1,679
Views
15
CrossRef citations to date
0
Altmetric
Review Articles

Trypsin Detection Strategies: A Review

ORCID Icon & ORCID Icon
Pages 949-967 | Published online: 30 Nov 2020

References

  • Ciechanover, A. Proteolysis: From the Lysosome to Ubiquitin and the Proteasome. Nat. Rev. Mol. Cell Biol. 2005, 6, 79–87. DOI: 10.1038/nrm1552.
  • Webb, K. E. Intestinal Absorption of Protein Hydrolysis Products: A Review. J. Anim. Sci. 1990, 68, 3011–3022. DOI: 10.2527/1990.6893011x.
  • Petersen, B. O.; Wagener, C.; Marinoni, F.; Kramer, E. R.; Melixetian, M.; Lazzerini Denchi, E.; Gieffers, C.; Matteucci, C.; Peters, J. M.; Helin, K.; et al. Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes Dev. 2000, 14, 2330–2343. DOI: 10.1101/gad.832500.
  • Evnouchidou, I.; van Endert, P. Peptide Trimming by Endoplasmic Reticulum Aminopeptidases: Role of MHC Class I Binding and ERAP Dimerization. Hum. Immunol. 2019, 80, 290–295. DOI: 10.1016/j.humimm.2019.01.003.
  • Pucci, B.; Kasten, M.; Giordano, A. Cell Cycle and Apoptosis. Neoplasia 2000, 2, 291–299. DOI: 10.1038/sj.neo.7900101.
  • Rawlings, N. D.; Barrett, A. J. Evolutionary Families of Peptidases. Biochem J. 1993, 290, 205–218. 10.1042/bj2900205.
  • Barrett, A. J.; Rawlings, N. D. Families and Clans of Serine Peptidases. Arch. Biochem. Biophys. 1995, 318, 247–250. DOI: 10.1006/abbi.1995.1227.
  • Tavano, O. L.; Berenguer‐Murcia, A.; Secundo, F.; Fernandez‐Lafuente, R. Biotechnological Applications of Proteases in Food Technology. Compr. Rev. Food Sci. Food Saf. 2018, 17, 412–436. 10.1111/1541-4337.12326.
  • Yu, J.; Ahmedna, M. Functions/Applications of Trypsin in Food Processing and Food Science Research. In: Trypsin: Structure, Biosynthesis and Functions; Nova Publishers, Inc.: Hauppauge, NY, USA, 2012; pp 75–95.
  • Berg, J. M.; Tymoczko, J. L.; Stryer, L. Many Enzymes Are Activated by Specific Proteolytic Cleavage. In Biochemistry, 5th ed.; W H Freeman: New York, 2002.
  • Steven, L. C.; Gavel, G.; Young, D.; Carachi, R. Immunoreactive Trypsin Levels in Neonates with Meconium Ileus. Ped. Surgery Int. 2006, 22, 236–239. 10.1007/s00383-005-1614-3.
  • Shah, D.; Mital, K. The Role of Trypsin:Chymotrypsin in Tissue Repair. Adv. Ther. 2018, 35, 31–42. DOI: 10.1007/s12325-017-0648-y.
  • Hirota, M.; Ohmuraya, M.; Baba, H. The Role of Trypsin, Trypsin Inhibitor, and Trypsin Receptor in the Onset and Aggravation of Pancreatitis. J. Gastroenterol. 2006, 41, 832–836. DOI: 10.1007/s00535-006-1874-2.
  • Dandona, P.; Hodson, M.; Bell, J.; Ramdial, L.; Beldon, I.; Batten, J. C. Serum Immunoreactive Trypsin in Cystic Fibrosis. Thorax 1981, 36, 60–62. DOI: 10.1136/thx.36.1.60.
  • Fonseca, V.; Epstein, O.; Katrak, A.; Junglee, D.; Mikhailidis, D. P.; McIntyre, N.; Dandona, P. Serum Immunoreactive Trypsin and Pancreatic Lipase in Primary Biliary Cirrhosis. J. Clin. Pathol. 1986, 39, 638–640. DOI: 10.1136/jcp.39.6.638.
  • Lacroix, I. M. E.; Chen, X.-M.; Kitts, D. D.; Li-Chan, E. C. Y. Investigation into the Bioavailability of Milk Protein-Derived Peptides with Dipeptidyl-Peptidase IV Inhibitory Activity Using Caco-2 Cell Monolayers. Food Funct. 2017, 8, 701–709. DOI: 10.1039/c6fo01411a.
  • Nongonierma, A. B.; Mazzocchi, C.; Paolella, S.; FitzGerald, R. J. Release of Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Peptides from Milk Protein Isolate (MPI) during Enzymatic Hydrolysis. Food Res. Int. 2017, 94, 79–89. 10.1016/j.foodres.2017.02.004.
  • Shaw, E.; Mares-Guia, M.; Cohen, W. Evidence for an Active-Center Histidine in Trypsin through Use of a Specific Reagent, 1-Chloro-3-Tosylamido-7-Amino-2-Heptanone, the Chloromethyl Ketone Derived from Nα-Tosyl-L-Lysine*. Biochemistry 1965, 4, 2219–2224. 10.1021/bi00886a039.
  • Walsh, K. A. [4] Trypsinogens and Trypsins of Various Species. In: Methods in Enzymology; Academic Press; 1970; Vol. 19, pp 41–63.
  • Malthouse, J. P. G. Kinetic Studies of the Effect of pH on the Trypsin-Catalyzed Hydrolysis of N-α-Benzyloxycarbonyl-l-Lysine-p-Nitroanilide: Mechanism of Trypsin Catalysis. ACS Omega. 2020, 5, 4915–4923. 10.1021/acsomega.9b03750.
  • Shi, Y. C.; Jiang, Y. M.; Sui, D. X.; Li, Y. L.; Chen, T.; Ma, L.; Ding, Z. T. Affinity Chromatography of Trypsin Using Chitosan as Ligand Support. J. Chromatogr. A. 1996, 742, 107–112. 10.1016/0021-9673(96)00260-9
  • Ionescu, R. E.; Fillit, C.; Jaffrezic-Renault, N.; Cosnier, S. Urease-Gelatin Interdigitated Microelectrodes for the Conductometric Determination of Protease Activity. Biosens. Bioelectron. 2008, 24, 489–492. DOI: 10.1016/j.bios.2008.06.021.
  • Braatz, J. A.; Elias, C.; Finny, J. G.; Tran, H.; McCaman, M. Quantitation of Residual Trypsin in Cell-Based Therapeutics Using Immobilized α-1-Antitrypsin or SBTI in an ELISA Format. J. Immunol. Methods. 2015, 417, 131–133. DOI: 10.1016/j.jim.2014.12.009.
  • Mu, C. J.; LaVan, D. A.; Langer, R. S.; Zetter, B. R. Self-Assembled Gold Nanoparticle Molecular Probes for Detecting Proteolytic Activity in Vivo. ACS Nano. 2010, 4, 1511–1520. DOI: 10.1021/nn9017334.
  • Lefkowitz, R. B.; Schmid-Schönbein, G. W.; Heller, M. J. Whole Blood Assay for Trypsin Activity Using Polyanionic Focusing Gel Electrophoresis. Electrophoresis 2010, 31, 2442–2451. DOI: 10.1002/elps.201000011.
  • Zheng, F.-F.; Wu, J.-F.; Zhao, G.-C. Peptide–Quantum Dot Bioconjugates for Label-Free Trypsin Detection Based on the Exciton Energy Transfer. Anal. Methods 2012, 4, 3932–3936. 10.1039/C2AY25923K.
  • Zhang, H.; Yu, D.; Zhao, Y.; Fan, A. Turn-on Chemiluminescent Sensing Platform for Label-Free Protease Detection Using Streptavidin-Modified Magnetic Beads. Biosens. Bioelectron. 2014, 61, 45–50. DOI: 10.1016/j.bios.2014.04.050.
  • Zhang, H.; Yao, L.; Yu, X.; Zhao, Y.; Fan, A. Graphene Oxide-Based Chemiluminescent Sensing Platform for Label-Free Detection of Trypsin and Its Inhibitors. Anal. Methods 2015, 7, 9949–9956. 10.1039/C5AY02038G.
  • Nitin, N.; Santangelo, P. J.; Kim, G.; Nie, S.; Bao, G. Peptide-Linked Molecular Beacons for Efficient Delivery and Rapid mRNA Detection in Living Cells. Nucleic Acids Res. 2004, 32, e58. DOI: 10.1093/nar/gnh063.
  • Pang, S.; Liu, S.; Su, X. A Fluorescence Assay for the Trace Detection of Protamine and Heparin. RSC Adv. 2014, 4, 25857. 10.1039/c4ra02936d.
  • Heuer-Jungemann, A.; Harimech, P. K.; Brown, T.; Kanaras, A. G. Gold Nanoparticles and Fluorescently-Labelled DNA as a Platform for Biological Sensing. Nanoscale 2013, 5, 9503–9510. DOI: 10.1039/c3nr03707j.
  • Chan, C. W.-T.; Cheng, H.-K.; Hau, F. K.-W.; Chan, A. K.-W.; Yam, V. W.-W. Protamine-Induced Supramolecular Self-Assembly of Red-Emissive Alkynylplatinum(II) 2,6-Bis(benzimidazol-2'-yl)pyridine Complex for Selective Label-Free Sensing of Heparin and Real-Time Monitoring of Trypsin Activity. ACS Appl Mater Interfaces 2019, 11, 31585–31593. DOI: 10.1021/acsami.9b08653.
  • Sato, D.; Kondo, T.; Kato, T. Dual Emissive Bispyrene Peptide Probes for Highly Sensitive Measurements of Trypsin Activity and Evaluation of Trypsin Inhibitors. Bioorg. Med. Chem. 2018, 26, 3468–3473. DOI: 10.1016/j.bmc.2018.05.021.
  • Chen, L.; Fu, X.; Li, J. Ultrasensitive Surface-Enhanced Raman Scattering Detection of Trypsin Based on anti-Aggregation of 4-Mercaptopyridine-Functionalized Silver Nanoparticles: An Optical Sensing Platform toward Proteases. Nanoscale 2013, 5, 5905–5911. DOI: 10.1039/c3nr00637a.
  • Liu, X.; Li, Y.; Jia, L.; Chen, S.; Shen, Y. Ultrasensitive Fluorescent Detection of Trypsin on the Basis of Surfactant–Protamine Assembly with Tunable Emission Wavelength. RSC Adv. 2016, 6, 93551–93557. 10.1039/C6RA19220C.
  • Jang, G.; Seo, S.; Lee, T. S. Electrostatically Self-Assembled Microcapsule Composed of Conjugated Polyelectrolytes and Polypeptides for an Emission Color-Changeable Assay for Trypsin. Sens. Actuators, B. 2015, 221, 1229–1235. 10.1016/j.snb.2015.07.097.
  • Liu, R.; Tan, Y.; Zhang, C.; Wu, J.; Mei, L.; Jiang, Y.; Tan, C. A Real-Time Fluorescence Turn-on Assay for Trypsin Based on a Conjugated Polyelectrolyte. J. Mater. Chem. B. 2013, 1, 1402–1405. DOI: 10.1039/c3tb00020f.
  • Hu, L.; Han, S.; Parveen, S.; Yuan, Y.; Zhang, L.; Xu, G. Highly Sensitive Fluorescent Detection of Trypsin Based on BSA-Stabilized Gold Nanoclusters. Biosens. Bioelectron. 2012, 32, 297–299. 10.1016/j.bios.2011.12.007.
  • Xia, T.; Ma, Q.; Hu, T.; Su, X. A Novel Magnetic/Photoluminescence Bifunctional Nanohybrid for the Determination of Trypsin. Talanta 2017, 170, 286–290. DOI: 10.1016/j.talanta.2017.03.081.
  • Huang, S.; Li, F.; Liao, C.; Zheng, B.; Du, J.; Xiao, D. A Selective and Sensitive Fluorescent Probe for the Determination of HSA and Trypsin. Talanta 2017, 170, 562–568. DOI: 10.1016/j.talanta.2017.01.034.
  • Zhang, L.; Du, J. A Sensitive and Label-Free Trypsin Colorimetric Sensor with Cytochrome c as a Substrate. Biosens. Bioelectron. 2016, 79, 347–352. DOI: 10.1016/j.bios.2015.12.070.
  • Gao, X.; Tang, G.; Li, Y.; Su, X. A Novel Optical Nanoprobe for Trypsin Detection and Inhibitor Screening Based on Mn-Doped ZnSe Quantum Dots. Anal. Chim. Acta. 2012, 743, 131–136. 10.1016/j.aca.2012.07.007.
  • Zhou, Z.; Liu, W.; Wang, Y.; Ding, F.; Liu, X.; Zhao, Q.; Zou, P.; Wang, X.; Rao, H. A Fluorometric and Colorimetric Method for Determination of Trypsin by Exploiting the Gold Nanocluster-Induced Aggregation of Hemoglobin-Coated Gold Nanoparticles. Mikrochim. Acta. 2019, 186, 272. DOI: 10.1007/s00604-019-3380-2.
  • Xue, F.; Qu, F.; Han, W.; Xia, L.; You, J. Aggregation-induced emission enhancement of gold nanoclusters triggered by silicon nanoparticles for ratiometric detection of protamine and trypsin . Anal. Chim. Acta. 2019, 1046, 170–178. DOI: 10.1016/j.aca.2018.09.033.
  • Hu, X.; Shi, J.; Shi, Y.; Li, W.; Arslan, M.; Zhang, W.; Huang, X.; Li, Z.; Xu, Y.; Li, Y.; et al. A Ratiometric Fluorescence Sensor for Ultra-Sensitive Detection of Trypsin Inhibitor in Soybean Flour Using Gold Nanocluster@Carbon Nitride Quantum Dots. Anal. Bioanal. Chem. 2019, 411, 3341–3351. DOI: 10.1007/s00216-019-01806-1.
  • Zhao, D.; Chen, C.; Zhao, J.; Sun, J.; Yang, X. Label-Free Fluorescence Turn-on Strategy for Trypsin Activity Based on Thiolate-Protected Gold Nanoclusters with Bovine Serum Albumin as the Substrate. Sens. Actuators, B. 2017, 247, 392–399. 10.1016/j.snb.2017.03.031.
  • Xu, S.; Zhang, F.; Xu, L.; Liu, X.; Ma, P.; Sun, Y.; Wang, X.; Song, D. A Fluorescence Resonance Energy Transfer Biosensor Based on Carbon Dots and Gold Nanoparticles for the Detection of Trypsin. Sens. Actuators, B. 2018, 273, 1015–1021. 10.1016/j.snb.2018.07.023.
  • Wang, M.; Su, D.; Wang, G.; Su, X. A Fluorometric Sensing Method for Sensitive Detection of Trypsin and Its Inhibitor Based on Gold Nanoclusters and Gold Nanoparticles. Anal. Bioanal. Chem. 2018, 410, 6891–6900. DOI: 10.1007/s00216-018-1292-3.
  • You, X.; Li, Y.; Li, B.; Ma, J. Gold Nanoclusters-Based Chemiluminescence Resonance Energy Transfer Method for Sensitive and Label-Free Detection of Trypsin. Talanta 2016, 147, 63–68. DOI: 10.1016/j.talanta.2015.09.033.
  • Poon, C.-Y.; Li, Q.; Zhang, J.; Li, Z.; Dong, C.; Lee, A. W.-M.; Chan, W.-H.; Li, H.-W. FRET-Based Modified Graphene Quantum Dots for Direct Trypsin Quantification in Urine. Anal. Chim. Acta. 2016, 917, 64–70. DOI: 10.1016/j.aca.2016.02.032.
  • Chen, H.; Fang, A.; Zhang, Y.; Yao, S. Silver Triangular Nanoplates as an High Efficiently FRET Donor-Acceptor of Upconversion Nanoparticles for Ultrasensitive "Turn on-off" Protamine and Trypsin Sensor. Talanta 2017, 174, 148–155. DOI: 10.1016/j.talanta.2017.06.006.
  • Zhou, G.; Jiang, H.; Zhou, Y.; Liu, P.; Jia, Y.; Ye, C. Peptide-Coated Palladium Nanoparticle for Highly Sensitive Bioanalysis of Trypsin in Human Urine Samples. Nanomater. Nanotechnol. 2018, 8, 184798041882039. 10.1177/1847980418820391.
  • Liu, H.; Yin, H.; Dong, Y.; Ding, H.; Chu, X. Electrochemiluminescence Resonance Energy Transfer between Luminol and Black Phosphorus Nanosheets for the Detection of Trypsin via the “"off-on-off" switch mode”. Analyst 2020, 145, 2204–2211. DOI: 10.1039/d0an00156b.
  • Ou, L.-J.; Li, X.-Y.; Li, L.-J.; Liu, H.-W.; Sun, A.-M.; Liu, K.-J. A Sensitive Assay for Trypsin Using Poly(Thymine)-Templated Copper Nanoparticles as Fluorescent Probes. Analyst 2015, 140, 1871–1875. DOI: 10.1039/c4an01994f.
  • Liu, W.; Li, H.; Wei, Y.; Dong, C. A Label-Free Phosphorescence Sensing Platform for Trypsin Based on Mn-ZnS QDs. RSC Adv .2017, 7, 26930–26934. 10.1039/C7RA03349D.
  • Zhang, S.; Chen, C.; Qin, X.; Zhang, Q.; Liu, J.; Zhu, J.; Gao, Y.; Li, L.; Huang, W. Ultrasensitive Detection of Trypsin Activity and Inhibitor Screening Based on the Electron Transfer between Phosphorescence Copper Nanocluster and Cytochrome c. Talanta 2018, 189, 92–99. DOI: 10.1016/j.talanta.2018.06.026.
  • Li, H.; Yang, M.; Kong, D.; Jin, R.; Zhao, X.; Liu, F.; Yan, X.; Lin, Y.; Lu, G. Sensitive Fluorescence Sensor for Point-of-Care Detection of Trypsin Using Glutathione-Stabilized Gold Nanoclusters. Sens. Actuators, B. 2019, 282, 366–372. 10.1016/j.snb.2018.11.077.
  • Liu, Y.; Zhang, F.; He, X.; Ma, P.; Huang, Y.; Tao, S.; Sun, Y.; Wang, X.; Song, D. A Novel and Simple Fluorescent Sensor Based on AgInZnS QDs for the Detection of Protamine and Trypsin and Imaging of Cells. Sens. Actuators, B. 2019, 294, 263–269. 10.1016/j.snb.2019.05.057.
  • Chen, Y.; Lin, Z.; Miao, C.; Cai, Q.; Li, F.; Zheng, Z.; Lin, X.; Zheng, Y.; Weng, S. A Simple Fluorescence Assay for Trypsin through a Protamine-Induced Carbon Quantum Dot-Quenching Aggregation Platform. RSC Adv. 2020, 10, 26765–26770. 10.1039/D0RA03970E.
  • Hu, X.; Liu, Y.; Jiang, Y.; Meng, M.; Liu, Z.; Ni, L.; Wu, W. Construction and Comparison of BSA-Stabilized Functionalized GQD Composite Fluorescent Probes for Selective Trypsin Detection. New J. Chem. 2018, 42, 17718–17724. 10.1039/C8NJ02859A.
  • Lee, K.; Povlich, L. K.; Kim, J. Recent Advances in Fluorescent and Colorimetric Conjugated Polymer-Based Biosensors. Analyst 2010, 135, 2179–2189. DOI: 10.1039/c0an00239a.
  • Song, L.; Zhang, L.; Xu, K.; Huang, Y.; Gao, P.; Fang, H.; Zhang, J.; Nie, Z.; Chen, T. Fluorescent Microsphere Probe for Rapid Qualitative and Quantitative Detection of Trypsin Activity. Nanoscale Adv. 2019, 1, 162–167. 10.1039/C8NA00111A.
  • Yan, H.; Gao, Q.; Liu, Y.; Ren, W.; Shangguan, J.; Yang, X.; Li, K. Poly(β-Cyclodextrin) Enhanced Fluorescence Coupled with Specific Reaction for Amplified Detection of GSH and Trypsin Activity. New J. Chem. 2018, 42, 17682–17689. 10.1039/C8NJ04325F.
  • Gu, X.; Yang, G.; Zhang, G.; Zhang, D.; Zhu, D. A New Fluorescence Turn-on Assay for Trypsin and Inhibitor Screening Based on Graphene Oxide. ACS Appl. Mater. Interfaces 2011, 3, 1175–1179. DOI: 10.1021/am2000104.
  • Noh, J.; Chae, B.-J.; Ku, B.-C.; Lee, T. S. Fabrication of a Nanohybrid of Conjugated Polymer Nanoparticles and Graphene Oxide for Biosensing of Trypsin. J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 1898–1904. 10.1002/pola.27215.
  • Dutta, S.; Saikia, K.; Nath, P. Smartphone Based LSPR Sensing Platform for Bio-Conjugation Detection and Quantification. RSC Adv. 2016, 6, 21871–21880. 10.1039/C6RA01113F.
  • Wang, Y.; Zhou, L.; Kang, Q.; Yu, L. Simple and Label-Free Liquid Crystal-Based Sensor for Detecting Trypsin Coupled to the Interaction between Cationic Surfactant and BSA. Talanta 2018, 183, 223–227. DOI: 10.1016/j.talanta.2018.02.082.
  • Chuang, C.-H.; Lin, Y.-C.; Chen, W.-L.; Chen, Y.-H.; Chen, Y.-X.; Chen, C.-M.; Shiu, H. W.; Chang, L.-Y.; Chen, C.-H.; Chen, C.-H.; et al. Detecting Trypsin at Liquid Crystal/Aqueous Interface by Using Surface-Immobilized Bovine Serum Albumin. Biosens. Bioelectron. 2016, 78, 213–220. DOI: 10.1016/j.bios.2015.11.049.
  • Kim, H. J.; Jang, C.-H. Micro-Capillary Sensor for Imaging Trypsin Activity Using Confined Nematic Liquid Crystals. J. Mol. Liq. 2016, 222, 596–600. 10.1016/j.molliq.2016.07.099.
  • Lim, E.; Zhang, M.; Rim, J.; et al. Sensitive Liquid Crystal-Based Sensor for Monitoring the Enzymatic Activities of Trypsin. Bull. Korean Chem. Soc. 2015, 36, 1183–1188. DOI: 10.1002/bkcs.10222.
  • Wang, G.-L.; Jin, L.-Y.; Dong, Y.-M.; Wu, X.-M.; Li, Z.-J. Intrinsic Enzyme Mimicking Activity of Gold Nanoclusters upon Visible Light Triggering and Its Application for Colorimetric Trypsin Detection. Biosens. Bioelectron. 2015, 64, 523–529. DOI: 10.1016/j.bios.2014.09.071.
  • Lin, X.; Zhu, Z.; Zhao, C.; Li, S.; Liu, Q.; Liu, A.; Lin, L.; Lin, X. Robust Oxidase Mimicking Activity of Protamine-Stabilized Platinum Nanoparticles Units and Applied for Colorimetric Sensor of Trypsin and Inhibitor. Sens. Actuators, B. 2019, 284, 346–353. 10.1016/j.snb.2018.12.109.
  • de Mora, K.; Joshi, N.; Balint, B. L.; Ward, F. B.; Elfick, A.; French, C. E. A pH-Based Biosensor for Detection of Arsenic in Drinking Water. Anal. Bioanal. Chem. 2011, 400, 1031–1039. DOI: 10.1007/s00216-011-4815-8.
  • Amouzadeh Tabrizi, M.; Ferré-Borrull, J.; Marsal, L. F. Remote Biosensor for the Determination of Trypsin by Using Nanoporous Anodic Alumina as a Three-Dimensional Nanostructured Material. Sci. Rep. 2020, 10, 2356. DOI: 10.1038/s41598-020-59287-7.
  • Wang, X.; Mahoney, M.; Meyerhoff, M. E. Inkjet-Printed Paper-Based Colorimetric Polyion Sensor Using a Smartphone as a Detector. Anal. Chem. 2017, 89, 12334–12341. DOI: 10.1021/acs.analchem.7b03352.
  • Kong, W.; Li, Q.; Xia, L.; Li, X.; Sun, H.; Kong, R.-M.; Qu, F. Photoelectrochemical Determination of Trypsin by Using an Indium Tin Oxide Electrode Modified with a Composite Prepared from MoS2 Nanosheets and TiO2 Nanorods. Microchim. Acta 2019, 186, 490. 10.1007/s00604-019-3589-0.
  • Chen, J.; Zhao, G.-C. Nano-Encapsulant of Ascorbic Acid-Loaded Apoferritin-Assisted Photoelectrochemical Sensor for Protease Detection. Talanta 2017, 168, 62–66. DOI: 10.1016/j.talanta.2017.03.002.
  • Chen, G.; Shi, H.; Ban, F.; Zhang, Y.; Sun, L. Determination of Trypsin Activity Using a Gold Electrode Modified with a Nanocover Composed of Graphene Oxide and Thionine. Microchim. Acta 2015, 182, 2469–2476. 10.1007/s00604-015-1601-x.
  • Dong, M.; Qi, H.; Ding, S.; Li, M. Electrochemical Determination of Trypsin Using a Heptapeptide Substrate Self-Assembled on a Gold Electrode. Microchim. Acta 2015, 182, 43–49. 10.1007/s00604-014-1295-5.
  • Dai, H.; Chen, S.; Li, Y.; Zeng, B.; Zhang, S.; Hong, Z.; Lin, Y. Photoelectrochemical Biosensor Constructed Using TiO2 Mesocrystals Based Multipurpose Matrix for Trypsin Detection. Biosens. Bioelectron. 2017, 92, 687–694. DOI: 10.1016/j.bios.2016.10.028.
  • Yi, Q.; Liu, Q.; Gao, F.; Chen, Q.; Wang, G. Application of an Electrochemical Immunosensor with a MWCNT/PDAA Modified Electrode for Detection of Serum Trypsin. Sensors (Basel) 2014, 14, 10203–10212. DOI: 10.3390/s140610203.
  • Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization of Individual Polynucleotide Molecules Using a Membrane Channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773. DOI: 10.1073/pnas.93.24.13770.
  • Zhou, S.; Wang, L.; Chen, X.; Guan, X. Label-Free Nanopore Single-Molecule Measurement of Trypsin Activity. ACS Sens. 2016, 1, 607–613. DOI: 10.1021/acssensors.6b00043.
  • Li, M.; Rauf, A.; Guo, Y.; Kang, X. Real-Time Label-Free Kinetics Monitoring of Trypsin-Catalyzed Ester Hydrolysis by a Nanopore Sensor. ACS Sens. 2019, 4, 2854–2857. DOI: 10.1021/acssensors.9b01783.
  • Xia, Z. Biomimetic Principles and Design of Advanced Engineering Materials; New York: Wiley; 2016.
  • Stoytcheva, M.; Zlatev, R.; Cosnier, S.; Arredondo, M.; Valdez, B. High Sensitive Trypsin Activity Evaluation Applying a Nanostructured QCM-Sensor. Biosens. Bioelectron. 2013, 41, 862–866. DOI: 10.1016/j.bios.2012.08.039.
  • Karaseva, N. A.; Pluhar, B.; Beliaeva, E. A.; Ermolaeva, T. N.; Mizaikoff, B. Synthesis and Application of Molecularly Imprinted Polymers for Trypsin Piezoelectric Sensors. Sens. Actuators, B. 2019, 280, 272–279. 10.1016/j.snb.2018.10.022.
  • Dong, Z.-M.; Cheng, L.; Zhang, P.; Zhao, G.-C. Label-Free Analytical Performances of a Peptide-Based QCM Biosensor for Trypsin. Analyst 2020, 145, 3329–3338. DOI: 10.1039/d0an00308e.
  • Ertürk, G.; Hedström, M.; Mattiasson, B. A Sensitive and Real-Time Assay of Trypsin by Using Molecular Imprinting-Based Capacitive Biosensor. Biosens. Bioelectron. 2016, 86, 557–565. DOI: 10.1016/j.bios.2016.07.046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.