Fiber Chemical and Biological Sensors. Sensors Actuat. B: Chem. 2016, 231, 324–340. (and the literature ibidem). DOI: 10.1016/j.snb.2016.03.026.
  • Zhao, Y.; Zhang, S.-Y.; Wen, G.-F.; Han, Z.-X. Graphene-Based Optical Fiber Ammonia Gas Sensor. Instrum. Sci. Technol. 2017, 46, 12–27. DOI: 10.1080/10739149.2017.1326936.
  • Li, W.; Li, X.; Cai, L.; Sun, Y.; Sun, M.; Xie, D. Reduced Graphene Oxide for Room Temperature Ammonia (NH3) Gas Sensor. J. Nanosci. Nanotechnol. 2018, 18, 7927–7932. DOI: 10.1166/jnn.2018.15563.
  • Kumar, R.; Singh, R. K.; Dubey, P. K.; Oh, I.-K. Review on Functionalized Graphenes and Their Applications. Smart Nanosyst. Eng. Med. 2012, 1, 18–39.
  • Park, H. J.; Kim, W.-J.; Lee, H.-K.; Lee, D.-S.; Shin, J.-H.; Jun, Y.; Yun, Y. J. Highly Flexible, Mechanically Stable, and Sensitive NO2 Gas Sensors Based on Reduced Graphene Oxide Nanofibrous Mesh Fabric for Flexible Electronics. Sensors Actuat. B Chem. 2018, 257, 846–852. DOI: 10.1016/j.snb.2017.11.032.
  • Guo, L.; Li, T. Sub-Ppb and Ultra Selective Nitrogen Dioxide Sensor Based on Sulfur Doped Graphene. Sensors Actuat. B Chem. 2018, 255, 2258–2263. DOI: 10.1016/j.snb.2017.09.021.
  • Sharma, B.; Kim, J.-S. Graphene Decorated Pd-Ag Nanoparticles for H2 Sensing. Int. J. Hydrogen Energ. 2018, 43, 11397–11402. DOI: 10.1016/j.ijhydene.2018.03.026.
  • Fu, H.; Jiang, Y.; Ding, J.; Zhang, J.; Zhang, M.; Zhu, Y.; Li, H. Zinc Oxide Nanoparticle Incorporated Graphene Oxide as Sensing Coating for Interferometric Optical Microfiber for Ammonia Gas Detection. Sensors Actuat. B: Chem. 2018, 254, 239–247. DOI: 10.1016/j.snb.2017.06.067.
  • Thakare, N. B.; Raghuwanshi, F. C.; Kalyamwar, V. S.; Tamgadge, Y. S. Reduced Graphene Oxide-ZnO Composites Based Gas Sensors: A Review. AIP Conference Proceedings 1953, 030057 (2018). DOI: 10.1063/1.5032392.
  • Goutham, S.; Bykkam, S.; Sadasivuni, K. K.; Kumar, D. S.; Ahmadipour, M.; Ahmad, Z. A.; Rao, K. V. Room Temperature LPG Resistive Sensor Based on the Use of a Few-Layer Graphene/SnO2 Nanocomposite. Microchim. Acta 2018, 185, 69. DOI: 10.1007/s00604-017-2537-0.
  • Wang, T.; Huang, D.; Yang, Z.; Xu, S.; He, G.; Li, X.; Hu, N.; Yin, G.; He, D.; Zhang, L. A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications. Nano-Micro Lett. 2016, 8, 95–119. DOI: 10.1007/s40820-015-0073-1.
  • Liu, J.; Li, S.; Zhang, B.; Wang, Y.; Gao, Y.; Liang, X.; Wang, Y.; Lu, G. Flower-like In2O3 Modified by Reduced Graphene Oxide Sheets Serving as a Highly Sensitive Gas Sensor for Trace NO2 Detection. J. Colloid Interface Sci. 2017, 504, 206–213. DOI: 10.1016/j.jcis.2017.05.053.
  • Guo, L.; Kou, X.; Ding, M.; Wang, C.; Dong, L.; Zhang, H.; Feng, C.; Sun, Y.; Gao, Y.; Sun, P.; Lu, G. Reduced Graphene Oxide/?-Fe2O3 Composite Nanofibers for Application in Gas Sensors. Sensors Actuat. B: Chem. 2017, 244, 233–242. DOI: 10.1016/j.snb.2016.12.137.
  • Kaur, J.; Anand, K.; Kaur, A.; Singh, R. C. Sensitive and Selective Acetone Sensor Based on Gd Doped WO3/Reduced Graphene Oxide Nanocomposite. Sensors Actuat. B: Chem. 2018, 258, 1022–1035. DOI: 10.1016/j.snb.2017.11.159.
  • Singhal, A. V.; Charaya, H.; Lahiri, I. Noble Metal Decorated Graphene-Based Gas Sensors and Their Fabrication: A Review. Crit. Rev. Sol. State Mat. Sci. 2017, 42, 499–526. DOI: 10.1080/10408436.2016.1244656.
  • Ovsianytskyi, O.; Nam, Y.-S.; Tsymbalenko, O.; Lan, P.-T.; Moon, M.-W.; Lee, K.-B. Highly Sensitive Chemiresistive H2S Gas Sensor Based on Graphene Decorated with Ag Nanoparticles and Charged Impurities. Sensors Actuat. B Chem. 2018, 257, 278–285. DOI: 10.1016/j.snb.2017.10.128.
  • Liu, Y.; Yu, D. S.; Zeng, C.; Miao, Z. C.; Dai, L. M. Biocompatible Graphene Oxide-Based Glucose Biosensors. Langmuir 2010, 26, 6158–6160. DOI: 10.1021/la100886x.
  • Wang, Z. J.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. J. Phys. Chem. C 2009, 113, 14071–14075. DOI: 10.1021/jp906348x.
  • Huang, Y.; Dong, X.; Shi, Y.; Li, C. M.; Li, L.-J.; Chen, P. Nanoelectronic Biosensors Based on CVD Grown Graphene. Nanoscale 2010, 2, 1485–1488. DOI: 10.1039/c0nr00142b.
  • Jiang, W.-S.; Xin, W.; Xun, S.; Chen, S.-N.; Gao, X.-G.; Liu, Z.-B.; Tian, J.-G. Reduced Graphene Oxide-Based Optical Sensor for Detecting Specific Protein. Sens. Actuat. B: Chem. 2017, 249, 142–148. DOI: 10.1016/j.snb.2017.03.175.
  • Li, S.; Aphale, A. N.; Macwan, I. G.; Patra, P. K.; Gonzalez, W. G.; Miksovska, J.; Leblanc, R. M. Graphene Oxide as a Quencher for Fluorescent Assay of Amino Acids, Peptides, and Proteins. ACS Appl. Mater. Interfaces 2012, 4, 7069–7075. DOI: 10.1021/am302704a.
  • Shan, C. S.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Electrochemical Determination of NADH and Ethanol Based on Ionic Liquid-Functionalized Graphene. Biosens. Bioelectron. 2010, 25, 1504–1508. DOI: 10.1016/j.bios.2009.11.009.
  • Xu, X.; Zhou, J.; Xin, Y.; Lubineau, G.; Ma, Q.; Jiang, L. Alcohol Recognition by Flexible, Transparent and Highly Sensitive Graphene-Based Thin-Film Sensors. Sci. Rep. 2017, 7, 4317. DOI: 10.1038/s41598-017-04636-2.
  • Wang, Y.; Zhang, S.; Du, D.; Shao, Y.; Li, Z.; Wang, J.; Engelhard, M. H.; Li, J.; Lin, Y. Self Assembly of Acetylcholinesterase on a Gold Nanoparticles-Graphene Nanosheet Hybrid for Organophosphate Pesticide Detection Using Polyelectrolyte as a Linker. J. Mater. Chem. 2011, 21, 5319–5325. DOI: 10.1039/c0jm03441j.
  • Pachauri, N.; Dave, K.; Dinda, A.; Solanki, P. R. Cubic CeO2 Implanted Reduced Graphene Oxide Based Highly Sensitive Biosensor for Non-Invasive Oral Cancer Biomarker Detection. J. Mater. Chem. B. 2018, 6, 3000–3012. DOI: 10.1039/c8tb00653a.
  • Mohanty, N.; Berry, V. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett. 2008, 8, 4469–4476. DOI: 10.1021/nl802412n.
  • Lin, L.; Liu, Y.; Tang, L. H.; Li, J. H. Electrochemical DNA Sensor by the Assembly of Graphene and DNA-Conjugated Gold Nanoparticles with Silver Enhancement Strategy. Analyst 2011, 136, 4732–4737. DOI: 10.1039/c1an15610a.
  • Yin, H. S.; Zhou, Y.; Ma, Q.; Ai, S.; Ju, P.; Zhu, L.; Lu, L. Electrochemical Oxidation Behavior of Guanine and Adenine on graphene-Nafion Composite Film Modified Glassy Carbon Electrode and the Simultaneous Determination. Process Biochem. 2010, 45, 1707–1712. DOI: 10.1016/j.procbio.2010.07.004.
  • Loo, A. H.; Bonanni, A.; Pumera, M. Inherently Electroactive Graphene Oxide Nanoplatelets as Labels for Specific Protein-Target Recognition. Nanoscale 2013, 5, 7844–7848. DOI: 10.1039/c3nr02101g.
  • Chen, J.; Fu, B.; Liu, T.; Yan, Z.; Li, K. A Graphene Oxide-DNA Electrochemical Sensor Based on Glassy Carbon Electrode for Sensitive Determination of Methotrexate. Electroanalysis 2018, 30, 288–295. DOI: 10.1002/elan.201700615.
  • Shahrokhian, S.; Salimian, R. Ultrasensitive Detection of Cancer Biomarkers Using Conducting Polymer/Electrochemically Reduced Graphene Oxide-Based Biosensor: Application toward BRCA1 Sensing. Sensors Actuat. B: Chem. 2018, 266, 160–169. DOI: 10.1016/j.snb.2018.03.120.
  • Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M. R.; Norouzi, P.; Sadrnia, A. Surface Amplification of Pencil Graphite Electrode with Polypyrrole and Reduced Graphene Oxide for Fabrication of a Guanine/Adenine DNA Based Electrochemical Biosensors for Determination of Didanosine Anticancer Drug. Appl. Surf. Sci. 2018, 441, 55–60. DOI: 10.1016/j.apsusc.2018.01.237.
  • Shivananju, B. N.; Yu, W.; Liu, Y.; Zhang, Y.; Lin, B.; Li, S.; Bao, Q. The Roadmap of Graphene-Based Optical Biochemical Sensors. Adv. Funct. Mater. 2016, 1–19. DOI: 10.1002/adfm.201603918.
  • Chauhan, N.; Maekawa, T.; Kumar, D. N. S. Graphene Based biosensors – Accelerating Medical Diagnostics to New-Dimensions. J. Mater. Res. 2017, 32, 2860–2882. DOI: 10.1557/jmr.2017.91.
  • Vranic, S.; Rodrigues, A. F.; Buggio, M.; Newman, L.; White, M. R. H.; Spiller, D. G.; Bussy, C.; Kostarelos, K. Live Imaging of Label-Free Graphene Oxide Reveals Critical Factors Causing Oxidative Stress-Mediated Cellular Responses. ACS Nano. 2018, 12, 1373–1389. DOI: 10.1021/acsnano.7b07734.
  • Dergham, M.; Lepers, C.; Verdin, A.; Billet, S.; Cazier, F.; Courcot, D.; Shirali, P.; Garçon, G. Prooxidant and Proinflammatory Potency of Air Pollution Particulate Matter (PM2.5 − 0.3) Produced in Rural, Urban, or Industrial Surroundings in Human Bronchial Epithelial Cells (BEAS-2B). Chem. Res. Toxicol. 2012, 25, 904–919. DOI: 10.1021/tx200529v.
  • Kazempour, M.; Namazi, H.; Akbarzadeh, A.; Kabiri, R. Synthesis and Characterization of PEG-Functionalized Graphene Oxide as an Effective pH-Sensitive Drug Carrier. Art. Cells. Nanomed. Biotechnol. 2019, 47, 90–94. DOI: 10.1080/21691401.2018.1543196.
  • Yang, Z.; Zhu, J.; Dai, H.; Li, J.; Shen, J.; Jiao, X.; Hu, X.; Ju, H. Graphene Oxide Based Ultrasensitive Flow-through Chemiluminescent Immunoassay for Sub-Picogram Level Detection of Chicken Interferon-γ. Biosens. Bioelectron. 2014, 51, 356–361. DOI: 10.1016/j.bios.2013.07.067.
  • Yang, Z.; Lu, M.; Li, J.; Tan, Z.; Dai, H.; Jiao, X.; Hu, X. Nitrogen-Doped Graphene-Chitosan Matrix Based Efficient Chemiluminescent Immunosensor for Detection of Chicken Interleukin-4. Biosens. Bioelectron. 2017, 89, 558–564. DOI: 10.1016/j.bios.2016.02.046.
  • Chen, X.; Qin, P.; Li, J.; Yang, Z.; Wen, Z.; Jian, Z.; Zhao, J.; Hu, X.; Jiao, X. Impedance Immunosensor for Bovine Interleukin-4 Using an Electrode Modified with Reduced Graphene Oxide and Chitosan. Microchim. Acta. 2015, 182, 369–376. DOI: 10.1007/s00604-014-1331-5.
  • Li, J.; Yang, J.; Yang, Z.; Li, Y.; Yu, S.; Xu, Q.; Hu, X. Graphene–Au Nanoparticles Nanocomposite Film for Selective Electrochemical Determination of Dopamine. Anal. Methods 2012, 4, 1725. DOI: 10.1039/c2ay05926f.
  • Yang, Z.; Luo, S.; Li, J.; Shen, J.; Yu, S.; Hu, X.; Dionysiou, D. D. A Streptavidin Functionalized Graphene Oxide/Au Nanoparticles Composite for the Construction of Sensitive Chemiluminescent Immunosensor. Anal. Chim. Acta. 2014, 839, 67–73. DOI: 10.1016/j.aca.2014.05.033.
  • Yang, Z.; Lan, Q.; Li, J.; Wu, J.; Tang, Y.; Hu, X. Efficient Streptavidin-Functionalized Nitrogen-Doped Graphene for the Development of Highly Sensitive Electrochemical Immunosensor. Biosens. Bioelectron. 2017, 89, 312–318. DOI: 10.1016/j.bios.2016.09.026.
  • Yang, Z.; Cao, Y.; Li, J.; Jian, Z.; Zhang, Y.; Hu, X. Platinum Nanoparticles Functionalized Nitrogen Doped Graphene Platform for Sensitive Electrochemical Glucose Biosensing. Anal. Chim. Acta. 2015, 871, 35–42. DOI: 10.1016/j.aca.2015.02.029.
  • Zhou, L.; Mao, H.; Wu, C.; Tang, L.; Wu, Z.; Sun, H.; Zhang, H.; Zhou, H.; Jia, C.; Jin, Q.; et al. J. Label-Free Graphene Biosensor Targeting Cancer Molecules Based on Non-Covalent Modification. Biosens. Bioelectron. 2017, 87, 701–707. DOI: 10.1016/j.bios.2016.09.025.
  • Kuznetsova, I. E.; Anisimkin, V. I.; Gubin, S. P.; Tkachev, S. V.; Kolesov, V. V.; Kashin, V. V.; Zaitsev, B. D.; Shikhabudinov, A. M.; Verona, E.; Sun, S. Super High Sensitive Plate Acoustic Wave Humidity Sensor Based on Graphene Oxide Film. Ultrasonics 2017, 81, 135–139. DOI: 10.1016/j.ultras.2017.06.019.
  • Sayago, I.; Matatagui, D. M. J.; Fernández, J.; Fontecha, L.; Jurewicz, I.; Garriga, R.; Muñoz, E. Graphene Oxide as Sensitive Layer in Love-Wave Surface Acoustic Wave Sensors for the Detection of Chemical Warfare Agent Simulants. Talanta 2016, 148, 393–400. DOI: 10.1016/j.talanta.2015.10.069.
  • Pitschmann, V. Overall View of Chemical and Biochemical Weapons. Toxins 2014, 6, 1761–1784. DOI: 10.3390/toxins6061761.
  • Aragay, G.; Pino, F.; Merkoçi, A. Nanomaterials for Sensing and Destroying Pesticides. Chem. Rev. 2012, 112, 5317–5338. DOI: 10.1021/cr300020c.
  • Han, Q.; Wang, Z.; Xia, J.; Zhang, X.; Wang, H.; Ding, M. Application of Graphene for the SPE Clean-up of Organophosphorus Pesticides Residues from Apple Juices. J. Sep. Sci. 2014, 37, 99–105. DOI: 10.1002/jssc.201301005.
  • Pang, J.; Le, X.; Xu, Z.; Gao, C.; Xie, J. A Humidity Sensor Based on AlN Lamb Wave Resonator Coated with Graphene Oxide of Different Concentrations. J. Micromech. Microeng. 2018, 28, 105016–105024. DOI: 10.1088/1361-6439/aad2fd.
  • Le, X.; Wang, X.; Pang, J.; Liu, Y.; Fang, B.; Xu, Z.; Gao, C.; Xu, Y.; Xie, J. A High Performance Humidity Sensor Based on Surface Acoustic Wave and Graphene Oxide on AlN/Si Layered Structure. Sensors Actuat. B: Chem. 2018, 255, 2454–2361. DOI: 10.1016/j.snb.2017.09.038.
  • Arsat, R.; Breedon, M.; Shafiei, M.; Spizziri, P. G.; Gilje, S.; Kaner, R. B.; Kalantar-Zadeh, K.; Wlodarski, W. Graphene-like Nano-Sheets for Surface Acoustic Wave Gas Sensor Applications. Chem. Phys. Lett. 2009, 467, 344–347. DOI: 10.1016/j.cplett.2008.11.039.
  • Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and Characterization of Graphene Oxide Paper. Nature 2007, 448, 457–460. DOI: 10.1038/nature06016.
  • Talbi, A.; Sarry, F.; Elhakiki, M.; Brizoual, L. L.; Elmazria, O.; Nicolay, P.; Alnot, P. ZnO/Quartz Structure Potentiality for Surface Acoustic Wave Pressure Sensor. Sensors Actuat. A Phys. 2006, 128, 78–83. DOI: 10.1016/j.sna.2006.01.008.
  • Hoang, S.-H.; Chung, G.-S. Surface Acoustic Wave Characteristics of AlN Thin Films Grown on a Polycrystalline 3C-SiC Buffer Layer. Microelectron. Eng. 2009, 86, 2149–2152. DOI: 10.1016/j.mee.2009.02.030.
  • Ha, N. H.; Nam, N. H.; Dung, D. D.; Phuong, N. H.; Thach, P. D.; Hong, H. S. Hydrogen Gas Sensing Using Palladium-Graphene Nanocomposite Material Based on Surface Acoustic Wave. J. Nanomater. 2017, 2017, 1. Article ID 9057250 (6p). DOI: 10.1155/2017/9057250.
  • Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of Divalent Metal Ions from Aqueous Solutions Using Graphene Oxide. Dalton Trans. 2013, 42, 5682–5689. DOI: 10.1039/C3DT33097D.
  • Sitko, R.; Zawisza, B.; Malicka, E. Graphene as a New Sorbent in Analytical Chemistry. Trends Anal. Chem. 2013, 51, 33–43. DOI: 10.1016/j.trac.2013.05.011.
  • Qu, Q.; Gu, C.; Hu, X. Capillary Coated with Graphene and Graphene Oxide Sheets as Stationary Phase for Capillary Electrochromatography and Capillary Liquid Chromatography. Anal. Chem. 2012, 84, 8880–8890. DOI: 10.1021/ac3023636.
  • Wang, M. M.; Yan, X. P. Fabrication of Graphene Oxide Nanosheets Incorporated Monolithic Column via One-Step Room Temperature Polymerization for Capillary Electrochromatography. Anal. Chem. 2012, 84, 39–44. DOI: 10.1021/ac202860a.
  • Xi, Y.-H.; Hu, J.-Q.; Liu, Z.; Xie, R.; Ju, X.-J.; Wang, W.; Chu, L.-Y. Graphene Oxide Membranes with Strong Stability in Aqueous Solutions and Controllable Lamellar Spacing. ACS Appl. Mat. Interfaces 2016, 8, 15557–15566. DOI: 10.1021/acsami.6b00928.
  • Wu, Q.; Su, Y.-J.; Liu, L.-Q.; Zhang, Z. Surface Effect on the Self-Reinforcing Behavior of Graphene Oxide Membranes. Carbon 2018, 129, 403–408. DOI: 10.1016/j.carbon.2017.12.035.
  • Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and Ultrafast Molecular Sieving through Graphene Oxide Membranes. Science 2014, 343, 752–754. (and Supplementary Material for the article). DOI: 10.1126/science.1245711.
  • You, Y.; Jin, X. H.; Wen, X. Y.; Sahajwalla, V.; Chen, V.; Bustamante, H.; Joshi, R. K. Application of Graphene Oxide Membranes for Removal of Natural Organic Matter from Water. Carbon 2018, 129, 415–419. DOI: 10.1016/j.carbon.2017.12.032.
  • Chen, L.; Moon, J.-H.; Ma, X.; Zhang, L.; Chen, Q.; Chen, L.; Peng, R.; Si, P.; Feng, J.; Li, Y.; Lou, J.; et al. High Performance Graphene Oxide Nanofiltration Membrane Prepared by Electrospraying for Wastewater Purification. Carbon 2018, 130, 487–494. DOI: 10.1016/j.carbon.2018.01.062.
  • Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; Prestat, E.; Haigh, S. J.; Grigorieva, I. V.; et al. Tunable Sieving of Ions Using Graphene Oxide Membranes. Nat. Nanotech. 2017, 12, 546–550. DOI: 10.1038/nnano.2017.21.
  • Maidatsi, K. V.; Chatzimitakos, T. G.; Sakkas, V. A.; Stalikas, C. D. Octyl-Modified Magnetic Graphene as a Sorbent for the Extraction and Simultaneous Determination of Fragrance Allergens, Musks, and Phthalates in Aqueous Samples by Gas Chromatography with Mass Spectrometry. J. Sep. Sci. 2015, 38, 3758–3765. DOI: 10.1002/jssc.201500578.
  • Chinthakindi, S.; Purohit, A.; Singh, V.; Tak, V.; Goud, D. R.; Dubey, D. K.; Pardasani, D. Iron Oxide Functionalized Graphene Nano-Composite for Dispersive Solid Phase Extraction of Chemical Warfare Agents from Aqueous Samples. J. Chromatogr. A. 2015, 1394, 9–17. DOI: 10.1016/j.chroma.2015.03.033.
  • Dong, X. L.; Cheng, J. S.; Li, J. H.; Wang, Y. S. Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS. Anal. Chem. 2010, 82, 6208–6214. DOI: 10.1021/ac101022m.
  • Li, Y.; Du, Q.; Liu, T.; Peng, X.; Wang, J.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; Xia, L. Comparative Study of Methylene Blue Dye Adsorption onto Activated Carbon, Graphene Oxide, and Carbon Nanotubes. Chem. Eng. Res. Des. 2013, 91, 361–368. DOI: 10.1016/j.cherd.2012.07.007.
  • Sun, J.; Liang, Q.; Han, Q.; Zhang, X.; Ding, M. One-Step Synthesis of Magnetic Graphene Oxide Nanocomposite and Its Application in Magnetic Solid Phase Extraction of Heavy Metal Ions from Biological Samples. Talanta 2015, 132, 557–563. DOI: 10.1016/j.talanta.2014.09.043.
  • Hou, X.; Wang, X.; Sun, Y.; Wang, L.; Guo, Y. Graphene Oxide for Solid-Phase Extraction of Bioactive Phenolic Acids. Anal. Bioanal. Chem. 2017, 409, 3541–3549. DOI: 10.1007/s00216-017-0291-0.
  • Pei, Z.; Li, L.; Sun, L.; Zhang, S.; Shan, X.-Q.; Yang, S.; Wen, B. Adsorption Characteristics of 1,2,4-Trichlorobenzene, 2,4,6-Trichlorophenol, 2-Naphthol and Naphthalene on Graphene and Graphene Oxide. Carbon 2013, 51, 156–163. DOI: 10.1016/j.carbon.2012.08.024.
  • Zhang, Y.; Zhou, H.; Zhang, Z.-H.; Wu, X.-L.; Chen, W.-G.; Zhu, Y.; Fang, C.-F.; Zhao, Y.-G. Three-Dimensional Ionic Liquid Functionalized Magnetic Graphene Oxide Nanocomposite for the Magnetic Dispersive Solid Phase Extraction of 16 Polycyclic Aromatic Hydrocarbons in Vegetable Oils. J. Chromatogr. A. 2017, 1489, 29–38. DOI: 10.1016/j.chroma.2017.02.010.
  • Wu, L.; Yu, L.; Ding, X.; Li, P.; Dai, X.; Chen, X.; Zhou, H.; Bai, Y.; Ding, J. Magnetic Solid-Phase Extraction Based on Graphene Oxide for the Determination of Lignans in Sesame Oil. Food Chem. 2017, 217, 320–325. DOI: 10.1016/j.foodchem.2016.08.109.
  • Lou, C.; Wu, C.; Zhang, K.; Guo, D.; Jiang, L.; Lu, Y.; Zhu, Y. Graphene-Coated Polystyrene-Divinylbenzene Dispersive Solid-Phase Extraction Coupled with Supercritical Fluid Chromatography for the Rapid Determination of 10 Allergenic Disperse Dyes in Industrial Wastewater Samples. J. Chromatogr. A. 2018, 1550, 45–56. DOI: 10.1016/j.chroma.2018.03.040.
  • Li, M.; Wang, J.; Jiao, C.; Wang, C.; Wu, Q.; Wang, Z. Graphene Oxide Framework: An Adsorbent for Solid Phase Extraction of Phenylurea Herbicides from Water and Celery Samples. J. Chromatogr. A. 2016, 1469, 17–24. DOI: 10.1016/j.chroma.2016.09.056.
  • Yu, L.; Ma, F.; Ding, X.; Wang, H.; Li, P. Silica/Graphene Oxide Nanocomposites: Potential Adsorbents for Solid Phase Extraction of Trace Aflatoxins in Cereal Crops Coupled with High Performance Liquid Chromatography. Food Chem. 2018, 245, 1018–1024. DOI: 10.1016/j.foodchem.2017.11.070.
  • Pourjavid, M. R.; Sehat, A. A.; Arabieh, M.; Yousefi, S. R.; Hosseini, M. H.; Rezaee, M. Column Solid Phase Extraction and Flame Atomic Absorption Spectrometric Determination of Manganese(II) and Iron(III) Ions in Water, Food and Biological Samples Using 3-(1-Methyl-1H-Pyrrol-2-yl)-1H-Pyrazole-5-Carboxylic Acid on Synthesized Graphene Oxide. Mater. Sci. Eng. C. 2014, 35, 370–378. DOI: 10.1016/j.msec.2013.11.029.
  • Mahpishanian, S.; Sereshti, H. Graphene Oxide-Based Dispersive Micro-Solid Phase Extraction for Separation and Preconcentration of Nicotine from Biological and Environmental Water Samples Followed by Gas Chromatography-Flame Ionization Detection. Talanta 2014, 130, 71–77. DOI: 10.1016/j.talanta.2014.06.004.
  • Tang, L. A. L.; Wang, J. Z.; Loh, K. P. Graphene-Based SELDI Probe with Ultrahigh Extraction and Sensitivity for DNA Oligomer. J. Am. Chem. Soc. 2010, 132, 10976–10977. DOI: 10.1021/ja104017y.
  • Yang, X.; Li, J.; Wen, T.; Ren, X.; Huang, Y.; Wang, X. Adsorption of Naphthalene and Its Derivatives on Magnetic Graphene Composites and the Mechanism Investigation. Colloids Surf. A: Physicochem. Eng. Asp. 2013, 422, 118–125. DOI: 10.1016/j.colsurfa.2012.11.063.
  • Wang, Y.; Gao, S.; Zang, X.; Li, J.; Ma, J. Graphene-Based Solid-Phase Extraction Combined with Flame Atomic Absorption Spectrometry for a Sensitive Determination of Trace Amounts of Lead in Environmental Water and Vegetable Samples. Anal. Chim. Acta. 2012, 716, 112–118. DOI: 10.1016/j.aca.2011.12.007.
  • Chang, Q.; Song, S.; Wang, Y.; Li, J.; Ma, J. Application of Graphene as a Sorbent for Preconcentration and Determination of Trace Amounts of Chromium(III) in Water Samples by Flame Atomic Absorption Spectrometry. Anal. Methods 2012, 4, 1110–1116. DOI: 10.1039/c2ay05650j.
  • Wang, Y.-K.; Gao, S.-T.; Ma, J.-J.; Li, J.-C. Application of Graphene as a Sorbent for Simultaneous Preconcentration and Determination of Trace Amounts of Cobalt and Nickel in Environmental Water and Vegetable Samples. J. Chin. Chem. Soc. 2012, 59, 1468–1477. DOI: 10.1002/jccs.201200014.
  • Huang, K.-J.; Jing, Q.-S.; Wei, C.-Y.; Wu, Y.-Y. Spectrofluorimetric Determination of Glutathione in Human Plasma by Solid-Phase Extraction Using Graphene as Adsorbent. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2011, 79, 1860–1865. DOI: 10.1016/j.saa.2011.05.076.
  • Liu, Q.; Shi, J.; Zeng, L.; Wang, T.; Cai, Y.; Jiang, G. Evaluation of Graphene as an Advantageous Adsorbent for Solid-Phase Extraction with Chlorophenols as Model Analytes. J. Chromatogr. A. 2011, 1218, 197–204. DOI: 10.1016/j.chroma.2010.11.022.
  • Zhang, H.; Low, W. P.; Lee, H. K. Evaluation of Sulfonated Graphene Sheets as Sorbent for Micro-Solid-Phase Extraction Combined with Gas Chromatography-Mass Spectrometry. J. Chromatogr. A. 2012, 1233, 16–21. DOI: 10.1016/j.chroma.2012.02.020.
  • Luo, S.; Xu, X.; Zhou, G.; Liu, C.; Tang, Y.; Liu, Y. Amino Siloxane Oligomer-Linked Graphene Oxide as an Efficient Adsorbent for Removal of Pb(II) from Wastewater. J. Hazard. Mater. 2014, 274, 145–155. DOI: 10.1016/j.jhazmat.2014.03.062.
  • Su, S.; Chen, B.; He, M.; Hu, B. Graphene Oxide-Silica Composite Coating Hollow Fiber Solid Phase Microextraction Online Coupled with Inductively Coupled Plasma Mass Spectrometry for the Determination of Trace Heavy Metals in Environmental Water Samples. Talanta 2014, 123, 1–9. DOI: 10.1016/j.talanta.2014.01.061.
  • Sereshti, H.; Farahani, M. V.; Baghdad, M. Trace Determination of Chromium(VI) in Environmental Water Samples Using Innovative Thermally Reduced Graphene (TRG) Modified SiO2 Adsorbent for Solid Phase Extraction and UV-Vis Spectrophotometry. Talanta 2016, 146, 662–669. DOI: 10.1016/j.talanta.2015.06.051.
  • Ziaei, E.; Mehdinia, A.; Jabbari, A. A Novel Hierarchical Nanobiocomposite of Graphene Oxide-Magnetic Chitosan Grafted with Mercapto as a Solid Phase Extraction Sorbent for the Determination of Mercury Ions in Environmental Water Samples. Anal. Chim. Acta. 2014, 850, 49–56. DOI: 10.1016/j.aca.2014.08.048.
  • Madadrang, C. J.; Kim, H. Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M. L.; Hou, S. Adsorption Behavior of EDTA-Graphene Oxide for Pb (II) Removal. ACS Appl. Mater. Interfaces 2012, 4, 1186–1193. DOI: 10.1021/am201645g.
  • Wang, X.; Xing, W.; Zhang, P.; Song, L.; Yang, H.; Hu, Y. Covalent Functionalization of Graphene with Organosilane and Its Use as a Reinforcement in Epoxy Composites. Compos. Sci. Technol. 2012, 72, 737–743. DOI: 10.1016/j.compscitech.2012.01.027.
  • Najafi, F.; Moradi, O.; Rajabi, M.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V. K. Thermodynamics of the Adsorption of Nickel Ions from Aqueous Phase Using Graphene Oxide and Glycine Functionalized Graphene Oxide. J. Mol. Liq. 2015, 208, 106–113. DOI: 10.1016/j.molliq.2015.04.033.
  • Xing, H. T.; Chen, J. H.; Sun, X.; Huang, Y. H.; Su, Z. B.; Hu, S. R.; Weng, W.; Li, S. X.; Guo, H. X.; Wu, W. B.; He, Y. S.; et al. NH2-Rich Polymer/Graphene Oxide Use as a Novel Adsorbent for Removal of Cu(II) from Aqueous Solution. Chem. Eng. J. 2015, 263, 280–289. DOI: 10.1016/j.cej.2014.10.111.
  • Ali, I.; Basheer, A. A.; Mbianda, X. Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V. Graphene Based Adsorbents for Remediation of Noxious Pollutants from Wastewater. Environ. Int. 2019, 127, 160–180. DOI: 10.1016/j.envint.2019.03.029.
  • Li, R.; Liu, L.; Yang, F. Preparation of Polyaniline/Reduced Graphene Oxide Nanocomposite and Its Application in Adsorption of Aqueous Hg(II). Chem. Eng. J. 2013, 229, 460–468. DOI: 10.1016/j.cej.2013.05.089.
  • Chandra, V.; Kim, K. S. Highly Selective Adsorption of Hg2+ by a Polypyrrole-Reduced Graphene Oxide Composite. Chem. Commun. 2011, 47, 3942–3944. DOI: 10.1039/c1cc00005e.
  • Banazadeh, A.; Mozaffari, S.; Osoli, B. Facile Synthesis of Cysteine Functionalized Magnetic Graphene Oxide Nanosheets: Application in Solid Phase Extraction of Cadmium from Environmental Sample. J. Environ. Chem. Eng. 2015, 3, 2801–2808. DOI: 10.1016/j.jece.2015.10.003.
  • Liu, J.; Du, H.; Yuan, S.; He, W.; Liu, Z. Synthesis of Thiol-Functionalized Magnetic Graphene as Adsorbent for Cd(II) Removal from Aqueous Systems. J. Environ. Chem. Eng. 2015, 3, 617–621. DOI: 10.1016/j.jece.2015.01.016.
  • Kumar, A. S. K.; Kakan, S. S.; Rajesh, N. A Novel Amine Impregnated Graphene Oxide Adsorbent for the Removal of Hexavalent Chromium. Chem. Eng. J. 2013, 230, 328–337. DOI: 10.1016/j.cej.2013.06.089.
  • Liu, Q.; Shi, J.; Sun, J.; Wang, T.; Zeng, L.; Jiang, G. Graphene and Graphene Oxide Sheets Supported on Silica as Versatile and High-Performance Adsorbents for Solid-Phase Extraction. Angew. Chem. Int. Ed. 2011, 50, 5913–5917. DOI: 10.1002/anie.201007138.
  • Deng, J.-H.; Zhang, X.-R.; Zeng, G.-M.; Gong, J.-L.; Niu, Q.-Y.; Liang, J. Simultaneous Removal of Cd(II) and Ionic Dyes from Aqueous Solution Using Magnetic Graphene Oxide Nanocomposite as an Adsorbent. Chem. Eng. J. 2013, 226, 189–200. DOI: 10.1016/j.cej.2013.04.045.
  • Wu, L.-K.; Wu, H.; Zhang, H.-B.; Cao, H.-Z.; Hou, G.-Y.; Tang, Y.-P.; Zheng, G.-Q. Graphene Oxide/CuFe2O4 Foam as an Efficient Absorbent for Arsenic Removal from Water. Chem. Eng. J. 2018, 334, 1808–1819. DOI: 10.1016/j.cej.2017.11.096.
  • Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene Based Materials: Past, Present and Future. Prog. Mater. Sci. 2011, 56, 1178–1271. (and the literature ibidem). DOI: 10.1016/j.pmatsci.2011.03.003.
  • Lotya, M.; King, P. J.; Khan, U.; De, S.; Coleman, J. N. High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano. 2010, 4, 3155–3162. DOI: 10.1021/nn1005304.
  • Green, A. A.; Hersam, M. C. Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation. Nano Lett. 2009, 9, 4031–4036. DOI: 10.1021/nl902200b.
  • Vadukumpully, S.; Paul, J.; Valiyaveettil, S. Cationic Surfactant Mediated Exfoliation of Graphite into Graphene Flakes. Carbon 2009, 47, 3288–3294. DOI: 10.1016/j.carbon.2009.07.049.
  • Wajid, A. S.; Das, S.; Irin, F.; Ahmed, H. S. T.; Shelburne, J. L.; Parviz, D.; Fullerton, R. J.; Jankowski, A. F.; Hedden, R. C.; Green, M. J. Polymer-Stabilized Graphene Dispersions at High Concentrations in Organic Solvents for Composite Production. Carbon 2012, 50, 526–534. DOI: 10.1016/j.carbon.2011.09.008.
  • Das, S.; Irin, F.; Ahmed, H. S. T.; Cortinas, A. B.; Wajid, A. S.; Parviz, D.; Jankowski, A. F.; Kato, M.; Green, M. J. Non-Covalent Functionalization of Pristine Few-Layer Graphene Using Triphenylene Derivatives for Conductive Poly (Vinyl Alcohol) Composites. Polymer 2012, 53, 2485–2494. DOI: 10.1016/j.polymer.2012.03.012.
  • Parviz, D.; Das, S.; Ahmed, H. S. T.; Irin, F.; Bhattacharia, S.; Green, M. J. Dispersions of Non-Covalently Functionalized Graphene with Minimal Stabilizer. ACS Nano. 2012, 6, 8857–8867. DOI: 10.1021/nn302784m.
  • Nováček, M.; Jankovský, O.; Luxa, J.; Sedmidubský, D.; Pumera, M.; Fila, V.; Lhotka, M.; Klímová, K.; Matějková, S.; Sofer, Z. Tuning of Graphene Oxide Composition by Multiple Oxidations for Carbon Dioxide Storage and Capture of Toxic Metals. J. Mater. Chem. A. 2017, 5, 2739–2748. DOI: 10.1039/C6TA03631G.
  • Mehdinia, A.; Aziz-Zanjani, O. M. Recent Advances in Nanomaterials Utilized in Fiber Coatings for Solid-Phase Microextraction. Trends Anal. Chem. 2013, 42, 205–215. DOI: 10.1016/j.trac.2012.09.013.
  • Pawliszyn, J. Handbook of Solid Phase Microextraction; Chemical Industry Press: Beijing, 2009. ISBN 978-7-122-04701-4.
  • Zhang, S.; Li, Z.; Wang, C.; Wang, Z. Cyclodextrin-Functionalized Reduced Graphene Oxide as a Fiber Coating Material for the Solid-Phase Microextraction of Some Volatile Aromatic Compounds. J. Sep. Sci. 2015, 38, 1711–1720. DOI: 10.1002/jssc.201401363.
  • Chen, J.; Zou, J.; Zeng, J.; Song, X.; Ji, J.; Wang, Y.; Ha, J.; Chen, X. Preparation and Evaluation of Graphene-Coated Solid-Phase Microextraction Fiber. Anal. Chim. Acta. 2010, 678, 44–49. DOI: 10.1016/j.aca.2010.08.008.
  • Luo, Y.-B.; Yuan, B.-F.; Yu, Q.-W.; Feng, Y.-Q. Substrateless Graphene Fiber: A Sorbent for Solid-Phase Microextraction. J. Chromatogr. A. 2012, 1268, 9–15. DOI: 10.1016/j.chroma.2012.10.035.
  • Fan, J.; Dong, Z.; Qi, M.; Fu, R.; Qu, L. Monolithic Graphene Fibers for Solid-Phase Microextraction. J. Chromatogr. A. 2013, 1320, 27–32. DOI: 10.1016/j.chroma.2013.10.065.
  • Sun, M.; Feng, J.; Bu, Y.; Wang, X.; Duan, H.; Luo, C. Graphene Coating Bonded onto Stainless Steel Wire as a Solid-Phase Microextraction Fiber. Talanta 2015, 134, 200–205. DOI: 10.1016/j.talanta.2014.11.005.
  • Wang, F.; Liu, S.; Yang, H.; Zheng, J.; Qiu, J.; Xu, J.; Tong, Y.; Zhu, F.; Ouyang, G. Hierarchical Graphene Coating for Highly Sensitive Solid Phase Microextraction of Organochlorine Pesticides. Talanta 2016, 160, 217–224. DOI: 10.1016/j.talanta.2016.07.013.
  • Wang, F.; Zheng, Y.; Qiu, J.; Liu, S.; Tong, Y.; Zhu, F.; Ouyang, G. Graphene-Based Metal and Nitrogen-Doped Carbon Composites as Adsorbents for Highly Sensitive Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons. Nanoscale 2018, 10, 10073–10078. DOI: 10.1039/c8nr01910j.
  • Zhang, S.; Du, Z.; Li, G. Layer-by-Layer Fabrication of Chemical-Bonded Graphene Coating for Solid-Phase Microextraction. Anal. Chem. 2011, 83, 7531–7541. DOI: 10.1021/ac201864f.
  • Naing, N. N.; Fong, S.; Li, Y.; Lee, H. K. Magnetic Micro-Solid-Phase-Extraction of Polycyclic Aromatic Hydrocarbons in Water. J. Chromatogr. A. 2016, 1440, 23–30. DOI: 10.1016/j.chroma.2016.02.046.
  • Giardina, M.; Olesik, S. V. Application of Low-Temperature Glassy Carbon-Coated Macrofibers for Solid-Phase Microextraction Analysis of Simulated Breath Volatiles. Anal. Chem. 2003, 75, 1604–1614. DOI: 10.1021/ac025984k.
  • Aranda, R.; Kruus, P.; Burk, R. C. Assessment of Polycrystalline Graphites as Sorbents for Solid-Phase Microextraction of Nonionic Surfactants. J. Chromatogr. A. 2000, 888, 35–41. DOI: 10.1016/S0021-9673(00)00490-8.
  • Chai, X.; He, Y.; Ying, D.; Jia, J.; Sun, T. Electrosorption-Enhanced Solid-Phase Microextraction Using Activated Carbon Fiber for Determination of Aniline in Water. J. Chromatogr. A. 2007, 1165, 26–31. DOI: 10.1016/j.chroma.2007.07.048.
  • Yu, J.; Dong, L.; Wu, C.; Wu, L.; Xing, J. Hydroxyfullerene as a Novel Coating for Solid-Phase Microextraction Fiber with Sol-Gel Technology. J. Chromatogr. A. 2002, 978, 37–48. DOI: 10.1016/S0021-9673(02)01347-X.
  • Jiang, R. F.; Zhu, F.; Luan, T. G.; Tong, Y. X.; Liu, H.; Ouyang, G.; Pawliszyn, J. Carbon Nanotube-Coated Solid-Phase Microextraction Metal Fiber Based on Sol-Gel Technique. J. Chromatogr. A. 2009, 1216, 4641–4647. DOI: 10.1016/j.chroma.2009.03.076.
  • Sarafraz-Yazdi, A.; Amiri, A.; Rounaghi, G.; Eshtiagh-Hosseini, H. Determination of Non-Steroidal anti-Inflammatory Drugs in Water Samples by Solid-Phase Microextraction Based Sol-Gel Technique Using Poly(Ethylene Glycol) Grafted Multi-Walled Carbon Nanotubes Coated Fiber. Anal. Chim. Acta. 2012, 720, 134–141. DOI: 10.1016/j.aca.2012.01.021.
  • Cui, X.-Y.; Gu, Z.-Y.; Jiang, D.-Q.; Li, Y.; Wang, H.-F.; Yan, X.-P. In Situ Hydrothermal Growth of Metal? Organic Framework 199 Films on Stainless Steel Fibers for Solid-Phase Microextraction of Gaseous Benzene Homologues. Anal. Chem. 2009, 81, 9771–9777. DOI: 10.1021/ac901663x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.