362
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Analytical Tools for Disease Diagnosis in Animals via Fecal Volatilome

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 917-932 | Published online: 12 Nov 2020

References

  • Sjölund, M.; Zoric, M.; Wallgren, P. Financial Impact of Disease on Pig Production. Part III. Gastrointestinal Disorders. Proceedings of the 6th European Symposium of Porcine Health Management, Italy, Sorrento, 2014.
  • VinodhKumar, O. R.; Singh, B. R.; Sinha, D. K.; Pruthvishree, B. S.; Tamta, S.; Dubal, Z. B.; Karthikeyan, R.; Rupner, R. N.; Malik, Y. S. Risk Factor Analysis, Antimicrobial Resistance and Pathotyping of Escherichia coli Associated with Pre- and Post-Weaning Piglet Diarrhoea in Organised Farms. Epidemiol. Infect. 2019, 147, 8.
  • Ramirez, A.; Karriker, L. A. Herd Evaluation. In Diseases Swine; Wiley: Hoboken, NJ, 2019.
  • Sethi, S.; Nanda, R.; Chakraborty, T. Clinical Application of Volatile Organic Compound Analysis for Detecting Infectious Diseases. Clin. Microbiol. Rev. 2013, 26, 462–475. DOI: 10.1128/CMR.00020-13.
  • Liu, G. P.; Jiang, Y. H.; Opriessnig, T.; Gu, K. D.; Zhang, H. L.; Yang, Z. Q. Detection and Differentiation of Five Diarrhea Related Pig Viruses Utilizing a Multiplex PCR Assay. J. Virol. Methods. 2019, 263, 32–37. DOI: 10.1016/j.jviromet.2018.10.009.
  • Wen, D.; Liu, G. P.; Opriessnig, T.; Yang, Z. Q.; Jiang, Y. H. Simultaneous Detection of Five Pig Viruses Associated with Enteric Disease in Pigs Using EvaGreen Real-Time PCR Combined with Melting Curve Analysis. J. Virol. Methods. 2019, 268, 1–8. DOI: 10.1016/j.jviromet.2019.03.001.
  • Miao, G. J.; Zhang, L. L.; Zhang, J.; Ge, S. X.; Xia, N. S.; Qian, S. Z.; Yu, D. L.; Qiu, X. B. Free Convective PCR: From Principle Study to Commercial applications-A Critical Review. Anal. Chim. Acta. 2020, 1108, 177–197. DOI: 10.1016/j.aca.2020.01.069.
  • Xu, F.; Jin, Z. Y.; Zou, S. Y.; Chen, C. Q.; Song, Q. F.; Deng, S. C.; Xiao, W.; Zhang, X. L.; Jia, A. Q.; Tang, Y. EuNPs-mAb Fluorescent Probe Based Immunochromatographic Strip for Rapid and Sensitive Detection of Porcine Epidemic Diarrhea Virus. Talanta 2020, 214, 120865.
  • Jiang, Y. H.; Shang, H. W.; Xu, H.; Ding, X. F.; Zhao, L. Y.; Fang, L.; Chen, W. J. Detection and Genotyping of Porcine Circovirus in Naturally Infected Pigs by Oligo-Microarray. Res. Vet. Sci. 2010, 89, 133–139. DOI: 10.1016/j.rvsc.2010.01.009.
  • Liu, S. S.; Zhao, Y. R.; Hu, Q. B.; Lv, C. C.; Zhang, C. F.; Zhao, R.; Hu, F.; Lin, W. C.; Cui, S. J. A Multiplex RT-PCR for Rapid and Simultaneous Detection of Porcine Teschovirus, Classical Swine Fever Virus, and Porcine Reproductive and Respiratory Syndrome Virus in Clinical Specimens. J. Virol. Methods. 2011, 172, 88–92. DOI: 10.1016/j.jviromet.2010.12.023.
  • Wu, H. G.; Rao, P. B.; Jiang, Y. H.; Opriessnig, T.; Yang, Z. Q. A Sensitive Multiplex Real-Time PCR Panel for Rapid Diagnosis of Viruses Associated with Porcine Respiratory and Reproductive Disorders. Mol. Cell. Probes. 2014, 28, 264–270. DOI: 10.1016/j.mcp.2014.07.001.
  • De Preter, V.; Verbeke, K. Metabolomics as a Diagnostic Tool in Gastroenterology. World J Gastrointest. Pharmacol. Ther. 2013, 4, 97–107. DOI: 10.4292/wjgpt.v4.i4.97.
  • Goldansaz, S. A.; Guo, A. C.; Sajed, T.; Steele, M. A.; Plastow, G. S.; Wishart, D. S. Livestock Metabolomics and the Livestock Metabolome: A Systematic Review. Plos One. 2017, 12, e0177675.
  • Chan, D. K.; Leggett, C. L.; Wang, K. K. Diagnosing Gastrointestinal Illnesses Using Fecal Headspace Volatile Organic Compounds. World J. Gastroenterol. 2016, 22, 1639–1649. DOI: 10.3748/wjg.v22.i4.1639.
  • Zhang, J.; Fang, A. Q.; Wang, B.; Kim, S. H.; Bogdanov, B.; Zhou, Z. X.; McClain, C.; Zhang, X. iMatch: A Retention Index Tool for Analysis of Gas Chromatography-Mass Spectrometry Data. J. Chromatogr. A. 2011, 1218, 6522–6530. DOI: 10.1016/j.chroma.2011.07.039.
  • Jove, M.; Collado, R.; Quiles, J. L.; Ramirez-Tortosa, M. C.; Sol, J.; Ruiz-Sanjuan, M.; Fernandez, M.; Cabrera, C. D.; Ramirez-Tortosa, C.; Granados-Principal, S.; et al. A Plasma Metabolomic Signature Discloses Human Breast Cancer. Oncotarget 2017, 8, 19522–19533. DOI: 10.18632/oncotarget.14521.
  • Matysik, S.; Le Roy, C. I.; Liebisch, G.; Claus, S. P. Metabolomics of Fecal Samples: A Practical Consideration. Trends Food Sci. Technol. 2016, 57, 244–255.
  • Majchrzak, T.; Wojnowski, W.; Piotrowicz, G.; Gębicki, J.; Namieśnik, J. Sample Preparation and Recent Trends in Volatolomics for Diagnosing Gastrointestinal Diseases. Trac-Trends Anal. Chem. 2018, 108, 38–49.
  • Bosch, S.; Berkhout, D. J.; Ben Larbi, I.; de Meij, T. G.; de Boer, N. K. Fecal Volatile Organic Compounds for Early Detection of Colorectal Cancer: Where are We Now? J. Cancer Res. Clin. Oncol. 2019, 145, 223–234. DOI: 10.1007/s00432-018-2821-3.
  • Pickel, D.; Manucy, G. P.; Walker, D. B.; Hall, S. B.; Walker, J. C. Evidence for Canine Olfactory Detection of Melanoma. Appl. Anim. Behav. Sci. 2004, 89, 107–116.
  • Bombail, V.; Barret, B.; Raynaud, A.; Jerome, N.; Saint-Albin, A.; Ridder, C.; Collin, A.; Leterrier, C.; Guilloteau, L. A.; Nielsen, B. L. In Search of Stress Odours across Species: Behavioural Responses of Rats to Faeces from Chickens and Rats Subjected to Various Types of Stressful Events. Appl. Anim. Behav. Sci. 2018, 205, 216–226.
  • Rattray, N. J. W.; Hamrang, Z.; Trivedi, D. K.; Goodacre, R.; Fowler, S. J. Taking Your Breath Away: metabolomics Breathes Life in to Personalized Medicine. Trends Biotechnol. 2014, 32, 538–548. DOI: 10.1016/j.tibtech.2014.08.003.
  • Primec, M.; Micetic-Turk, D.; Langerholc, T. Analysis of Short-Chain Fatty Acids in Human Feces: A Scoping Review. Anal. Biochem. 2017, 526, 9–21. DOI: 10.1016/j.ab.2017.03.007.
  • Elmassry, M. M.; Piechulla, B. Volatilomes of Bacterial Infections in Humans. Front. Neurosci. 2020, 14, 257.
  • Lopez-Bascon, M. A.; Calderon-Santiago, M.; Arguello, H.; Morera, L.; Garrido, J. J.; Priego-Capote, F. Comprehensive Analysis of Pig Feces Metabolome by Chromatographic Techniques Coupled to Mass Spectrometry in High Resolution Mode: Influence of Sample Preparation on the Identification Coverage. Talanta 2019, 199, 303–309. DOI: 10.1016/j.talanta.2019.02.073.
  • Deda, O.; Gika, H. G.; Wilson, I. D.; Theodoridis, G. A. An Overview of Fecal Sample Preparation for Global Metabolic Profiling. J. Pharm. Biomed. Anal. 2015, 113, 137–150. DOI: 10.1016/j.jpba.2015.02.006.
  • Cauchi, M.; Fowler, D. P.; Walton, C.; Turner, C.; Jia, W. J.; Whitehead, R. N.; Griffiths, L.; Dawson, C.; Bai, H.; Waring, R. H.; et al. Application of Gas Chromatography Mass Spectrometry (GC-MS) in Conjunction with Multivariate Classification for the Diagnosis of Gastrointestinal Diseases. Metabolomics 2014, 10, 1113–1120.
  • Bosch, S.; Wintjens, D. S. J.; Wicaksono, A.; Kuijvenhoven, J.; van der Hulst, R.; Stokkers, P.; Daulton, E.; Pierik, M. J.; Covington, J. A.; de Meij, T. G. J.; de Boer, N. K. H. The Faecal Scent of Inflammatory Bowel Disease: Detection and Monitoring Based on Volatile Organic Compound Analysis. Digestive Liver Disease 2020, 52, 745–752.
  • Karthikeyan, K.; Muniasamy, S.; SankarGanesh, D.; Achiraman, S.; Saravanakumar, V. R.; Archunan, G. Faecal Chemical Cues in Water Buffalo That Facilitate Estrus Detection. Animal Reproduction Sci. 2013, 138, 163–167.
  • Pedersen, K. S.; Holyoake, P.; Stege, H.; Nielsen, J. P. Observations of Variable Inter-Observer Agreement for Clinical Evaluation of Faecal Consistency in Grow-Finishing Pigs. Prev. Vet. Med. 2011, 98, 284–287. DOI: 10.1016/j.prevetmed.2010.11.014.
  • Perez-Calvo, E.; Wicaksono, A. N.; Canet, E.; Daulton, E.; Ens, W.; Hoeller, U.; Verlhac, V.; Celi, P.; Covington, J. A. The Measurement of Volatile Organic Compounds in Faeces of Piglets as a Tool to Assess Gastrointestinal Functionality. Biosyst. Eng. 2019, 184, 122–129.
  • Stahl, R. S.; Ellis, C. K.; Nol, P.; Waters, W. R.; Palmer, M.; VerCauteren, K. C. Fecal Volatile Organic Ccompound Profiles from White-Tailed Deer (Odocoileus virginianus) as Indicators of Mycobacterium bovis Exposure or Mycobacterium bovis Bacille Calmette-Guerin (BCG) Vaccination. Plos One. 2015, 10, e0129740.
  • Sever, A.; Abd Elkadir, A.; Matana, Y.; Gopas, J.; Zeiri, Y. Biomarkers for Detection and Monitoring of B16 Melanoma in Mouse Urine and Feces. J. Biomark. 2015, 2015, 841245. DOI: 10.1155/2015/841245.
  • Beauclercq, S.; Lefevre, A.; Montigny, F.; Collin, A.; Tesseraud, S.; Leterrier, C.; Emond, P.; Guilloteau, L. A. A Multiplatform Metabolomic Approach to Characterize Fecal Signatures of Negative Postnatal Events in Chicks: A Pilot Study. J. Animal Sci. Biotechnol. 2019, 10, 12.
  • Garner, C. E.; Smith, S.; Costello, B. D.; White, P.; Spencer, R.; Probert, C. S. J.; Ratcliffe, N. M. Volatile Organic Compounds from Feces and Their Potential for Diagnosis of Gastrointestinal disease. Faseb J. 2007, 21, 1675–1688. DOI: 10.1096/fj.06-6927com.
  • Holmes, E.; Li, J. V.; Athanasiou, T.; Ashrafian, H.; Nicholson, J. K. Understanding the Role of Gut Microbiome-Host Metabolic Signal Disruption in Health and Disease. Trends Microbiol. 2011, 19, 349–359. DOI: 10.1016/j.tim.2011.05.006.
  • Guinane, C. M.; Cotter, P. D. Role of the Gut Microbiota in Health and Chronic Gastrointestinal Disease: Understanding a Hidden Metabolic Organ. Therap. Adv. Gastroenterol. 2013, 6, 295–308. DOI: 10.1177/1756283X13482996.
  • Purkhart, R.; Kohler, H.; Liebler-Tenorio, E.; Meyer, M.; Becher, G.; Kikowatz, A.; Reinhold, P. Chronic Intestinal Mycobacteria Infection: Discrimination via VOC Analysis in Exhaled Breath and Headspace of Feces Using Differential Ion Mobility Spectrometry. J. Breath Res. 2011, 5, 27103.
  • Ellis, C. K.; Rice, S.; Maurer, D.; Stahl, R.; Waters, W. R.; Palmer, M. V.; Nol, P.; Rhyan, J. C.; VerCauteren, K. C.; Koziel, J. A. Use of Fecal Volatile Organic Compound Analysis to Discriminate between Nonvaccinated and BCG-Vaccinated Cattle Prior to and after Mycobacterium bovis Challenge. Plos One 2017, 12, e0179914.
  • Bergmann, A.; Trefz, P.; Fischer, S.; Klepik, K.; Walter, G.; Steffens, M.; Ziller, M.; Schubert, J. K.; Reinhold, P.; Kohler, H.; Miekisch, W. In Vivo Volatile Organic Compound Signatures of Mycobacterium avium Subsp. paratuberculosis. Plos One. 2015, 10, e0123980.
  • Kizil, U.; Genc, L.; Genc, T. T.; Rahman, S.; Khaitsa, M. L. E-Nose Identification of Salmonella enterica in Poultry Manure. Br. Poult. Sci. 2015, 56, 149–156. DOI: 10.1080/00071668.2015.1014467.
  • Kasbohm, E.; Fischer, S.; Kuntzel, A.; Oertel, P.; Bergmann, A.; Trefz, P.; Miekisch, W.; Schubert, J. K.; Reinhold, P.; Ziller, M.; et al. Strategies for the Identification of Disease-Related Patterns of Volatile Organic Compounds: Prediction of Paratuberculosis in an Animal Model Using Random Forests. J. Breath Res. 2017, 11, 47105.
  • Peled, N.; Ionescu, R.; Nol, P.; Barash, O.; McCollum, M.; VerCauteren, K.; Koslow, M.; Stahl, R.; Rhyan, J.; Haick, H. Detection of Volatile Organic Compounds in Cattle Naturally Infected with Mycobacterium bovis. Sensors Actuators B-Chem. 2012, 171–172, 588–594.
  • Turner, C.; Knobloch, H.; Richards, J.; Richards, P.; Mottram, T. T. F.; Marlin, D.; Chambers, M. A. Development of a Device for Sampling Cattle Breath. Biosyst. Eng. 2012, 112, 75–81.
  • Ellis, C. K.; Stahl, R. S.; Nol, P.; Waters, W. R.; Palmer, M. V.; Rhyan, J. C.; VerCauteren, K. C.; McCollum, M.; Salman, M. D. A Pilot Study Exploring the Use of Breath Analysis to Differentiate Healthy Cattle from Cattle Experimentally Infected with Mycobacterium bovis. Plos One. 2014, 9, e89280.
  • Mellors, T. R.; Blanchet, L.; Flynn, J. L.; Tomko, J.; O'Malley, M.; Scanga, C. A.; Lin, P. L.; Hill, J. E. A New Method to Evaluate Macaque Health Using Exhaled Breath: A Case Study of M. tuberculosis in a BSL-3 Setting. J Appl Physiol (1985) 2017, 122, 695–701. DOI: 10.1152/japplphysiol.00888.2016.
  • Recharla, N.; Kim, K.; Park, J.; Jeong, J.; Jeong, Y.; Lee, H.; Hwang, O.; Ryu, J.; Baek, Y.; Oh, Y.; Park, S. Effects of Amino Acid Composition in Pig Diet on Odorous Compounds and Microbial Characteristics of Swine Excreta. J. Anim. Sci. Technol. 2017, 59, 8.
  • Deda, O.; Chatziioannou, A. C.; Fasoula, S.; Palachanis, D.; Raikos, N.; Theodoridis, G. A.; Gika, H. G. Sample Preparation Optimization in Fecal Metabolic Profiling. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1047, 115–123. DOI: 10.1016/j.jchromb.2016.06.047.
  • Garner, C. E.; Smith, S.; Elviss, N. C.; Humphrey, T. J.; White, P.; Ratcliffe, N. M.; Probert, C. S. Identification of Campylobacter Infection in Chickens from Volatile Faecal Emissions. Biomarkers 2008, 13, 413–421. DOI: 10.1080/13547500801966443.
  • Berendsen, B. J. A.; Wegh, R. S.; Memelink, J.; Zuidema, T.; Stolker, L. A. M. The Analysis of Animal Faeces as a Tool to Monitor Antibiotic Usage. Talanta 2015, 132, 258–268. DOI: 10.1016/j.talanta.2014.09.022.
  • Bollard, M. E.; Stanley, E. G.; Lindon, J. C.; Nicholson, J. K.; Holmes, E. NMR-Based Metabonomic Approaches for Evaluating Physiological Influences on Biofluid Composition. NMR Biomed. 2005, 18, 143–162. DOI: 10.1002/nbm.935.
  • Deda, O.; Gika, H.; Panagoulis, T.; Taitzoglou, I.; Raikos, N.; Theodoridis, G. Impact of Exercise on Fecal and Cecal Metabolome over Aging: A Longitudinal Study in Rats. Bioanalysis 2017, 9, 21–36. DOI: 10.4155/bio-2016-0222.
  • Karu, N.; Deng, L.; Slae, M.; Guo, A. C.; Sajed, T.; Huynh, H.; Wine, E.; Wishart, D. S. A Review on Human Fecal Metabolomics: Methods, Applications and the Human Fecal Metabolome Database. Anal. Chim. Acta. 2018, 1030, 1–24. DOI: 10.1016/j.aca.2018.05.031.
  • Hong, Y. S.; Ahn, Y. T.; Park, J. C.; Lee, J. H.; Lee, H.; Huh, C. S.; Kim, D. H.; Ryu, D. H.; Hwang, G. S. 1H NMR-Based Metabonomic Assessment of Probiotic Effects in a Colitis Mouse Model. Arch. Pharm. Res. 2010, 33, 1091–1101. DOI: 10.1007/s12272-010-0716-1.
  • Parambeth, J. C.; Lopez, F. R.; Lopez, R.; Keyser, S. B.; Lidbury, J. A.; Suchodolski, J. S.; Steiner, J. M. Fecal Concentrations of N-Methylhistamine in Common Marmosets (Callithrix jacchus). Comp. Med. 2019, 69, 130–134. DOI: 10.30802/AALAS-CM-18-000040.
  • Gokbulut, C.; Ozuicli, M.; Aksit, D.; Aksoz, E.; Korkut, O.; Yalcinkaya, M.; Cirak, V. Y. Comparative Plasma and Milk Dispositions, Faecal Excretion and Efficacy of per os Ivermectin and Pour-on Eprinomectin in Horses. J. Vet. Pharmacol. Ther. 2016, 39, 584–591. DOI: 10.1111/jvp.12308.
  • Trudeau, M. P.; Zhou, Y. Y.; Leite, F. L.; Gomez, A.; Urriola, P. E.; Shurson, G. C.; Chen, C.; Isaacson, R. E. Fecal Hyodeoxycholic Acid is Correlated with Tylosin-Induced Microbiome Changes in Growing Pigs. Front. Vet. Sci. 2018, 5, 7.
  • Calvani, R.; Brasili, E.; Pratico, G.; Capuani, G.; Tomassini, A.; Marini, F.; Sciubba, F.; Finamore, A.; Roselli, M.; Marzetti, E.; Miccheli, A. Fecal and Urinary NMR-Based Metabolomics Unveil an Aging Signature in Mice. Exp. Gerontol. 2014, 49, 5–11. DOI: 10.1016/j.exger.2013.10.010.
  • Yu, L. M.; Zhao, K. J.; Wang, S. S.; Wang, X.; Lu, B. Gas Chromatography/Mass Spectrometry Based Metabolomic Study in a Murine Model of Irritable Bowel Syndrome. World J. Gastroenterol. 2018, 24, 894–904. DOI: 10.3748/wjg.v24.i8.894.
  • Sid-Ahmed, O. E.; Sanhouri, A.; Elwaseela, B. E.; Fadllalah, I.; Mohammed, G. E. E.; Mostl, E. Assessment of Adrenocortical Activity by Non-Invasive Measurement of Faecal Cortisol Metabolites in Dromedary Camels (Camelus dromedarius). Trop. Anim. Health Prod. 2013, 45, 1453–1458. DOI: 10.1007/s11250-013-0374-7.
  • Hough, R.; Archer, D.; Probert, C. A Comparison of Sample Preparation Methods for Extracting Volatile Organic Compounds (VOCs) from Equine Faeces Using HS-SPME. Metabolomics 2018, 14, 10.
  • Kim, Y. J.; Kim, J. G.; Lee, W. K.; So, K. M.; Kim, J. K. Trial Data of the anti-Obesity Potential of a High Resistant Starch Diet for Canines Using Dodamssal Rice and the Identification of Discriminating Markers in Feces for Metabolic Profiling. Metabolomics 2019, 15, 11.
  • Zhang, S. M.; Wang, H. B.; Zhu, M. J. A Sensitive GC/MS Detection Method for Analyzing Microbial Metabolites Short Chain Fatty Acids in Fecal and Serum Samples. Talanta 2019, 196, 249–254.
  • Miller, D. N.; Woodbury, B. L. A Solid-Phase Microextraction Chamber Method for Analysis of Manure Volatiles. J. Environ. Qual. 2006, 35, 2383–2394. DOI: 10.2134/jeq2006.0065.
  • Wu, J. F.; An, Y. P.; Yao, J. W.; Wang, Y. L.; Tang, H. R. An Optimised Sample Preparation Method for NMR-Based Faecal Metabonomic Analysis. Analyst 2010, 135, 1023–1030. DOI: 10.1039/b927543f.
  • Tian, Y.; Zhang, L. M.; Wang, Y. L.; Tang, H. R. Age-Related Topographical Metabolic Signatures for the Rat Gastrointestinal Contents. J. Proteome Res. 2012, 11, 1397–1411. DOI: 10.1021/pr2011507.
  • Fischer, S.; Trefz, P.; Bergmann, A.; Steffens, M.; Ziller, M.; Miekisch, W.; Schubert, J. S.; Kohler, H.; Reinhold, P. Physiological Variability in Volatile Organic Compounds (VOCs) in Exhaled Breath and Released from Faeces Due to Nutrition and Somatic Growth in a Standardized Caprine Animal Model. J. Breath Res. 2015, 9, 27108.
  • Probert, C. S. J.; Jones, P. R. H.; Ratcliffe, N. M. A Novel Method for Rapidly Diagnosing the Causes of Diarrhoea. Gut 2004, 53, 58–61. DOI: 10.1136/gut.53.1.58.
  • Walton, C.; Fowler, D. P.; Turner, C.; Jia, W. J.; Whitehead, R. N.; Griffiths, L.; Dawson, C.; Waring, R. H.; Ramsden, D. B.; Cole, J. A.; et al. Analysis of Volatile Organic Compounds of Bacterial Origin in Chronic Gastrointestinal Diseases. Inflammatory Bowel Diseases 2013, 19, 2069.
  • Ahmed, I.; Greenwood, R.; Costello, B. D.; Ratcliffe, N. M.; Probert, C. S. An Investigation of Fecal Volatile Organic Metabolites in Irritable Bowel Syndrome. Plos One 2013, 8, e58204.
  • Bjerrum, J. T.; Wang, Y. L.; Hao, F. H.; Coskun, M.; Ludwig, C.; Gunther, U.; Nielsen, O. H. Metabonomics of Human Fecal Extracts Characterize Ulcerative Colitis, Crohn's Disease and Healthy Individuals. Metabolomics 2015, 11, 122–133. DOI: 10.1007/s11306-014-0677-3.
  • Li, J. V.; Saric, J.; Wang, Y. L.; Keiser, J.; Utzinger, J.; Holmes, E. Chemometric Analysis of Biofluids from Mice Experimentally Infected with Schistosoma mansoni. Parasit. Vectors. 2011, 4, 179.
  • Bosch, S.; el Manouni el Hassani, S.; Covington, J. A.; Wicaksono, A. N.; Bomers, M. K.; Benninga, M. A.; Mulder, C. J. J.; de Boer, N. K. H.; de Meij, T. G. J. Optimized Sampling Conditions for Fecal Volatile Organic Compound Analysis by Means of Field Asymmetric Ion Mobility Spectrometry. Anal. Chem. 2018, 90, 7972–7981.
  • Mochalski, P.; Wzorek, B.; Sliwka, I.; Amann, A. Suitability of Different Polymer Bags for Storage of Volatile Sulphur Compounds Relevant to Breath Analysis. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2009, 877, 189–196. DOI: 10.1016/j.jchromb.2008.12.003.
  • Acha, S. J.; Kuhn, I.; Mbazima, G.; Colque-Navarro, P.; Mollby, R. Changes of Viability and Composition of the Escherichia coli Flora in Faecal Samples during Long Time Storage. J. Microbiol. Methods. 2005, 63, 229–238. DOI: 10.1016/j.mimet.2005.04.024.
  • Zhao, G. H.; Nyman, M.; Jonsson, J. A. Rapid Determination of Short-Chain Fatty Acids in Colonic Contents and Faeces of Humans and Rats by Acidified Water-Extraction and Direct-Injection Gas Chromatography. Biomed. Chromatogr. 2006, 20, 674–682. DOI: 10.1002/bmc.580.
  • Habumuremyi, S.; Robbins, M. M.; Fawcett, K. A.; Deschner, T. Monitoring Ovarian Cycle Activity via Progestagens in Urine and Feces of Female Mountain Gorillas: A Comparison of EIA and LC-MS Measurements. Am. J. Primatol. 2014, 76, 180–191. DOI: 10.1002/ajp.22220.
  • Cesbron, N.; Sydor, A.; Penot, M.; Prevost, S.; Bizec, B. L.; Dervilly-Pinel, G. Analytical Strategies to Detect Enobosarm Administration in Bovines. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess 2017, 34, 632–640. DOI: 10.1080/19440049.2016.1258122.
  • Kistler, M.; Muntean, A.; Hollriegl, V.; Matuschek, G.; Zimmermann, R.; Hoeschen, C.; de Angelis, M. H.; Rozman, J. A Systemic View on the Distribution of Diet-Derived Methanol and Hepatic Acetone in Mice. J. Breath Res. 2017, 12, 17102.
  • Proudman, C. J.; Hunter, J. O.; Darby, A. C.; Escalona, E. E.; Batty, C.; Turner, C. Characterisation of the Faecal Metabolome and Microbiome of Thoroughbred Racehorses. Equine Vet. J. 2015, 47, 580–586. DOI: 10.1111/evj.12324.
  • Phillips, M.; Basa-Dalay, V.; Blais, J.; Bothamley, G.; Chaturvedi, A.; Modi, K. D.; Pandya, M.; Natividad, M. P. R.; Patel, U.; Ramraje, N. N.; et al. Point-of-Care Breath Test for Biomarkers of Active Pulmonary Tuberculosis. Tuberculosis (Edinb) 2012, 92, 314–320., DOI: 10.1016/j.tube.2012.04.002.
  • Arasaradnam, R. P.; Covington, J. A.; Harmston, C.; Nwokolo, C. U. Review Article: Next Generation Diagnostic Modalities in Gastroenterology-Gas Phase Volatile Compound Biomarker Detection. Aliment. Pharmacol. Ther. 2014, 39, 780–789. DOI: 10.1111/apt.12657.
  • Garner, C. E.; Smith, S.; Bardhan, P. K.; Ratcliffe, N. M.; Probert, C. S. J. A Pilot Study of Faecal Volatile Organic Compounds in Faeces from Cholera Patients in Bangladesh to Determine Their Utility in Disease Diagnosis. Trans. R Soc. Trop. Med. Hyg. 2009, 103, 1171–1173. DOI: 10.1016/j.trstmh.2009.02.004.
  • Ahmed, I.; Greenwood, R.; Costello, B.; Ratcliffe, N.; Probert, C. S. Investigation of Faecal Volatile Organic Metabolites as Novel Diagnostic Biomarkers in Inflammatory Bowel Disease. Aliment Pharmacol Ther 2016, 43, 596–611.
  • Ubeda, C.; Lepe-Balsalobre, E.; Ariza-Astolfi, C.; Ubeda-Ontiveros, J. M. Identification of Volatile Biomarkers of Giardia duodenalis Infection in Children with Persistent Diarrhoea. Parasitol. Res. 2019, 118, 3139–3147. DOI: 10.1007/s00436-019-06433-4.
  • Arthur, C. L.; Pawliszyn, J. Solid-Phase Microextraction with Thermal-Desorption Using Fused-Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148.
  • Sankar, R.; Archunan, G. Identification of Putative Pheromones in Bovine (Bos taurus) Faeces in Relation to Estrus Detection. Animal Reproduction Sci. 2008, 103, 149–153.
  • Miyazaki, M.; Miyazaki, T.; Nishimura, T.; Hojo, W.; Yamashita, T. The Chemical Basis of Species, Sex, and Individual Recognition Using Feces in the Domestic Cat. J. Chem. Ecol. 2018, 44, 364–373. DOI: 10.1007/s10886-018-0951-3.
  • Summers, S.; Quimby, J. M.; Phillips, R. K.; Stockman, J.; Isaiah, A.; Lidbury, J. A.; Steiner, J. M.; Suchodolski, J. Preliminary Evaluation of Fecal Fatty Acid Concentrations in Cats with Chronic Kidney Disease and Correlation with Indoxyl Sulfate and p-Cresol Sulfate. J. Vet. Intern. Med. 2020, 34, 206–215. DOI: 10.1111/jvim.15634.
  • Gao, X. F.; Pujos-Guillot, E.; Martin, J. F.; Galan, P.; Juste, C.; Jia, W.; Sebedio, J. L. Metabolite Analysis of Human Fecal Water by Gas Chromatography/Mass Spectrometry with Ethyl Chloroformate Derivatization. Anal. Biochem. 2009, 393, 163–175. DOI: 10.1016/j.ab.2009.06.036.
  • Garcia-Villalba, R.; Gimenez-Bastida, J. A.; Garcia-Conesa, M. T.; Tomas-Barberan, F. A.; Espin, J. C.; Larrosa, M. Alternative Method for Gas Chromatography-Mass Spectrometry Analysis of Short-Chain Fatty Acids in Faecal Samples. J. Sep. Sci. 2012, 35, 1906–1913. DOI: 10.1002/jssc.201101121.
  • den Besten, G.; Havinga, R.; Bleeker, A.; Rao, S.; Gerding, A.; van Eunen, K.; Groen, A. K.; Reijngoud, D. J.; Bakker, B. M. The Short-Chain Fatty Acid Uptake Fluxes by Mice on a Guar Gum Supplemented Diet Associate with Amelioration of Major Biomarkers of the Metabolic Syndrome. Plos One. 2014, 9, e107392.
  • Lotti, C.; Rubert, J.; Fava, F.; Tuohy, K.; Mattivi, F.; Vrhovsek, U. Development of a Fast and Cost-Effective Gas Chromatography-Mass Spectrometry Method for the Quantification of Short-Chain and Medium-Chain Fatty Acids in Human Biofluids. Anal. Bioanal. Chem. 2017, 409, 5555–5567. DOI: 10.1007/s00216-017-0493-5.
  • Zheng, X. J.; Qiu, Y. P.; Zhong, W.; Baxter, S.; Su, M. M.; Li, Q.; Xie, G. X.; Ore, B. M.; Qiao, S. L.; Spencer, M. D.; et al. A Targeted Metabolomic Protocol for Short-Chain Fatty Acids and Branched-Chain Amino Acids. Metabolomics 2013, 9, 818–827.
  • Furuhashi, T.; Sugitate, K.; Nakai, T.; Jikumaru, Y.; Ishihara, G. Rapid Profiling Method for Mammalian Feces Short Chain Fatty Acids by GC-MS. Anal. Biochem. 2018, 543, 51–54. DOI: 10.1016/j.ab.2017.12.001.
  • Amer, B.; Nebel, C.; Bertram, H. C.; Mortensen, G.; Dalsgaard, T. K. Direct Derivatization vs Aqueous Extraction Methods of Fecal Free Fatty Acids for GC-MS Analysis. Lipids 2015, 50, 681–689.
  • Fiorini, D.; Boarelli, M. C.; Gabbianelli, R.; Ballini, R.; Pacetti, D. A Quantitative Headspace-Solid-Phase Microextraction-Gas Chromatography-Flame Ionization Detector Method to Analyze Short Chain Free Fatty Acids in Rat Feces. Anal. Biochem. 2016, 508, 12–14. DOI: 10.1016/j.ab.2016.05.023.
  • Fiorini, D.; Pacetti, D.; Gabbianelli, R.; Gabrielli, S.; Ballini, R. A Salting out System for Improving the Efficiency of the Headspace Solid-Phase Microextraction of Short and Medium Chain Free Fatty Acids. J. Chromatogr. A. 2015, 1409, 282–287. DOI: 10.1016/j.chroma.2015.07.051.
  • Hill, H. H.; Siems, W. F.; St Louis, R. H.; McMinn, D. G. Ion Mobility Spectrometry. Anal. Chem. 1990, 62, 1201A–1209A.
  • Vautz, W.; Franzke, J.; Zampolli, S.; Elmi, I.; Liedtke, S. On the Potential of Ion Mobility Spectrometry Coupled to GC Pre-Separation - A Tutorial. Anal. Chim. Acta. 2018, 1024, 52–64. DOI: 10.1016/j.aca.2018.02.052.
  • Wang, S. Q.; Chen, H. T.; Sun, B. G. Recent Progress in Food Flavor Analysis Using Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). Food Chem. 2020, 315, 126158.
  • Gardner, J. W.; Bartlett, P. N. A Brief-History of Electronic Noses. Sensors Actuators B-Chem. 1994, 18, 211.
  • Farraia, M. V.; Cavaleiro Rufo, J.; Paciencia, I.; Mendes, F.; Delgado, L.; Moreira, A. The Electronic Nose Technology in Clinical Diagnosis: A Systematic Review. Porto Biomed. J. 2019, 4, e42. DOI: 10.1097/j.pbj.0000000000000042.
  • Fend, R.; Geddes, R.; Lesellier, S.; Vordermeier, H. M.; Corner, L. A. L.; Gormley, E.; Costello, E.; Hewinson, R. G.; Marlin, D. J.; Woodman, A. C.; Chambers, M. A. Use of an Electronic Nose to Diagnose Mycobacterium bovis Infection in Badgers and Cattle. J. Clin. Microbiol. 2005, 43, 1745–1751. DOI: 10.1128/JCM.43.4.1745-1751.2005.
  • Rock, F.; Barsan, N.; Weimar, U. Electronic Nose: Current Status and Future Trends. Chem. Rev. 2008, 108, 705–725. DOI: 10.1021/cr068121q.
  • Preti, G.; Thaler, E.; Hanson, C. W.; Troy, M.; Eades, J.; Gelperin, A. Volatile Compounds Characteristic of Sinus-Related Bacteria and Infected Sinus Mucus: Analysis by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2009, 877, 2011–2018. DOI: 10.1016/j.jchromb.2009.05.028.
  • Savelev, S. U.; Perry, J. D.; Bourke, S. J.; Jary, H.; Taylor, R.; Fisher, A. J.; Corris, P. A.; Petrie, M.; De Soyza, A. Volatile Biomarkers of Pseudomonas aeruginosa in Cystic Fibrosis and Noncystic Fibrosis Bronchiectasis. Lett. Appl. Microbiol. 2011, 52, 610–613. DOI: 10.1111/j.1472-765X.2011.03049.x.
  • Bruins, M.; Rahim, Z.; Bos, A.; van de Sande, W. W. J.; Endtz, H. P.; van Belkum, A. Diagnosis of Active Tuberculosis by e-Nose Analysis of Exhaled Air. Tuberculosis (Edinb) 2013, 93, 232–238. DOI: 10.1016/j.tube.2012.10.002.
  • Tirzite, M.; Bukovskis, M.; Strazda, G.; Jurka, N.; Taivans, I. Detection of Lung Cancer with Electronic Nose and Logistic Regression Analysis. J. Breath Res. 2018, 13, 16006.
  • Esfahani, S.; Wicaksono, A.; Mozdiak, E.; Arasaradnam, R. P.; Covington, J. A. Non-Invasive Diagnosis of Diabetes by Volatile Organic Compounds in Urine Using FAIMS and Fox4000 Electronic Nose. Biosensors-Basel 2018, 8, 121.
  • Meij, T. G.; Larbi, I. B.; Schee, M. P.; Lentferink, Y. E.; Paff, T.; Terhaar Sive Droste, J. S.; Mulder, C. J.; Bodegraven, A. A.; Boer, N. K. Electronic Nose Can Discriminate Colorectal Carcinoma and Advanced Adenomas by Fecal Volatile Biomarker Analysis: Proof of Principle Study. Int. J. Cancer 2014, 134, 1132–1138.
  • de Meij, T. G. J.; de Boer, N. K. H.; Benninga, M. A.; Lentferink, Y. E.; de Groot, E. F. J.; van de Velde, M. E.; van Bodegraven, A. A.; van der Schee, M. P. Faecal Gas Analysis by Electronic Nose as Novel, Non-Invasive Method for Assessment of Active and Quiescent Paediatric Inflammatory Bowel Disease: Proof of Principle Study. J. Crohn's Colitis 2014, 14, 1–20.
  • Chavez, C.; Coufal, C. D.; Lacey, R. E.; Carey, J. B. The Impact of Methionine Source on Poultry Fecal Matter Odor Volatiles. Poult. Sci. 2004, 83, 359–364. DOI: 10.1093/ps/83.3.359.
  • Knobloch, H.; Kohler, H.; Commander, N.; Reinhold, P.; Turner, C.; and M. Chambers, Volatile Organic Compound (VOC) Analysis for Disease Detection: Proof of Principle for Field Studies Detecting Paratuberculosis and Brucellosis. 13th International Symposium on Olfaction and the Electronic Nose, Brescia, Italy, 2009, 195.
  • Cho, Y. S.; Jung, S. C.; Oh, S. Diagnosis of Bovine Tuberculosis Using a Metal Oxide-Based Electronic Nose. Lett. Appl. Microbiol. 2015, 60, 513–516. DOI: 10.1111/lam.12410.
  • Ruaux, C. G.; Wright, J. M.; Steiner, J. M.; Williams, D. A. Gas Chromatography-Mass Spectrometry Assay for Determination of Ntau-Methylhistamine Concentration in Canine Urine Specimens and Fecal Extracts. Am. J. Vet. Res. 2009, 70, 167–171. DOI: 10.2460/ajvr.70.2.167.
  • Ratiu, I. A.; Bocos-Bintintan, V.; Monedeiro, F.; Milanowski, M.; Ligor, T.; Buszewski, B. An Optimistic Vision of Future: Diagnosis of Bacterial Infections by Sensing Their Associated Volatile Organic Compounds. Crit. Rev. Anal. Chem. 2019, 12.
  • Contreras, M. D.; Arroyo-Manzanares, N.; Arce, C.; Arce, L. HS-GC-IMS and Chemometric Data Treatment for Food Authenticity Assessment: Olive Oil Mapping and Classification through Two Different Devices as an Example. Food Control 2019, 98, 82–93.
  • Contreras, M. D.; Jurado-Campos, N.; Arce, L.; Arroyo-Manzanares, N. A Robustness Study of Calibration Models for Olive Oil Classification: Targeted and Non-Targeted Fingerprint Approaches Based on GC-IMS. Food Chem. 2019, 288, 315–324. DOI: 10.1016/j.foodchem.2019.02.104.
  • Eckel, S. P.; Baumbach, J.; Hauschild, A. C. On the Importance of Statistics in Breath Analysis-Hope or Curse? J. Breath Res. 2014, 8, 12001.
  • Smolinska, A.; Hauschild, A. C.; Fijten, R. R. R.; Dallinga, J. W.; Baumbach, J.; van Schooten, F. J. Current Breathomics-a Review on Data Pre-Processing Techniques and Machine Learning in Metabolomics Breath Analysis. J. Breath Res. 2014, 8, 27105.
  • Saccenti, E.; Hoefsloot, H. C. J.; Smilde, A. K.; Westerhuis, J. A.; Hendriks, M. Reflections on Univariate and Multivariate Analysis of Metabolomics Data. Metabolomics 2014, 10, 361–374.
  • Otto, M. Pattern Recognition and Classification. Chemometrics: Statistics and Computer Application in Analytical Chemistry; Wiley VCH: Weinheim, Germany, 1999.
  • Barker, M.; Rayens, W. Partial Least Squares for Discrimination. J. Chemometrics 2003, 17, 166–173.
  • Wiklund, S.; Nilsson, D.; Eriksson, L.; Sjostrom, M.; Wold, S.; Faber, K. A Randomization Test for PLS Component Selection. J. Chemometrics 2007, 21, 427–439.
  • Miekisch, W.; Herbig, J.; Schubert, J. K. Data Interpretation in Breath Biomarker Research: pitfalls and Directions. J. Breath Res. 2012, 6, 36007.
  • Wakita, Y.; Shimomura, Y.; Kitada, Y.; Yamamoto, H.; Ohashi, Y.; Matsumoto, M. Taxonomic Classification for Microbiome Analysis, Which Correlates Well with the Metabolite Milieu of the Gut. BMC Microbiol. 2018, 18, 11.
  • Michelland, R. J.; Monteils, V.; Zened, A.; Combes, S.; Cauquil, L.; Gidenne, T.; Hamelin, J.; Fortun-Lamothe, L. Spatial and Temporal Variations of the Bacterial Community in the Bovine Digestive Tract. J. Appl. Microbiol. 2009, 107, 1642–1650. DOI: 10.1111/j.1365-2672.2009.04346.x.
  • Tian, H.; Li, S.; Wen, H.; Zhang, X.; Li, J. Volatile Organic Compounds Fingerprinting in Faeces and Urine of Alzheimer's Disease Model SAMP8 Mice by Headspace-Gas Chromatography-Ion Mobility Spectrometry and Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry. J. Chromatogr. A. 2020, 1614, 460717. DOI: 10.1016/j.chroma.2019.460717.
  • Blake, A. B.; Guard, B. C.; Honneffer, J. B.; Lidbury, J. A.; Steiner, J. M.; Suchodolski, J. S. Altered Microbiota, Fecal Lactate, and Fecal Bile Acids in Dogs with Gastrointestinal Disease. Plos One. 2019, 14, e0224454.
  • Igarashi, H.; Ohno, K.; Matsuki, N.; Fujiwara-Igarashi, A.; Kanemoto, H.; Fukushima, K.; Uchida, K.; Tsujimoto, H. Analysis of Fecal Short Chain Fatty Acid Concentration in Miniature Dachshunds with Inflammatory Colorectal polyps. J. Vet. Med. Sci. 2017, 79, 1727–1734. DOI: 10.1292/jvms.17-0165.
  • Nol, P.; Ionescu, R.; Geremariam Welearegay, T.; Barasona, J. A.; Vicente, J.; de Jesus Beleño-Sáenz, K.; Barrenetxea, I.; Torres, M. J.; Ionescu, F.; Rhyan, J. Evaluation of Volatile Organic Compounds Obtained from Breath and Feces to Detect mycobacterium tuberculosis Complex in Wild Boar (Sus scrofa) in Doñana National Park, Spain. Pathogens 2020, 9, 346.
  • Ellis, C. K.; Volker, S. F.; Griffin, D. L.; VerCauteren, K. C.; Nichols, T. A. Use of Faecal Volatile Organic Compound Analysis for ante-mortem discrimination between CWD-positive, -negative exposed, and -known negative white-tailed deer (Odocoileus virginianus). Prion 2019, 13, 94–105. DOI: 10.1080/19336896.2019.1607462.
  • Kimball, B. A.; Volker, S. F.; Griffin, D. L.; Johnson, S. R.; Gilbert, A. T. Volatile Metabolomic Signatures of Rabies Immunization in Two Mesocarnivore Species. PLoS Negl. Trop. Dis. 2019, 13, e0007911. DOI: 10.1371/journal.pntd.0007911.
  • Reade, S.; Williams, J. M.; Aggio, R.; Duckworth, C. A.; Mahalhal, A.; Hough, R.; Pritchard, D. M.; Probert, C. S. Potential Role of Fecal Volatile Organic Compounds as Biomarkers of Chemically Induced Intestinal Inflammation in Mice. Faseb J. 2019, 33, 3129–3136. DOI: 10.1096/fj.201800076RR.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.