987
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances in Nanomaterials for Analysis of Trace Heavy Metals

, , &
Pages 353-372 | Published online: 17 Mar 2020

References

  • Vallee, B. L.; Ulmer, D. D. Biochemical Effects of Mercury, Cadmium, and Lead. Annu. Rev. Biochem. 1972, 41, 91–128. DOI: 10.1146/annurev.bi.41.070172.000515.
  • Partanen, T.; Heikkila, P.; Hernberg, S.; Kauppinen, T.; Moneta, G.; Ojajarvi, A. Renal Cell Cancer and Occupational Exposure to Chemical Agents. Scand. J. Work Environ. Health 1991, 17, 231–239. DOI: 10.5271/sjweh.1708.
  • Chen, M. L.; Ma, L. Y.; Chen, X. W. New Procedures for Arsenic Speciation: A Review. Talanta 2014, 125, 78–86. DOI: 10.1016/j.talanta.2014.02.037.
  • Mori, N.; Yasutake, A.; Marumoto, M.; Hirayama, K. Methylmercury Inhibits Electron Transport Chain Activity and Induces Cytochrome C Release in Cerebellum Mitochondria. J. Toxicol. Sci. 2011, 36, 253–259. DOI: 10.2131/jts.36.253.
  • Jedrychowski, W.; Perera, F.; Jankowski, J.; Rauh, V.; Flak, E.; Caldwell, K. L.; Jones, R. L.; Pac, A.; Lisowska-Miszczyk, I. Prenatal Low-Level Lead Exposure and Developmental Delay of Infants at Age 6 Months (Krakow Inner City Study). Int. J. Hyg. Environ. Health 2008, 211, 345–351. DOI: 10.1016/j.ijheh.2007.07.023.
  • US Environmental Protection Agency. Risk assessment, management and communication of drinking water contamination. EPA/625/4-89/024, Washington, DC, 1990.
  • Kumar, P.; Kim, K. H.; Bansal, V.; Lazarides, T.; Kumar, N. Progress in the Sensing Techniques for Heavy Metal Ions Using Nanomaterials. J. Ind. Eng. Chem. 2017, 54, 30–43. DOI: 10.1016/j.jiec.2017.06.010.
  • Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosens. Bioelectron. 2017, 94, 443–455. DOI: 10.1016/j.bios.2017.03.031.
  • Tan, Z. Q.; Liu, J. F.; Jiang, G. B. Visual Test of Subparts per Billion-Level Copper(II) by Fe3O4 Magnetic Nanoparticle-Based Solid Phase Extraction Coupled with a Functionalized Gold Nanoparticle Probe. Nanoscale 2012, 4, 6735–6738. DOI: 10.1039/c2nr31753b.
  • Hemmati, M.; Rajabi, M.; Asghari, A. Magnetic Nanoparticle Based Solid-Phase Extraction of Heavy Metal Ions: A Review on Recent Advances. Mikrochim. Acta 2018, 185, 160. DOI: 10.1007/s00604-018-2670-4.
  • Deng, D. Y.; Jiang, X. M.; Yang, L.; Hou, X. D.; Zheng, C. B. Organic Solvent-Free Cloud Point Extraction-Like Methodology Using Aggregation of Graphene Oxide. Anal. Chem. 2014, 86, 758–765. DOI: 10.1021/ac403345s.
  • Leyma, R.; Platzer, S.; Jirsa, F.; Kandioller, W.; Krachler, R.; Keppler, B. K. Novel Thiosalicylate-Based Ionic Liquids for Heavy Metal Extractions. J. Hazard. Mater. 2016, 314, 164–171. DOI: 10.1016/j.jhazmat.2016.04.038.
  • Rohrer, H. The Nanometer Age: Challenge and Chance. Microelectron. Eng. 1995, 27, 3–15. DOI: 10.1016/0167-9317(94)00045-V.
  • Tung, T. T.; Nine, M. J.; Krebsz, M.; Pasinszki, T.; Coghlan, C. J.; Tran, D. N. H.; Losic, D. Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Adv. Funct. Mater. 2017, 27, 1702891. DOI: 10.1002/adfm.201702891.
  • Sitko, R.; Zawisza, B.; Malicka, E. Modification of Carbon Nanotubes for Preconcentration, Separation and Determination of Trace-Metal Ions. TrAC Trends Anal. Chem. 2012, 37, 22–31. DOI: 10.1016/j.trac.2012.03.016.
  • Lin, M. H.; Pei, H.; Yang, F.; Fan, C. H.; Zuo, X. L. Applications of Gold Nanoparticles in the Detection and Identification of Infectious Diseases and Biothreats. Adv. Mater. 2013, 25, 3490–3496. DOI: 10.1002/adma.201301333.
  • Sun, H. T.; Sakka, Y. Luminescent Metal Nanoclusters: Controlled Synthesis and Functional Applications. Sci. Technol. Adv. Mater. 2014, 15, 014205. DOI: 10.1088/1468-6996/15/1/014205.
  • Chang, H.; Sun, S. Q. Silicon Nanoparticles: Preparation, Properties, and Applications. Chin. Phys. B 2014, 23, 088102. DOI: 10.1088/1674-1056/23/8/088102.
  • Zhang, X. X.; Chen, M. L.; Yu, Y. L.; Yang, T.; Wang, J. H. Polyelectrolyte-Modified Multi-Walled Carbon Nanotubes for the Adsorption of Chromium(VI). Anal. Methods 2011, 3, 457–462. DOI: 10.1039/c0ay00621a.
  • Sitko, R.; Janik, P.; Feist, B.; Talik, E.; Gagor, A. Suspended Aminosilanized Graphene Oxide Nanosheets for Selective Preconcentration of Lead Ions and Ultrasensitive Determination by Electrothermal Atomic Absorption Spectrometry. ACS Appl. Mater. Interfaces 2014, 6, 20144–20153. DOI: 10.1021/am505740d.
  • Yu, H. M.; Song, H.; Chen, M. L. Dithizone Immobilized Silica Gel On-Line Preconcentration of Trace Copper with Detection by Flame Atomic Absorption Spectrometry. Talanta 2011, 85, 625–630. DOI: 10.1016/j.talanta.2011.04.039.
  • Liu, F. M.; Zhang, Y.; Yin, W.; Hou, C. J.; Huo, D. Q.; He, B.; Qian, L. L.; Fa, H. B. A High-Selectivity Electrochemical Sensor for Ultra-Trace Lead (II) Detection Based on a Nanocomposite Consisting of Nitrogen-Doped Graphene/Gold Nanoparticles Functionalized with ETBD and Fe3O4@TiO2 Core–Shell Nanoparticles. Sens. Actuators B: Chem. 2017, 242, 889–896. DOI: 10.1016/j.snb.2016.09.167.
  • Yang, T.; Ma, L. Y.; Chen, M. L.; Wang, J. H. Metallothionein Isoforms for Selective Biosorption and Preconcentration of Cadmium at Ultra-Trace Levels. J. Anal. At. Spectrom. 2015, 30, 929–935. DOI: 10.1039/C4JA00418C.
  • Zhang, N.; Si, Y. M.; Sun, Z. Z.; Chen, L. J.; Li, R.; Qiao, Y. C.; Wang, H. Rapid, Selective, and Ultrasensitive Fluorimetric Analysis of Mercury and Copper Levels in Blood Using Bimetallic Gold-Silver Nanoclusters with “Silver Effect”-Enhanced Red Fluorescence. Anal. Chem. 2014, 86, 11714–11721. DOI: 10.1021/ac503102g.
  • Freeman, R.; Liu, X.; Willner, I. Chemiluminescent and Chemiluminescence Resonance Energy Transfer (CRET) Detection of DNA, Metal Ions, and Aptamer-Substrate Complexes Using Hemin/G-Quadruplexes and CdSe/ZnS Quantum Dots. J. Am. Chem. Soc. 2011, 133, 11597–11604. DOI: 10.1021/ja202639m.
  • Huang, L. J.; Yu, R. Q.; Chu, X. DNA-Functionalized Upconversion Nanoparticles as Biosensors for Rapid, Sensitive, and Selective Detection of Hg2+ in Complex Matrices. Analyst 2015, 140, 4987–4990. DOI: 10.1039/C5AN00635J.
  • Zhang, X. X.; Zhang, L. P.; Yang, T.; Shen, L. M.; Chen, M. L.; Wang, J. H. Improvement on the Selectivity and Sorption Capacity of Cadmium by Iron Loaded Carbon Nanotubes with Detection by Electrothermal Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2012, 27, 1680–1687. DOI: 10.1039/c2ja30099k.
  • Chen, M. L.; Lin, Y. M.; Gu, C. B.; Wang, J. H. Arsenic Sorption and Speciation with Branch-Polyethyleneimine Modified Carbon Nanotubes with Detection by Atomic Fluorescence Spectrometry. Talanta 2013, 104, 53–57. DOI: 10.1016/j.talanta.2012.11.034.
  • Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct Evidence for Atomic Defects in Graphene Layers. Nature 2004, 430, 870–873. DOI: 10.1038/nature02817.
  • Xu, J. Q.; Zheng, J.; Tian, J. Y.; Zhu, F.; Zeng, F.; Su, C. Y.; Ouyang, G. F. New Materials in Solid-Phase Microextraction. TrAC Trends Anal. Chem. 2013, 47, 68–83. DOI: 10.1016/j.trac.2013.02.012.
  • Sun, Y. B.; Wang, Q.; Chen, C. L.; Tan, X. L.; Wang, X. K. Interaction between Eu(III) and Graphene Oxide Nanosheets Investigated by Batch and Extended X-Ray Absorption Fine Structure Spectroscopy and by Modeling Techniques. Environ. Sci. Technol. 2012, 46, 6020–6027. DOI: 10.1021/es300720f.
  • Zhao, G. X.; Li, J. X.; Ren, X. M.; Chen, C. L.; Wang, X. K. Few-Layered Graphene Oxide Nanosheets as Superior Sorbents for Heavy Metal Ion Pollution Management. Environ. Sci. Technol. 2011, 45, 10454–10462. DOI: 10.1021/es203439v.
  • Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of Divalent Metal Ions from Aqueous Solutions Using Graphene Oxide. Dalton Trans. 2013, 42, 5682–5689. DOI: 10.1039/c3dt33097d.
  • Chen, M. L.; Sun, Y.; Huo, C. B.; Liu, C.; Wang, J. H. Akaganeite Decorated Graphene Oxide Composite for Arsenic Adsorption/Removal and Its Proconcentration at Ultra-Trace Level. Chemosphere 2015, 130, 52–58. DOI: 10.1016/j.chemosphere.2015.02.046.
  • Zhuang, Y. T.; Zhu, T. T.; Ruan, M.; Yu, Y. L.; Wang, J. H. A 2D Porous Fe2O3/Graphitic-C3N4/Graphene Ternary Nanocomposite with Multifunctions of Catalytic Hydrogenation, Chromium(VI) Adsorption and Detoxification. J. Mater. Chem. A 2017, 5, 3447–3455. DOI: 10.1039/C6TA09774J.
  • Zhuang, Y. T.; Zhang, X.; Wang, D. H.; Yu, Y. L.; Wang, J. H. Three-Dimensional Molybdenum Disulfide/Graphene Hydrogel with Tunable Heterointerfaces for High Selective Hg(II) Scavenging. J. Mater. Chem. A 2018, 514, 715–722. DOI: 10.1016/j.jcis.2017.12.082.
  • Yu, Y. L.; Zhuang, Y. T.; Song, X. Y.; Wang, J. H. Lyophilized Carbon Nanotubes/Graphene Oxide Modified Cigarette Filter for the Effective Removal of Cadmium and Chromium from Mainstream Smoke. Chem. Eng. J. 2015, 280, 58–65. DOI: 10.1016/j.cej.2015.05.105.
  • Moreno-Tovar, R.; Terrés, E.; Rangel-Mendez, J. R. Oxidation and EDX Elemental Mapping Characterization of an Ordered Mesoporous Carbon: Pb(II) and Cd(II) Removal. Appl. Surf. Sci. 2014, 303, 373–380. DOI: 10.1016/j.apsusc.2014.03.008.
  • Barczak, M.; Michalak-Zwierz, K.; Gdula, K.; Tyszczuk-Rotko, K.; Dobrowolski, R.; Dąbrowski, A. Ordered Mesoporous Carbons as Effective Sorbents for Removal of Heavy Metal Ions. Microporous Mesoporous Mater. 2015, 211, 162–173. DOI: 10.1016/j.micromeso.2015.03.010.
  • Yang, G. D.; Tang, L.; Cai, Y.; Zeng, G. M.; Guo, P. C.; Chen, G. Q.; Zhou, Y. Y.; Tang, J.; Chen, J.; Xiong, W. P. Effective Removal of Cr(VI) through Adsorption and Reduction by Magnetic Mesoporous Carbon Incorporated with Polyaniline. RSC Adv. 2014, 4, 58362–58371. DOI: 10.1039/C4RA08432B.
  • Anbia, M.; Amirmahmoodi, S. Removal of Hg(II) and Mn(II) from Aqueous Solution Using Nanoporous Carbon Impregnated with Surfactants. Arab. J. Chem. 2016, 9, S319–S325. DOI: 10.1016/j.arabjc.2011.04.004.
  • Li, W. T.; Li, Y. K.; Yang, T.; Chen, M. L.; Wang, J. H. Glutathione Modified Ordered Mesoporous Carbon for Separation and Preconcentration of Trace Cadmium. Chin. J. Anal. Chem. 2018, 46, 530–536. DOI: 10.11895/j.issn.0253.3820.171465.
  • Husnain, S. M.; Um, W.; Chang, Y. Y.; Chang, Y. S. Recyclable Superparamagnetic Adsorbent Based on Mesoporous Carbon for Sequestration of Radioactive Cesium. Chem. Eng. J. 2017, 308, 798–808. DOI: 10.1016/j.cej.2016.09.116.
  • Yi, I. G.; Kang, J. K.; Lee, S. C.; Lee, C. G.; Kim, S. B. Synthesis of an Oxidized Mesoporous Carbon-Based Magnetic Composite and Its Application for Heavy Metal Removal from Aqueous Solutions. Microporous Mesoporous Mater. 2019, 279, 45–52. DOI: 10.1016/j.micromeso.2018.12.016.
  • Li, S. H.; Liu, L.; Yu, Y. F.; Wang, G. X.; Zhang, H. L.; Chen, A. B. Fe3O4 Modified Mesoporous Carbon Nanospheres: Magnetically Separable Adsorbent for Hexavalent Chromium. J. Alloys Compd. 2017, 698, 20–26. DOI: 10.1016/j.jallcom.2016.12.163.
  • Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. DOI: 10.1021/ja040082h.
  • Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon Quantum Dots and Their Applications. Chem. Soc. Rev. 2015, 44, 362–381. DOI: 10.1039/C4CS00269E.
  • Wang, Y. F.; Hu, A. G. Carbon Quantum Dots: Synthesis, Properties and Applications. J. Mater. Chem. C 2014, 2, 6921–6939. DOI: 10.1039/C4TC00988F.
  • Ding, C. Q.; Zhu, A. W.; Tian, Y. Functional Surface Engineering of C-Dots for Fluorescent Biosensing and in Vivo Bioimaging. Acc. Chem. Res. 2014, 47, 20–30. DOI: 10.1021/ar400023s.
  • Zuo, P. L.; Lu, X. H.; Sun, Z. G.; Guo, Y. H.; He, H. A Review on Syntheses, Properties, Characterization and Bioanalytical Applications of Fluorescent Carbon Dots. Microchim. Acta 2016, 183, 519–542. DOI: 10.1007/s00604-015-1705-3.
  • Wang, N.; Wang, Y. T.; Guo, T. T.; Yang, T.; Chen, M. L.; Wang, J. H. Green Preparation of Carbon Dots with Papaya as Carbon Source for Effective Fluorescent Sensing of Iron (III) and Escherichia coli. Biosens. Bioelectron. 2016, 85, 68–75. DOI: 10.1016/j.bios.2016.04.089.
  • Wang, L.; Li, B. Q.; Xu, F.; Shi, X. Y.; Feng, D. M.; Wei, D. Q.; Li, Y.; Feng, Y. J.; Wang, Y. M.; Jia, D. C.; et al. High-Yield Synthesis of Strong Photoluminescent N-Doped Carbon Nanodots Derived from Hydrosoluble Chitosan for Mercury Ion Sensing via Smartphone App. Biosens. Bioelectron. 2016, 79, 1–8. DOI: 10.1016/j.bios.2015.11.085.
  • Cayuela, A.; Kennedy, S. R.; Soriano, M. L.; Jones, C. D.; Valcárcel, M.; Steed, J. W. Fluorescent Carbon Dot-Molecular Salt Hydrogels. Chem. Sci. 2015, 6, 6139–6146. DOI: 10.1039/C5SC01859E.
  • Li, Y. K.; Yang, T.; Chen, M. L.; Wang, J. H. Supported Carbon Dots Serve as High-Performance Adsorbent for the Retention of Trace Cadmium. Talanta 2018, 180, 18–24. DOI: 10.1016/j.talanta.2017.12.020.
  • Mashkani, M.; Mehdinia, A.; Jabbari, A.; Bide, Y.; Nabid, M. R. Preconcentration and Extraction of Lead Ions in Vegetable and Water Samples by N-Doped Carbon Quantum Dot Conjugated with Fe3O4 as a Green and Facial Adsorbent. Food Chem. 2018, 239, 1019–1026. DOI: 10.1016/j.foodchem.2017.07.042.
  • Cai, Y.; Li, C.; Wu, D.; Wang, W.; Tan, F.; Wang, X.; Wong, P. K.; Qiao, X. Highly Active MgO Nanoparticles for Simultaneous Bacterial Inactivation and Heavy Metal Removal from Aqueous Solution. Chem. Eng. J. 2017, 312, 158–166. DOI: 10.1016/j.cej.2016.11.134.
  • Seisenbaeva, G. A.; Daniel, G.; Kessler, V. G.; Nedelec, J. M. General Facile Approach to Transition-Metal Oxides with Highly Uniform Mesoporosity and Their Application as Adsorbents for Heavy-Metal-Ion Sequestration. Chem. Eur. J. 2014, 20, 10732–10736. DOI: 10.1002/chem.201402691.
  • Tian, Y.; Chen, M. L.; Chen, X. W.; Wang, J. H.; Hirano, Y.; Sakamoto, H.; Shirasaki, T. Arsenic Preconcentration via Solid Phase Extraction and Speciation by HPLC-Gradient Hydride Generation Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2011, 26, 133–140. DOI: 10.1039/C0JA00091D.
  • Zhou, W. Y.; Liu, J. Y.; Song, J. Y.; Li, J. J.; Liu, J. H.; Huang, X. J. Surface-Electronic-State-Modulated, Single-Crystalline (001) TiO2 Nanosheets for Sensitive Electrochemical Sensing of Heavy-Metal Ions. Anal. Chem. 2017, 89, 3386–3394. DOI: 10.1021/acs.analchem.6b04023.
  • Maleki, A.; Hayati, B.; Najafi, F.; Gharibi, F.; Joo, S. W. Heavy Metal Adsorption from Industrial Wastewater by Pamam/TiO2 Nanohybrid: Preparation, Characterization and Adsorption Studies. J. Mol. Liq. 2016, 224, 95–104. DOI: 10.1016/j.molliq.2016.09.060.
  • George, R.; Bahadur, N.; Singh, N.; Singh, R.; Verma, A.; Shukla, A. K. Environmentally Benign TiO2 Nanomaterials for Removal of Heavy Metal Ions with Interfering Ions Present in Tap Water. Mater. Today: Proc. 2016, 3, 162–166. DOI: 10.1016/j.matpr.2016.01.051.
  • Chen, Y.; Wang, M. G.; Hu, Y. M.; Han, J. Poly(2-Aminothiophenol)/MnO2 Hierarchical Nanocables as Efficient Adsorbents towards Heavy Metal Ions. Mater. Chem. Phys. 2018, 214, 172–179. DOI: 10.1016/j.matchemphys.2018.04.076.
  • Baranik, A.; Sitko, R.; Gagor, A.; Queralt, I.; Margui, E.; Zawisza, B. Graphene Oxide Decorated with Cerium(IV) Oxide in Determination of Ultratrace Metal Ions and Speciation of Selenium. Anal. Chem. 2018, 90, 4150–4159. DOI: 10.1021/acs.analchem.8b00137.
  • Wang, Q.; O’Hare, D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chem. Rev. 2012, 112, 4124–4155. DOI: 10.1021/cr200434v.
  • Rahman, M. T.; Kameda, T.; Kumagai, S.; Yoshioka, T. Effectiveness of Mg–Al-Layered Double Hydroxide for Heavy Metal Removal from Mine Wastewater and Sludge Volume Reduction. Int. J. Environ. Sci. Technol. 2018, 15, 263–272. DOI: 10.1007/s13762-017-1385-0.
  • Rajabi, M.; Arghavani-Beydokhti, S.; Barfi, B.; Asghari, A. Dissolvable Layered Double Hydroxide as an Efficient Nanosorbent for Centrifugeless Air-Agitated Dispersive Solid-Phase Extraction of Potentially Toxic Metal Ions from Bio-Fluid Samples. Anal. Chim. Acta 2017, 957, 1–9. DOI: 10.1016/j.aca.2016.12.041.
  • Ma, L.; Wang, Q.; Islam, S. M.; Liu, Y.; Ma, S.; Kanatzidis, M. G. Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS42− Ion. J. Am. Chem. Soc. 2016, 138, 2858–2866. DOI: 10.1021/jacs.6b00110.
  • Ma, L. J.; Islam, S. M.; Xiao, C. L.; Zhao, J.; Liu, H. Y.; Yuan, M. W.; Sun, G. B.; Li, H. F.; Ma, S. L.; Kanatzidis, M. G. Rapid Simultaneous Removal of Toxic Anions [HSeO3]−, [SeO3]2−, and [SeO4]2−, and Metals Hg2+, Cu2+, and Cd2+ by MoS42− Intercalated Layered Double Hydroxide. J. Am. Chem. Soc. 2017, 139, 12745–12757. DOI: 10.1021/jacs.7b07123.
  • Zhao, Q.; Yuan, W.; Liang, J. M.; Li, J. P. Synthesis and Hydrogen Storage Studies of Metal–Organic Framework UiO-66. Int. J. Hydrogen Energy 2013, 38, 13104–13109. DOI: 10.1016/j.ijhydene.2013.01.163.
  • Qian, X. K.; Yadian, B.; Wu, R. B.; Long, Y.; Zhou, K.; Zhu, B.; Huang, Y. Z. Structure Stability of Metal-Organic Framework MIL-53 (Al) in Aqueous Solutions. Int. J. Hydrogen Energy 2013, 38, 16710–16715. DOI: 10.1016/j.ijhydene.2013.07.054.
  • Bennett, T. D.; Goodwin, A. L.; Dove, M. T.; Keen, D. A.; Tucker, M. G.; Barney, E. R.; Soper, A. K.; Bithell, E. G.; Tan, J. C.; Cheetham, A. K. Structure and Properties of an Amorphous Metal-Organic Framework. Phys. Rev. Lett. 2010, 104, 115503. DOI: 10.1103/PhysRevLett.104.115503.
  • Rouhani, F.; Morsali, A. Goal-Directed Design of Metal-Organic Frameworks for Hg(II) and Pb(II) Adsorption from Aqueous Solutions. Chem. Eur. J. 2018, 24, 17170–17179. DOI: 10.1002/chem.201802096.
  • Rouhani, F.; Morsali, A. Fast and Selective Heavy Metal Removal by a Novel Metal-Organic Framework Designed with in-Situ Ligand Building Block Fabrication Bearing Free Nitrogen. Chem. Eur. J. 2018, 24, 5529–5537. DOI: 10.1002/chem.201706016.
  • Chakraborty, A.; Bhattacharyya, S.; Hazra, A.; Ghosh, A. C.; Maji, T. K. Post-Synthetic Metalation in an Anionic MOF for Efficient Catalytic Activity and Removal of Heavy Metal Ions from Aqueous Solution. Chem. Commun. 2016, 52, 2831–2834. DOI: 10.1039/C5CC09814A.
  • Cohen, S. M. The Postsynthetic Renaissance in Porous Solids. J. Am. Chem. Soc. 2017, 139, 2855–2863. DOI: 10.1021/jacs.6b11259.
  • Nozohour Yazdi, M.; Yamini, Y.; Asiabi, H.; Alizadeh, A. A Metal Organic Framework Prepared from Benzene-1,3,5-Tricarboxylic Acid and Copper(II), and Functionalized with Various Polysulfides as a Sorbent for Selective Sorption of Trace Amounts of Heavy Metal Ions. Mikrochim. Acta 2018, 185, 525. DOI: 10.1007/s00604-018-3059-0.
  • Zhang, D. W.; Xu, Y.; Liu, Q. L.; Xia, Z. G. Encapsulation of CH3NH3PbBr3 Perovskite Quantum Dots in MoF-5 Microcrystals as a Stable Platform for Temperature and Aqueous Heavy Metal Ion Detection. Inorg. Chem. 2018, 57, 4613–4619. DOI: 10.1021/acs.inorgchem.8b00355.
  • Jia, X. X.; Yao, R. X.; Zhang, F. Q.; Zhang, X. M. A Fluorescent Anionic MOF with Zn4(trz)2 Chain for Highly Selective Visual Sensing of Contaminants: Cr(III) Ion and TNP. Inorg. Chem. 2017, 56, 2690–2696. DOI: 10.1021/acs.inorgchem.6b02872.
  • Zhang, X. X.; Sun, C. L.; Zhang, L.; Liu, H.; Cao, B. X.; Liu, L. B.; Gong, W. M. Adsorption Studies of Cadmium onto Magnetic Fe3O4@FePO4 and Its Preconcentration with Detection by Electrothermal Atomic Absorption Spectrometry. Talanta 2018, 181, 352–358. DOI: 10.1016/j.talanta.2018.01.023.
  • Hao, H. T.; Liu, G. F.; Wang, Y. L.; Shi, B. Y.; Han, K.; Zhuang, Y.; Kong, Y. Simultaneous Cationic Cu(II)-Anionic Sb(III) Removal by NN2-Fe3O4-NTA Core-Shell Magnetic Nanoparticle Sorbents Synthesized via a Facile One-Pot Approach. J. Hazard. Mater. 2019, 362, 246–257. DOI: 10.1016/j.jhazmat.2018.08.096.
  • Alvand, M.; Shemirani, F. A Fe3O4@SiO2@Graphene Quantum Dot Core-Shell Structured Nanomaterial as a Fluorescent Probe and for Magnetic Removal of Mercury(II) Ion. Microchim. Acta 2017, 184, 1621–1629. DOI: 10.1007/s00604-017-2134-2.
  • Yu, Y. J.; Yu, C.; Gao, R. F.; Chen, J.; Zhong, H. T.; Wen, Y. L.; Ji, X. D.; Wu, J. H.; He, J. L. Dandelion-Like CuO Microspheres Decorated with Au Nanoparticle Modified Biosensor for Hg2+ Detection Using a T-Hg2+-T Triggered Hybridization Chain Reaction Amplification Strategy. Biosens. Bioelectron. 2019, 131, 207–213. DOI: 10.1016/j.bios.2019.01.063.
  • Lakkakula, J. R.; Divakaran, D.; Thakur, M.; Kumawat, M. K.; Srivastava, R. Cyclodextrin-Stabilized Gold Nanoclusters for Bioimaging and Selective Label-Free Intracellular Sensing of Co2+ Ions. Sens. Actuators B: Chem. 2018, 262, 270–281. DOI: 10.1016/j.snb.2018.01.219.
  • Bhattacharjee, Y.; Chatterjee, D.; Chakraborty, A. Mercaptobenzoheterocyclic Compounds Functionalized Silver Nanoparticle, an Ultrasensitive Colorimetric Probe for Hg(II) Detection in Water with Picomolar Precision: A Correlation between Sensitivity and Binding Affinity. Sens. Actuators B: Chem. 2018, 255, 210–216. DOI: 10.1016/j.snb.2017.08.066.
  • Sener, G.; Uzun, L.; Denizli, A. Colorimetric Sensor Array Based on Gold Nanoparticles and Amino Acids for Identification of Toxic Metal Ions in Water. ACS Appl. Mater. Interfaces 2014, 6, 18395–18400. DOI: 10.1021/am5071283.
  • Mehta, V. N.; Singhal, R. K.; Kailasa, S. K. A Molecular Assembly of Piperidine Carboxylic Acid Dithiocarbamate on Gold Nanoparticles for the Selective and Sensitive Detection of Al3+ Ion in Water Samples. RSC Adv. 2015, 5, 33468–33477. DOI: 10.1039/C5RA00003C.
  • Yang, T.; Zhang, X. X.; Yang, J. Y.; Wang, Y. T.; Chen, M. L. Screening Arsenic(III)-Binding Peptide for Colorimetric Detection of Arsenic(III) Based on the Peptide Induced Aggregation of Gold Nanoparticles. Talanta 2018, 177, 212–216. DOI: 10.1016/j.talanta.2017.07.005.
  • Wang, X. Y.; Yang, T.; Zhang, X. X.; Chen, M. L.; Wang, J. H. In Situ Growth of Gold Nanoparticles on Hg2+-Binding M13 Phages for Mercury Sensing. Nanoscale 2017, 9, 16728–16734. DOI: 10.1039/C7NR06292C.
  • Deng, L.; Li, Y.; Yan, X. P.; Xiao, J.; Ma, C.; Zheng, J.; Liu, S. J.; Yang, R. H. Ultrasensitive and Highly Selective Detection of Bioaccumulation of Methyl-Mercury in Fish Samples via Ag0/Hg0 Amalgamation. Anal. Chem. 2015, 87, 2452–2428. DOI: 10.1021/ac504538v.
  • Lee, J. S.; Han, M. S.; Mirkin, C. A. Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media Using DNA-Functionalized Gold Nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4093–4096. DOI: 10.1002/anie.200700269.
  • Li, D. M.; Chen, Y. C.; Zhang, C.; Song, S.; Zheng, Y. S. Different Morphologies of Silica Synthesized Using Organic Templates from the Same Class of Chiral Compounds. J. Mater. Chem. B 2013, 1, 1622–1627. DOI: 10.1039/c3tb00146f.
  • Huang, Q.; Liu, M. Y.; Zhao, J.; Chen, J. Y.; Zeng, G. J.; Huang, H. Y.; Tian, J. W.; Wen, Y. Q.; Zhang, X. Y.; Wei, Y. Facile Preparation of Polyethylenimine-Tannins Coated SiO2 Hybrid Materials for Cu2+ Removal. Appl. Surf. Sci. 2018, 427, 535–544. DOI: 10.1016/j.apsusc.2017.08.233.
  • Tadjarodi, A.; Abbaszadeh, A.; Taghizadeh, M.; Shekari, N.; Asgharinezhad, A. A. Solid Phase Extraction of Cd(II) and Pb(II) Ions Based on a Novel Functionalized Fe3O4@ SiO2 Core-Shell Nanoparticles with the Aid of Multivariate Optimization Methodology. Mater. Sci. Eng. C 2015, 49, 416–421. DOI: 10.1016/j.msec.2015.01.013.
  • Zhu, W. J.; Wang, J. X.; Wu, D.; Li, X. T.; Luo, Y. M.; Han, C. Y.; Ma, W. H.; He, S. F. Investigating the Heavy Metal Adsorption of Mesoporous Silica Materials Prepared by Microwave Synthesis. Nanoscale Res. Lett. 2017, 12, 323. DOI: 10.1186/s11671-017-2070-4.
  • Branger, C.; Meouche, W.; Margaillan, A.; Polymers, F. Recent Advances on Ion-Imprinted Polymers. React. Funct. Polym. 2013, 73, 859–875. DOI: 10.1016/j.reactfunctpolym.2013.03.021.
  • Hande, P. E.; Samui, A. B.; Kulkarni, P. S. Highly Selective Monitoring of Metals by Using Ion-Imprinted Polymers. Environ. Sci. Pollut. Res. 2015, 22, 7375–7404. DOI: 10.1007/s11356-014-3937-x.
  • Luo, X. B.; Luo, S. L.; Zhan, Y. C.; Shu, H. Y.; Huang, Y. N.; Tu, X. M. Novel Cu (II) Magnetic Ion Imprinted Materials Prepared by Surface Imprinted Technique Combined with a Sol-Gel Process. J. Hazard. Mater. 2011, 192, 949–955. DOI: 10.1016/j.jhazmat.2011.05.042.
  • Moussa, M.; Ndiaye, M. M.; Pinta, T.; Pichon, V.; Vercouter, T.; Delaunay, N. Selective Solid Phase Extraction of Lanthanides from Tap and River Waters with Ion Imprinted Polymers. Anal. Chim. Acta 2017, 963, 44–52. DOI: 10.1016/j.aca.2017.02.012.
  • Huang, K.; Li, B. B.; Zhou, F.; Mei, S. R.; Zhou, Y. K.; Jing, T. Selective Solid-Phase Extraction of Lead Ions in Water Samples Using Three-Dimensional Ion-Imprinted Polymers. Anal. Chem. 2016, 88, 6820–6826. DOI: 10.1021/acs.analchem.6b01291.
  • Xu, X. Y.; Wang, M.; Wu, Q.; Xu, Z. L.; Tian, X. G. Synthesis and Application of Novel Magnetic Ion-Imprinted Polymers for Selective Solid Phase Extraction of Cadmium (II). Polymers 2017, 9, 360. DOI: 10.3390/polym9080360.
  • He, H.; Xiao, D. L.; He, J.; Li, H.; He, H.; Dai, H.; Peng, J. Preparation of a Core-Shell Magnetic Ion-Imprinted Polymer via a Sol-Gel Process for Selective Extraction of Cu(II) from Herbal Medicines. Analyst 2014, 139, 2459–2466. DOI: 10.1039/C3AN02096G.
  • Zhang, Y. B.; Yan, K.; Ji, F. T.; Zhang, L. Enhanced Removal of Toxic Heavy Metals Using Swarming Biohybrid Adsorbents. Adv. Funct. Mater. 2018, 28, 1806340. DOI: 10.1002/adfm.201806340.
  • Tian, Y.; Xie, Z. M.; Chen, M. L.; Wang, J. H. Cadmium Preconcentration with Bean-Coat as a Green Adsorbent with Detection by Electrothermal Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2011, 26, 1408–1413. DOI: 10.1039/c0ja00265h.
  • Volesky, B. Advances in Biosorption of Metals: Selection of Biomass Types. FEMS Microbiol. Rev. 1994, 14, 291–302. DOI: 10.1111/j.1574-6976.1994.tb00102.x.
  • Vianna, L.; Andrade, M.; Nicoli, J. Biotechnology Screening of Waste Biomass from Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus Fermentations for Removal of Cu, Zn and Cd by Biosorption. World J. Microbiol. Biotechnol. 2000, 16, 437–440. DOI: 10.1023/A:1008953922144.
  • Chen, X. W.; Zou, A. M.; Chen, M. L.; Wang, J. H.; Dasgupta, P. K. Live HeLa Cells Preconcentrate and Differentiate Inorganic Arsenic Species. Anal. Chem. 2009, 81, 1291–1296. DOI: 10.1021/ac802475b.
  • Yang, T.; Li, Y. K.; Chen, M. L.; Wang, J. H. Supported Carbon Dots Decorated with Metallothionein for Selective Cadmium Adsorption and Removal. Chin. Chem. Lett. 2015, 26, 1496–1501. DOI: 10.1016/j.cclet.2015.10.018.
  • Yang, T.; Liu, L. H.; Liu, J. W.; Chen, M. L.; Wang, J. H. Cyanobacterium Metallothionein Decorated Graphene Oxide Nanosheets for Highly Selective Adsorption of Ultra-Trace Cadmium. J. Mater. Chem. 2012, 22, 21909–21916. DOI: 10.1039/c2jm34712a.
  • Weishaupt, R.; Siqueira, G.; Schubert, M.; Kämpf, M. M.; Zimmermann, T.; Maniura-Weber, K.; Faccio, G. A Protein-Nanocellulose Paper for Sensing Copper Ions at the Nano- to Micromolar Level. Adv. Funct. Mater. 2017, 27, 1604291. DOI: 10.1002/adfm.201604291.
  • Chen, X. W.; Huang, L. L.; He, R. H. Silk Fibroin as a Sorbent for On-Line Extraction and Preconcentration of Copper with Detection by Electrothermal Atomic Absorption Spectrometry. Talanta 2009, 78, 71–75. DOI: 10.1016/j.talanta.2008.10.039.
  • Chen, M. L.; Yang, T.; Wang, J. H. Precipitate Coating on Cellulose Fibre as Sorption Medium for Selenium Preconcentration and Speciation with Hydride Generation Atomic Fluorescence Spectrometry. Anal. Chim. Acta 2009, 631, 74–79. DOI: 10.1016/j.aca.2008.10.019.
  • An, M. I.; Zhang, X. X.; Yang, T.; Chen, M. L.; Wang, J. H. Uptake and Speciation of Inorganic Arsenic with Cellulose Fibre Coated with Yttrium Hydroxide Layer as a Novel Green Sorbent. Chin. J. Chem. 2012, 30, 2225–2231. DOI: 10.1002/cjoc.201200580.
  • Yang, T.; Chen, M. L.; Hu, X. W.; Wang, Z. W.; Wang, J. H.; Dasgupta, P. K. Thiolated Eggshell Membranes Sorb and Speciate Inorganic Selenium. Analyst 2011, 136, 83–89. DOI: 10.1039/C0AN00480D.
  • Chen, M. L.; Gu, C. B.; Yang, T.; Sun, Y.; Wang, J. H. A Green Sorbent of Esterified Egg-Shell Membrane for Highly Selective Uptake of Arsenate and Speciation of Inorganic Arsenic. Talanta 2013, 116, 688–694. DOI: 10.1016/j.talanta.2013.07.061.
  • Yang, T.; Zhang, X. X.; Chen, M. L.; Wang, J. H. Highly Selective Preconcentration of Ultra-Trace Cadmium by Yeast Surface Engineering. Analyst 2012, 137, 4193–4199. DOI: 10.1039/c2an35755k.
  • Yang, T.; Zhang, X. Y.; Zhang, X. X.; Chen, M. L.; Wang, J. H. Chromium(III) Binding Phage Screening for the Selective Adsorption of Cr(III) and Chromium Speciation. ACS Appl. Mater. Interfaces 2015, 7, 21287–21294. DOI: 10.1021/acsami.5b05606.
  • Bilal, M.; Kazi, T. G.; Afridi, H. I.; Ali, J.; Baig, J. A.; Arain, M. B.; Khan, M. A New Tunable Dispersive Liquid-Liquid Micro Extraction Method Developed for the Simultaneous Preconcentration of Lead and Cadmium from Lakes Water: A Multivariate Study. Spectrochim. Acta A: Mol. Biomol. Spectrsc. 2017, 183, 417–424. DOI: 10.1016/j.saa.2017.04.037.
  • Zhang, X. X.; Tang, S. S.; Chen, M. L.; Wang, J. H. Iron Phosphate as a Novel Sorbent for Selective Adsorption of Chromium(III) and Chromium Speciation with Detection by ETAAS. J. Anal. At. Spectrom. 2012, 27, 466–472. DOI: 10.1039/c2ja10292g.
  • Hao, S.; Verlotta, A.; Aprea, P.; Pepe, F.; Caputo, D.; Zhu, W. Optimal Synthesis of Amino-Functionalized Mesoporous Silicas for the Adsorption of Heavy Metal Ions. Microporous Mesoporous Mater. 2016, 236, 250–259. DOI: 10.1016/j.micromeso.2016.09.008.
  • Weinberger, C.; Haffer, S.; Wagner, T.; Tiemann, M. Fructose and Urea as Precursors for N-/O-Modified Mesoporous Carbon with Enhanced Sorption Capacity for Heavy Metal Ions. Eur. J. Inorg. Chem. 2014, 2014, 2787–2792. DOI: 10.1002/ejic.201402027.
  • Safari, M.; Yamini, Y.; Masoomi, M. Y.; Morsali, A.; Mani-Varnosfaderani, A. Magnetic Metal-Organic Frameworks for the Extraction of Trace Amounts of Heavy Metal Ions Prior to Their Determination by ICP-AES. Microchim. Acta 2017, 184, 1555–1564. DOI: 10.1007/s00604-017-2133-3.
  • Ghazaghi, M.; Mousavi, H. Z.; Rashidi, A. M.; Shirkhanloo, H.; Rahighi, R. Graphene-Silica Hybrid in Efficient Preconcentration of Heavy Metal Ions via Novel Single-Step Method of Moderate Centrifugation-Assisted Dispersive Micro Solid Phase Extraction. Talanta 2016, 150, 476–484. DOI: 10.1016/j.talanta.2015.12.074.
  • Aghagoli, M. J.; Shemirani, F. Hybrid Nanosheets Composed of Molybdenum Disulfide and Reduced Graphene Oxide for Enhanced Solid Phase Extraction of Pb(II) and Ni(II). Microchim. Acta 2017, 184, 237–244. DOI: 10.1007/s00604-016-2000-7.
  • Xia, Z. Y.; Baird, L.; Zimmerman, N.; Yeager, M. Heavy Metal Ion Removal by Thiol Functionalized Aluminum Oxide Hydroxide Nanowhiskers. Appl. Surf. Sci. 2017, 416, 565–573. DOI: 10.1016/j.apsusc.2017.04.095.
  • Wang, W. J.; Chen, M. L.; Chen, X. W.; Wang, J. H. Thiol-Rich Polyhedral Oligomeric Silsesquioxane as a Novel Adsorbent for Mercury Adsorption and Speciation. Chem. Eng. J. 2014, 242, 62–68. DOI: 10.1016/j.cej.2013.12.063.
  • Chen, M. L.; Ma, H. J.; Zhang, S. Q.; Wang, J. H. Mercury Speciation with L-Cysteine Functionalized Cellulose Fibre as Adsorbent by Atomic Fluorescence Spectrometry. J. Anal. At. Spectrom. 2011, 26, 613–617. DOI: 10.1039/c0ja00185f.
  • Chen, M. L.; An, M. I. Selenium Adsorption and Speciation with Mg-FeCO3 Layered Double Hydroxides Loaded Cellulose Fibre. Talanta 2012, 95, 31–35. DOI: 10.1016/j.talanta.2012.03.038.
  • Chen, M. L.; Zhao, Y. N.; Zhang, D. W.; Tian, Y.; Wang, J. H. The Immobilization of Hydrophilic Ionic Liquid for Cr(VI) Retention and Chromium Speciation. J. Anal. At. Spectrom. 2010, 25, 1688–1694. DOI: 10.1039/c0ja00026d.
  • Sitko, R.; Janik, P.; Zawisza, B.; Talik, E.; Margui, E.; Queralt, I. Green Approach for Ultratrace Determination of Divalent Metal Ions and Arsenic Species Using Total-Reflection X-Ray Fluorescence Spectrometry and Mercapto-Modified Graphene Oxide Nanosheets as a Novel Adsorbent. Anal. Chem. 2015, 87, 3535–3542. DOI: 10.1021/acs.analchem.5b00283.
  • L’vov, B. V. Progress in Atomic Absorption Spectroscopy Employing Flame and Graphite Cuvette Techniques. Pure Appl. Chem. 1970, 23, 11–34. DOI: 10.1351/pac197023010011.
  • Duran, C.; Gundogdu, A.; Bulut, V. N.; Soylak, M.; Elci, L.; Senturk, H. B.; Tufekci, M. Solid-Phase Extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) Ions from Environmental Samples by Flame Atomic Absorption Spectrometry (FAAS). J. Hazard. Mater 2007, 146, 347–355. DOI: 10.1016/j.jhazmat.2006.12.029.
  • Islam, A.; Ahmad, H.; Zaidi, N.; Kumar, S. Graphene Oxide Sheets Immobilized Polystyrene for Column Preconcentration and Sensitive Determination of Lead by Flame Atomic Absorption Spectrometry. ACS Appl. Mater. Interfaces 2014, 6, 13257–13265. DOI: 10.1021/am5031215.
  • Hsu, K. C.; Lee, C. F.; Chao, Y. Y.; Hung, C. C.; Chen, P. C.; Chiang, C. H.; Huang, Y. L. Ultrasound-Assisted Hollow Fiber/Ionic Liquid-Based Liquid Phase Microextraction Using an Ionic Liquid Solvent for Preconcentration of Cobalt and Nickel Ions in Urine Samples Prior to FAAS Determination. J. Anal. At. Spectrom. 2016, 31, 2338–2345. DOI: 10.1039/C6JA00183A.
  • Butcher, D. J. Recent Highlights in Graphite Furnace Atomic Absorption Spectrometry. Appl. Spectrosc. Rev. 2017, 52, 755–773. DOI: 10.1080/05704928.2017.1303504.
  • Kojidi, M. H.; Aliakbar, A. A Graphene Oxide Based Poly(2,6-Diaminopyridine) Composite for Solid-Phase Extraction of Cd(II) Prior to Its Determination by FAAS. Microchim. Acta 2017, 184, 2855–2860. DOI: 10.1007/s00604-017-2317-x.
  • Pourjavid, M. R.; Arabieh, M.; Yousefi, S. R.; Jamali, M. R.; Rezaee, M.; Hosseini, M. H.; Sehat, A. A. Study on Column Spe with Synthesized Graphene Oxide and FAAS for Determination of Trace Amount of Co(II) and Ni(II) Ions in Real Samples. Mater. Sci. Eng. C: Mater. Biol. Appl. 2015, 47, 114–122. DOI: 10.1016/j.msec.2014.11.028.
  • Li, Y. K.; Li, W. T.; Liu, X.; Yang, T.; Chen, M. L.; Wang, J. H. Functionalized Magnetic Composites Based on the Aptamer Serve as Novel Bio-Adsorbent for the Separation and Preconcentration of Trace Lead. Talanta 2019, 203, 210–219. DOI: 10.1016/j.talanta.2019.05.075.
  • Winefordner, J. D.; Vickers, T. J. Atomic Fluorescence Spectroscopy as a Means of Chemical Analysis. Anal. Chem. 1964, 36, 161–165. DOI: 10.1021/ac60207a052.
  • Zou, Z. R.; Deng, Y. J.; Hu, J.; Jiang, X. M.; Hou, X. D. Recent Trends in Atomic Fluorescence Spectrometry towards Miniaturized Instrumentation—A Review. Anal. Chim. Acta 2018, 1019, 25–37. DOI: 10.1016/j.aca.2018.01.061.
  • Shi, M. T.; Yang, X. A.; Zhang, W. B. Magnetic Graphitic Carbon Nitride Nano-Composite for Ultrasound-Assisted Dispersive Micro-Solid-Phase Extraction of Hg(II) Prior to Quantitation by Atomic Fluorescence Spectroscopy. Anal. Chim. Acta 2019, 1074, 33–42. DOI: 10.1016/j.aca.2019.04.062.
  • Wang, H.; Liu, X. L.; Nan, K.; Chen, B. B.; He, M.; Hu, B. Sample Pre-Treatment Techniques for Use with ICP-MS Hyphenated Techniques for Elemental Speciation in Biological Samples. J. Anal. At. Spectrom. 2017, 32, 58–77. DOI: 10.1039/C6JA00077K.
  • Wang, H.; He, M.; Chen, B. B.; Hu, B. Advances in ICP-MS-Based Techniques for Trace Elements and Their Species Analysis in Cells. J. Anal. At. Spectrom. 2017, 32, 1650–1659. DOI: 10.1039/C6JA00414H.
  • Xing, G. W.; Sardar, M. R.; Lin, B. X.; Lin, J. M. Analysis of Trace Metals in Water Samples Using Nobias Chelate Resins by HPLC and ICP-MS. Talanta 2019, 204, 50–56. DOI: 10.1016/j.talanta.2019.05.041.
  • Pietila, H.; Peramaki, P.; Piispanen, J.; Majuri, L.; Starr, M.; Nieminen, T.; Kantola, M.; Ukonmaanaho, L. Determination of Methyl Mercury in Humic-Rich Natural Water Samples Using N-2-Distillation with Isotope Dilution and On-Line Purge and Trap GC-ICP-MS. Microchem. J. 2014, 112, 113–118. DOI: 10.1016/j.microc.2013.10.002.
  • Shamsipur, M.; Farzin, L.; Amouzadeh Tabrizi, M.; Sheibani, S. Functionalized Fe3O4/Graphene Oxide Nanocomposites with Hairpin Aptamers for the Separation and Preconcentration of Trace Pb2+ from Biological Samples Prior to Determination by ICP MS. Mater. Sci. Eng. C: Mater. Biol. Appl. 2017, 77, 459–469. DOI: 10.1016/j.msec.2017.03.262.
  • Habila, M. A.; Alothman, Z. A.; El-Toni, A. M.; Al-Tamrah, S. A.; Soylak, M.; Labis, J. P. Carbon-Coated Fe3O4 Nanoparticles with Surface Amido Groups for Magnetic Solid Phase Extraction of Cr(III), Co(II), Cd(II), Zn(II) and Pb(II) Prior to Their Quantitation by ICP-MS. Microchim. Acta 2017, 184, 2645–2651. DOI: 10.1007/s00604-017-2283-3.
  • Jia, X. Y.; Gong, D. R.; Zhao, J. Y.; Ren, H. Y.; Wang, J. N.; Zhang, X. Zwitterion-Functionalized Polymer Microspheres as a Sorbent for Solid Phase Extraction of Trace Levels of V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) prior to their determination by ICP-MS. Mikrochim. Acta 2018, 185, 228. DOI: 10.1007/s00604-018-2766-x.
  • Ding, Y. J.; Wang, S. S.; Li, J. H.; Chen, L. X. Nanomaterial-Based Optical Sensors for Mercury Ions. TrAC Trends Anal. Chem. 2016, 82, 175–190. DOI: 10.1016/j.trac.2016.05.015.
  • Bothra, S.; Upadhyay, Y.; Kumar, R.; Ashok Kumar, S. K.; Sahoo, S. K. Chemically Modified Cellulose Strips with Pyridoxal Conjugated Red Fluorescent Gold Nanoclusters for Nanomolar Detection of Mercuric Ions. Biosens. Bioelectron. 2017, 90, 329–335. DOI: 10.1016/j.bios.2016.11.066.
  • Yang, J. Y.; Yang, T.; Wang, X. Y.; Chen, M. L.; Yu, Y. L.; Wang, J. H. Mercury Speciation with Fluorescent Gold Nanocluster as a Probe. Anal. Chem. 2018, 90, 6945–6951. DOI: 10.1021/acs.analchem.8b01222.
  • Dai, D.; Li, Z.; Yang, J.; Wang, C.; Wu, J. R.; Wang, Y.; Zhang, D.; Yang, Y. W. Supramolecular Assembly-Induced Emission Enhancement for Efficient Mercury(II) Detection and Removal. J. Am. Chem. Soc. 2019, 141, 4756–4763. DOI: 10.1021/jacs.9b01546.
  • Zuo, X. W.; Zhang, H. G.; Zhu, Q.; Wang, W. F.; Feng, J.; Chen, X. G. A Dual-Color Fluorescent Biosensing Platform Based on WS2 Nanosheet for Detection of Hg2+ and Ag+. Biosens. Bioelectron. 2016, 85, 464–470. DOI: 10.1016/j.bios.2016.05.044.
  • Liu, Y. C.; Wang, X. Q.; Wu, H. Reusable DNA-Functionalized-Graphene for Ultrasensitive Mercury (II) Detection and Removal. Biosens. Bioelectron. 2017, 87, 129–135. DOI: 10.1016/j.bios.2016.07.059.
  • Zeng, L. W.; Zhou, D. H.; Gong, J. Y.; Liu, C. S.; Chen, J. H. Highly Sensitive Aptasensor for Trace Arsenic(III) Detection Using Dnazyme as the Biocatalytic Amplifier. Anal. Chem. 2019, 91, 1724–1727. DOI: 10.1021/acs.analchem.8b05466.
  • Peng, X.; Liang, W. B.; Wen, Z. B.; Xiong, C. Y.; Zheng, Y. N.; Chai, Y. Q.; Yuan, R. Ultrasensitive Fluorescent Assay Based on a Rolling-Circle-Amplification-Assisted Multisite-Strand-Displacement-Reaction Signal-Amplification Strategy. Anal. Chem. 2018, 90, 7474–7479. DOI: 10.1021/acs.analchem.8b01015.
  • Huang, P. J.; Vazin, M.; Liu, J. W. Desulfurization Activated Phosphorothioate Dnazyme for the Detection of Thallium. Anal. Chem. 2015, 87, 10443–10449. DOI: 10.1021/acs.analchem.5b02568.
  • Yang, J. H.; Zhang, Y.; Zhang, L.; Wang, H. L.; Nie, J. F.; Qin, Z.; Li, J.; Xiao, W. C. Analyte-Triggered Autocatalytic Amplification Combined with Gold Nanoparticle Probes for Colorimetric Detection of Heavy-Metal Ions. Chem. Commun. 2017, 53, 7477–7480. X. DOI: 10.1039/C7CC02198D.
  • Ban, D. K.; Paul, S. Rapid Colorimetric and Spectroscopy Based Sensing of Heavy Metal and Cellular Free Oxygen Radical by Surface Functionalized Silver Nanoparticles. Appl. Surf. Sci. 2018, 458, 245–251. DOI: 10.1016/j.apsusc.2018.07.069.
  • Sener, G.; Uzun, L.; Denizli, A. Lysine-Promoted Colorimetric Response of Gold Nanoparticles: A Simple Assay for Ultrasensitive Mercury(II) Detection. Anal. Chem. 2014, 86, 514–520. DOI: 10.1021/ac403447a.
  • Zhang, Y. H.; Liu, W.; Zhang, W. T.; Yu, S. X.; Yue, X. Y.; Zhu, W. X.; Zhang, D. H.; Wang, Y. R.; Wang, J. L. DNA-Mediated Gold Nanoparticle Signal Transducers for Combinatorial Logic Operations and Heavy Metal Ions Sensing. Biosens. Bioelectron. 2015, 72, 218–224. DOI: 10.1016/j.bios.2015.05.019.
  • Chen, Z. Q.; Wang, X. S.; Cheng, X.; Yang, W. J.; Wu, Y. N.; Fu, F. F. Specifically and Visually Detect Methyl-Mercury and Ethyl-Mercury in Fish Sample Based on DNA-Templated Alloy Ag-Au Nanoparticles. Anal. Chem. 2018, 90, 5489–5495. DOI: 10.1021/acs.analchem.8b01100.
  • Kuo, S. Y.; Li, H. H.; Wu, P. J.; Chen, C. P.; Huang, Y. C.; Chan, Y. H. Dual Colorimetric and Fluorescent Sensor Based on Semiconducting Polymer Dots for Ratiometric Detection of Lead Ions in Living Cells. Anal. Chem. 2015, 87, 4765–4771. DOI: 10.1021/ac504845t.
  • Tang, S. R.; Wang, M. L.; Li, Z. J.; Tong, P.; Chen, Q.; Li, G. W.; Chen, J. H.; Zhang, L. A Novel Sensitive Colorimetric Sensor for Cu2+ Based on in Situ Formation of Fluorescent Quantum Dots with Photocatalytic Activity. Biosens. Bioelectron. 2017, 89, 866–870. DOI: 10.1016/j.bios.2016.09.105.
  • Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-Based Electrochemical Detection of Heavy Metals in Water: Current Status, Challenges and Future Direction. TrAC Trends Anal. Chem. 2018, 105, 37–51. DOI: 10.1016/j.trac.2018.04.012.
  • Li, S. S.; Zhou, W. Y.; Jiang, M.; Guo, Z.; Liu, J. H.; Zhang, L.; Huang, X. J. Surface Fe(II)/Fe(III) Cycle Promoted Ultra-Highly Sensitive Electrochemical Sensing of Arsenic(III) with Dumbbell-Like Au/Fe3O4 Nanoparticles. Anal. Chem. 2018, 90, 4569–4577. DOI: 10.1021/acs.analchem.7b04981.
  • Cui, L.; Wu, J.; Ju, H. X. Synthesis of Bismuth-Nanoparticle-Enriched Nanoporous Carbon on Graphene for Efficient Electrochemical Analysis of Heavy-Metal Ions. Chem. Eur. J. 2015, 21, 11525–11530. DOI: 10.1002/chem.201500512.
  • Li, J.; Lu, L. P.; Kang, T. F.; Cheng, S. Y. Intense Charge Transfer Surface Based on Graphene and Thymine-Hg(II)-Thymine Base Pairs for Detection of Hg2+. Biosens. Bioelectron. 2016, 77, 740–745. DOI: 10.1016/j.bios.2015.10.047.
  • Zhou, Q.; Lin, Y. X.; Lin, Y. P.; Wei, Q. H.; Chen, G. N.; Tang, D. P. Highly Sensitive Electrochemical Sensing Platform for Lead Ion Based on Synergetic Catalysis of DNAzyme and Au-Pd Porous Bimetallic Nanostructures. Biosens. Bioelectron. 2016, 78, 236–243. DOI: 10.1016/j.bios.2015.11.055.
  • Podesva, P.; Gablech, I.; Neuzil, P. Nanostructured Gold Microelectrode Array for Ultrasensitive Detection of Heavy Metal Contamination. Anal. Chem. 2018, 90, 1161–1167. DOI: 10.1021/acs.analchem.7b03725.
  • Khairy, M.; Choudry, N. A.; Ouasti, M.; Kampouris, D. K.; Kadara, R. O.; Banks, C. E. Gold Nanoparticle Ensembles Allow Mechanistic Insights into Electrochemical Processes. ChemPhysChem 2010, 11, 875–879. DOI: 10.1002/cphc.200900825.
  • Suherman, A. L.; Kuss, S.; Tanner, E. E. L.; Young, N. P.; Compton, R. G. Electrochemical Hg2+ Detection at Tannic Acid-Gold Nanoparticle Modified Electrodes by Square Wave Voltammetry. Analyst 2018, 143, 2035–2041. DOI: 10.1039/C8AN00508G.
  • Huang, H.; Chen, T.; Liu, X. Y.; Ma, H. Y. Ultrasensitive and Simultaneous Detection of Heavy Metal Ions Based on Three-Dimensional Graphene-Carbon Nanotubes Hybrid Electrode Materials. Anal. Chim. Acta 2014, 852, 45–54. DOI: 10.1016/j.aca.2014.09.010.
  • Zhao, D. L.; Siebold, D.; Alvarez, N. T.; Shanov, V. N.; Heineman, W. R. Carbon Nanotube Thread Electrochemical Cell: Detection of Heavy Metals. Anal. Chem. 2017, 89, 9654–9663. DOI: 10.1021/acs.analchem.6b04724.
  • Yang, Y.; Yuan, Z.; Liu, X. P.; Liu, Q.; Mao, C. J.; Niu, H. L.; Jin, B. K.; Zhang, S. Y. Electrochemical Biosensor for Ni2+ Detection Based on a Dnazyme-CdSe Nanocomposite. Biosens. Bioelectron. 2016, 77, 13–18. DOI: 10.1016/j.bios.2015.09.014.
  • Zhao, J. M.; Jing, P.; Xue, S. Y.; Xu, W. J. Dendritic Structure DNA for Specific Metal Ion Biosensor Based on Catalytic Hairpin Assembly and a Sensitive Synergistic Amplification Strategy. Biosens. Bioelectron. 2017, 87, 157–163. DOI: 10.1016/j.bios.2016.08.032.
  • Liu, J. M.; Wang, X. Z.; Zhao, C. Y.; Hao, J. L.; Fang, G. Z.; Wang, S. Fabrication of Porous Covalent Organic Frameworks as Selective and Advanced Adsorbents for the On-Line Preconcentration of Trace Elements against the Complex Sample Matrix. J. Hazard. Mater. 2018, 344, 220–229. DOI: 10.1016/j.jhazmat.2017.10.013.
  • Li, W. T.; Zhuang, Y. T.; Wang, J. Y.; Yang, T.; Yu, Y. L.; Chen, M. L.; Wang, J. H. A Three-Dimensional Porous Organic Framework for Highly Selective Capture of Mercury and Copper Ions. ACS Appl. Polym. Mater. 2019, 1, 2797–2806. DOI: 10.1021/acsapm.9b00804.
  • Li, N.; Du, J. J.; Wu, D.; Liu, J. C.; Li, N.; Sun, Z. W.; Li, G. L.; Wu, Y. N. Recent Advances in Facile Synthesis and Applications of Covalent Organic Framework Materials as Superior Adsorbents in Sample Pretreatment. TrAC Trends Anal. Chem. 2018, 108, 154–166. DOI: 10.1016/j.trac.2018.08.025.
  • Halkare, P.; Punjabi, N.; Wangchuk, J.; Nair, A.; Kondabagil, K.; Mukherji, S. Bacteria Functionalized Gold Nanoparticle Matrix Based Fiber-Optic Sensor for Monitoring Heavy Metal Pollution in Water. Sens. Actuators B: Chem. 2019, 281, 643–651. DOI: 10.1016/j.snb.2018.10.119.
  • Wang, J.; Shen, H. J.; Hu, X. X.; Li, Y.; Li, Z. H.; Xu, J. F.; Song, X. F.; Zeng, H. B.; Yuan, Q. A Targeted “Capture” and “Removal” Scavenger toward Multiple Pollutants for Water Remediation Based on Molecular Recognition. Adv. Sci. 2016, 3, 1500289. DOI: 10.1002/advs.201500289.
  • Kim, J.; Oh, J. S.; Park, K. C.; Gupta, G.; Lee, C. Y. Colorimetric Detection of Heavy Metal Ions in Water via Metal-Organic Framework. Inorg. Chim. Acta 2019, 486, 69–73. DOI: 10.1016/j.ica.2018.10.025.
  • Anwar, A.; Minhaz, A.; Khan, N. A.; Kalantari, K.; Afifi, A. B. M.; Shah, M. R. Synthesis of Gold Nanoparticles Stabilized by a Pyrazinium Thioacetate Ligand: A New Colorimetric Nanosensor for Detection of Heavy Metal Pd(II). Sens. Actuators B: Chem. 2018, 257, 875–881. DOI: 10.1016/j.snb.2017.11.040.
  • Ding, S. Y.; Dong, M.; Wang, Y. W.; Chen, Y. T.; Wang, H. Z.; Su, C. Y.; Wang, W. Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II). J. Am. Chem. Soc. 2016, 138, 3031–3037. DOI: 10.1021/jacs.5b10754.
  • Yang, T.; Wang, X. Y.; Wang, L. Y.; Chen, M. L.; Wang, J. H. Biological Cells in the Speciation Analysis of Heavy Metals. Anal. Methods 2016, 8, 8251–8261. DOI: 10.1039/C6AY02324J.
  • Baranik, A.; Sitko, R.; Gagor, A.; Zawisza, B. Alumina/Nano-Graphite Composite as a New Nanosorbent for the Selective Adsorption, Preconcentration, and Determination of Chromium in Water Samples by EDXRF. Anal. Bioanal. Chem. 2018, 410, 7793–7802. DOI: 10.1007/s00216-018-1397-8.
  • Park, M.; Seo, T. S. An Integrated Microfluidic Device with Solid-Phase Extraction and Graphene Oxide Quantum Dot Array for Highly Sensitive and Multiplex Detection of Trace Metal Ions. Biosens. Bioelectron. 2019, 126, 405–411. DOI: 10.1016/j.bios.2018.11.010.
  • Zou, X.; Huang, Y. M. Solid-Phase Extraction Based on Polyethyleneimine-Modified Eggshell Membrane Coupled with FAAS for the Selective Determination of Trace Copper(II) Ions in Environmental and Food Samples. Anal. Methods 2013, 5, 6486–6493. DOI: 10.1039/c3ay41015c.
  • Zhu, X. H.; Yu, H. M.; Jia, H. M.; Wu, Q. L.; Liu, J. Z.; Li, X. Solid Phase Extraction of Trace Copper in Water Samples via Modified Corn Silk as a Novel Biosorbent with Detection by Flame Atomic Absorption Spectrometry. Anal. Methods 2013, 5, 4460–4466. DOI: 10.1039/c3ay40416a.
  • Sitko, R.; Zawisza, B.; Talik, E.; Janik, P.; Osoba, G.; Feist, B.; Malicka, E. Spherical Silica Particles Decorated with Graphene Oxide Nanosheets as a New Sorbent in Inorganic Trace Analysis. Anal. Chim. Acta 2014, 834, 22–29. DOI: 10.1016/j.aca.2014.05.014.
  • Peng, H. Y.; Zhang, N.; He, M.; Chen, B. B.; Hu, B. Simultaneous Speciation Analysis of Inorganic Arsenic, Chromium and Selenium in Environmental Waters by 3-(2-Aminoethylamino) Propyltrimethoxysilane Modified Multi-Wall Carbon Nanotubes Packed Microcolumn Solid Phase Extraction and ICP-MS. Talanta 2015, 131, 266–272. DOI: 10.1016/j.talanta.2014.07.054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.