425
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Contributions of Capillary Electrophoresis in Analytical Nanometrology: A Critical View

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1094-1111 | Published online: 11 Jan 2021

References

  • Adam, V.; Vaculovicova, M. Capillary Electrophoresis and Nanomaterials – Part I: Capillary Electrophoresis of Nanomaterials. Electrophoresis 2017, 38, 2389–2404. DOI: 10.1002/elps.201700097.
  • Xiao, X.; Wu, J.; Li, Z.; Jia, L. Enantioseparation and Sensitive Analysis of Ofloxacin by Poly(3,4-Dihydroxyphenylalanine) Functionalized Magnetic Nanoparticles-Based Solid Phase Extraction in Combination with Online Concentration Capillary Electrophoresis. J. Chromatogr. A. 2019, 1587, 14–23. DOI: 10.1016/j.chroma.2018.11.026.
  • Adam, V.; Vaculovicova, M. CE and Nanomaterials – Part II: Nanomaterials in CE. Electrophoresis 2017, 38, 2405–2430. DOI: 10.1002/elps.201700098.
  • Jorgenson, J. W.; DeArman Lukacs, K. Zone Electrophoresis in Open-Tubular Glass Capillaries: Preliminary Data on Performance. J. High Resolut. Chromatogr. 1981, 4, 230–231. DOI: 10.1002/jhrc.1240040507.
  • Jorgenson, J. W.; Lukacs, K. D. Zone Electrophoresis in Open-Tubular Glass Capillaries. Anal. Chem. 1981, 53, 1298–1302. DOI: 10.1021/ac00231a037.
  • Jorgenson, J. W.; Lukacs, K. D. Free-Zone Electrophoresis in Glass Capillaries. Clin. Chem. 1981, 27, 1551–1553. DOI: 10.1093/clinchem/27.9.1551.
  • Jorgenson, J. W.; Lukacs, K. D. Capillary Zone Electrophoresis. Science 1983, 222, 266–272. DOI: 10.1126/science.6623076.
  • Jorgenson, J. Zone Electrophoresis in Open-Tubular Capillaries. Trends Anal. Chem. 1984, 3, 51–54. DOI: 10.1016/0165-9936(84)87053-3.
  • Ban, E.; Yoo, Y. S.; Song, E. J. Analysis and Applications of Nanoparticles in Capillary Electrophoresis. Talanta 2015, 141, 15–20. DOI: 10.1016/j.talanta.2015.03.020.
  • González-Curbelo, M. Á.; Varela-Martínez, D. A.; Socas-Rodríguez, B.; Hernández-Borges, J. Recent Applications of Nanomaterials in Capillary Electrophoresis. Electrophoresis 2017, 38, 2431–2446. DOI: 10.1002/elps.201700178.
  • Trapiella-Alfonso, L.; d'Orlyé, F.; Varenne, A. Recent Advances in the Development of Capillary Electrophoresis Methodologies for Optimizing, Controlling, and Characterizing the Synthesis, Functionalization, and Physicochemical, Properties of Nanoparticles. Anal. Bioanal. Chem. 2016, 408, 2669–2675. DOI: 10.1007/s00216-015-9236-7.
  • Herrera-Basurto, R.; Simonet, B. M. Nanometrology. In Encyclopedia of Analytical Chemistry; Meyers, R. A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2000; pp 1–12. DOI: 10.1002/9780470027318.a9177.
  • Hansen, P.-E.; Roebben, G. Introductory Guide to Nanometrology. Coord. Nanometrol. Europe Project 2010, 978. ISBN: ‐0‐9566809‐1‐4.
  • Valcárcel, M.; Simonet, B. M.; Cárdenas, S. Analytical Nanoscience and Nanotechnology Today and Tomorrow. Anal. Bioanal. Chem. 2008, 391, 1881–1887. DOI: 10.1007/s00216-008-2130-9.
  • Soriano, M. L.; Zougagh, M.; Valcárcel, M.; Ríos, Á. Analytical Nanoscience and Nanotechnology: Where We Are and Where We Are Heading. Talanta 2018, 177, 104–121. DOI: 10.1016/j.talanta.2017.09.012.
  • Rawle, A. F. Characterization of Nanomaterials. In Metrology and Standardization of Nanotechnology; Mansfield, E., Kaiser, D. L., Fujita, D., Van de Voorde, M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp 129–150. DOI: 10.1002/9783527800308.ch7.
  • López-Sanz, S.; Guzmán Bernardo, F. J.; Rodríguez Martín-Doimeadios, R. C.; Ríos, Á. Analytical Metrology for Nanomaterials: Present Achievements and Future Challenges. Anal. Chim. Acta. 2019, 1059, 1–15. DOI: 10.1016/j.aca.2019.02.009.
  • Wu, Y.; Remcho, V. T. A Capillary Electrophoretic Method for Separation and Characterization of Carbon Dots and Carbon Dot-Antibody Bioconjugates. Talanta 2016, 161, 854–859. DOI: 10.1016/j.talanta.2016.09.031.
  • Hu, Q.; Paau, M. C.; Zhang, Y.; Chan, W.; Gong, X.; Zhang, L.; Choi, M. M. F. Capillary Electrophoretic Study of Amine/Carboxylic Acid-Functionalized Carbon Nanodots. J. Chromatogr. A. 2013, 1304, 234–240. DOI: 10.1016/j.chroma.2013.07.035.
  • Müller, M. B.; Quirino, J. P.; Nesterenko, P. N.; Haddad, P. R.; Gambhir, S.; Li, D.; Wallace, G. G. Capillary Zone Electrophoresis of Graphene Oxide and Chemically Converted Graphene. J. Chromatogr. A. 2010, 1217, 7593–7597. DOI: 10.1016/j.chroma.2010.09.069.
  • Zhao, J.; Chen, G.; Zhang, W.; Li, P.; Wang, L.; Yue, Q.; Wang, H.; Dong, R.; Yan, X.; Liu, J. High-Resolution Separation of Graphene Oxide by Capillary Electrophoresis. Anal. Chem. 2011, 83, 9100–9106. DOI: 10.1021/ac202136n.
  • Liu, L.; Feng, F.; Hu, Q.; Paau, M. C.; Liu, Y.; Chen, Z.; Bai, Y.; Guo, F.; Choi, M. M. F. Capillary Electrophoretic Study of Green Fluorescent Hollow Carbon Nanoparticles: Nanoanalysis. Electrophoresis 2015, 36, 2110–2119. DOI: 10.1002/elps.201500166.
  • He, P.; Meany, B.; Wang, C.; Piao, Y.; Kwon, H.; Deng, S.; Wang, Y. Capillary Electrophoresis of Covalently Functionalized Single-Chirality Carbon Nanotubes: Nanoanalysis. Electrophoresis 2017, 38, 1669–1677. DOI: 10.1002/elps.201600570.
  • Abdel-Haq, H.; Bossù, E. Capillary Electrophoresis as a Tool for the Characterization of Pentosan Nanoparticles. J. Chromatogr. A. 2012, 1257, 125–130. DOI: 10.1016/j.chroma.2012.07.096.
  • Duffy, E.; Mitev, D. P.; Nesterenko, P. N.; Kazarian, A. A.; Paull, B. Separation and Characterisation of Detonation Nanodiamond by Capillary Zone Electrophoresis: CE and CEC. Electrophoresis 2014, 35, 1864–1872. DOI: 10.1002/elps.201300488.
  • Oukacine, F.; Morel, A.; Desvignes, I.; Cottet, H. Size-Based Characterization of Nanoparticle Mixtures by the Inline Coupling of Capillary Electrophoresis to Taylor Dispersion Analysis. J. Chromatogr. A. 2015, 1426, 220–225. DOI: 10.1016/j.chroma.2015.11.024.
  • Musile, G.; Cenci, L.; Andreetto, E.; Ambrosi, E.; Tagliaro, F.; Bossi, A. M. Screening of the Binding Properties of Molecularly Imprinted Nanoparticles via Capillary Electrophoresis. Anal. Bioanal. Chem. 2016, 408, 3435–3443. DOI: 10.1007/s00216-016-9418-y.
  • Contin, M.; Bonelli, P.; Lucangioli, S.; Cukierman, A.; Tripodi, V. Synthesis and Characterization of Molecularly Imprinted Polymer Nanoparticles for Coenzyme Q10 Dispersive Micro Solid Phase Extraction. J. Chromatogr. A. 2016, 1456, 1–9. DOI: 10.1016/j.chroma.2016.05.091.
  • Kato, M.; Sasaki, M.; Ueyama, Y.; Koga, A.; Sano, A.; Higashi, T.; Santa, T. Comparison of the Migration Behavior of Nanoparticles Based on Polyethylene Glycol and Silica Using Micellar Electrokinetic Chromatography: Electrodriven Separations. J. Sep. Sci. 2015, 38, 468–474. DOI: 10.1002/jssc.201401086.
  • Adelantado, C.; Rodríguez-Fariñas, N.; Rodríguez Martín-Doimeadios, R. C.; Zougagh, M.; Ríos, Á. Analysis of Silica Nanoparticles by Capillary Electrophoresis Coupled to an Evaporative Light Scattering Detector. Anal. Chim. Acta. 2016, 923, 82–88. DOI: 10.1016/j.aca.2016.03.055.
  • Bouri, M.; Salghi, R.; Zougagh, M.; Ríos, A. Design and Adaptation of an Interface for Commercial Capillary Electrophoresis-Evaporative Light Scattering Detection Coupling. Anal. Chem. 2013, 85, 4858–4862. DOI: 10.1021/ac400370f.
  • Fichtner, A.; Jalil, A.; Pyell, U. Determination of the Exact Particle Radius Distribution for Silica Nanoparticles via Capillary Electrophoresis and Modeling the Electrophoretic Mobility with a Modified Analytic Approximation. Langmuir 2017, 33, 2325–2339. DOI: 10.1021/acs.langmuir.6b04543.
  • Oukacine, F.; Gèze, A.; Choisnard, L.; Putaux, J.-L.; Stahl, J.-P.; Peyrin, E. Inline Coupling of Electrokinetic Preconcentration Method to Taylor Dispersion Analysis for Size-Based Characterization of Low-UV-Absorbing Nanoparticles. Anal. Chem. 2018, 90, 2493–2500. DOI: 10.1021/acs.analchem.7b03344.
  • Alsudir, S.; Lai, E. P. C. Electrosteric Stabilization of Colloidal TiO2 Nanoparticles with DNA and Polyethylene Glycol for Selective Enhancement of UV Detection Sensitivity in Capillary Electrophoresis Analysis. Anal. Bioanal. Chem. 2017, 409, 1857–1868. DOI: 10.1007/s00216-016-0130-8.
  • Alsudir, S.; Lai, E. P. C. Selective Detection of ZnO Nanoparticles in Aqueous Suspension by Capillary Electrophoresis Analysis Using Dithiothreitol and L-Cysteine Adsorbates. Talanta 2017, 169, 115–122. DOI: 10.1016/j.talanta.2017.03.019.
  • Ramírez-García, G.; d'Orlyé, F.; Gutiérrez-Granados, S.; Martínez-Alfaro, M.; Mignet, N.; Richard, C.; Varenne, A. Functionalization and Characterization of Persistent Luminescence Nanoparticles by Dynamic Light Scattering, Laser Doppler and Capillary Electrophoresis. Colloids Surf B Biointerfaces 2015, 136, 272–281. DOI: 10.1016/j.colsurfb.2015.09.022.
  • Liu, F.-K. Extremely Highly Efficient on-Line Concentration and Separation of Gold Nanoparticles Using the Reversed Electrode Polarity Stacking Mode and Surfactant-Modified Capillary Electrophoresis. Anal. Chim. Acta. 2011, 694, 167–173. DOI: 10.1016/j.aca.2011.03.056.
  • Li, L.; Yu, H.; Liu, D.; You, T. A Novel Dark-Field Microscopy Technique Coupled with Capillary Electrophoresis for Visual Analysis of Single Nanoparticles. Analyst 2013, 138, 3705–3710. DOI: 10.1039/c3an00408b.
  • Bouri, M.; Salghi, R.; Algarra, M.; Zougagh, M.; Ríos, A. A Novel Approach to Size Separation of Gold Nanoparticles by Capillary Electrophoresis–Evaporative Light Scattering Detection. RSC Adv. 2015, 5, 16672–16677. DOI: 10.1039/C4RA17217E.
  • Pallotta, A.; Boudier, A.; Leroy, P.; Clarot, I. Characterization and Stability of Gold Nanoparticles Depending on Their Surface Chemistry: Contribution of Capillary Zone Electrophoresis to a Quality Control. J. Chromatogr. A. 2016, 1461, 179–184. DOI: 10.1016/j.chroma.2016.07.031.
  • Ciriello, R.; Iallorenzi, P. T.; Laurita, A.; Guerrieri, A. Improved Separation and Size Characterization of Gold Nanoparticles through a Novel Capillary Zone Electrophoresis Method Using Poly(Sodium4-Styrenesulfonate) as Stabiliser and a Stepwise Field Strength Gradient: Nanoanalysis. Electrophoresis 2017, 38, 922–929. DOI: 10.1002/elps.201600478.
  • Horská, J.; Ševčík, J.; Petr, J. Determination of Citrate Released from Stabilized Gold Nanoparticles by Capillary Zone Electrophoresis. Chem. Pap. 2018, 72, 419–424. DOI: 10.1007/s11696-017-0291-8.
  • Dziomba, S.; Ciura, K.; Kocialkowska, P.; Prahl, A.; Wielgomas, B. Gold Nanoparticles Dispersion Stability under Dynamic Coating Conditions in Capillary Zone Electrophoresis. J. Chromatogr. A. 2018, 1550, 63–67. DOI: 10.1016/j.chroma.2018.03.038.
  • Adelantado, C.; Algarra, M.; Zougagh, M.; Ríos, Á. Use of Capillary Electrophoresis for Characterisation of Vinyl-Terminated Au Nanoprisms and Nanooctahedra. Electrophoresis 2018, 39, 1437–1442. DOI: 10.1002/elps.201800035.
  • Dziomba, S.; Ciura, K.; Correia, B.; Wielgomas, B. Stabilization and Isotachophoresis of Unmodified Gold Nanoparticles in Capillary Electrophoresis. Anal. Chim. Acta. 2019, 1047, 248–256. DOI: 10.1016/j.aca.2018.09.069.
  • López-Lorente, Á. I.; Soriano, M. L.; Valcárcel, M. Analysis of Citrate-Capped Gold and Silver Nanoparticles by Thiol Ligand Exchange Capillary Electrophoresis. Microchim. Acta 2014, 181, 1789–1796. DOI: 10.1007/s00604-014-1218-5.
  • González Fá, A. J.; Cerutti, I.; Springer, V.; Girotti, S.; Centurión, M. E.; Di Nezio, M. S.; Pistonesi, M. F. Simple Characterization of Green-Synthesized Silver Nanoparticles by Capillary Electrophoresis. Chromatographia 2017, 80, 1459–1466. DOI: 10.1007/s10337-017-3347-6.
  • Petr, J.; Teste, B.; Descroix, S.; Siaugue, J.-M.; Gareil, P.; Varenne, A. Separation of Alpha-Lactalbumin Grafted- and Non-grafted Maghemite Core/Silica Shell Nanoparticles by Capillary Zone Electrophoresis. Electrophoresis 2010, 31, 2754–2761. DOI: 10.1002/elps.201000083.
  • Miah, M.; Iqbal, Z.; Lai, E. P. C. Rapid CE-UV Evaluation of Polypyrrole-Coated Magnetic Nanoparticles for Selective Binding of Endocrine Disrupting Compounds and Pharmaceuticals by Aromatic Interactions. Anal. Methods 2012, 4, 2866–2878. DOI: 10.1039/c2ay25343g.
  • Baharifar, H.; Fakhari, A. R.; Ziyadi, H.; Oghabian, M. A.; Amani, A.; Faridi-Majidi, R. Influence of Polymeric Coating on Capillary Electrophoresis of Iron Oxide Nanoparticles. J. Iran. Chem. Soc. 2014, 11, 279–284. DOI: 10.1007/s13738-013-0298-1.
  • Ramana, P.; Adams, E.; Augustijns, P.; Van Schepdael, A. Trapping Magnetic Nanoparticles for in-Line Capillary Electrophoresis in a Liquid Based Capillary Coolant System. Talanta 2017, 164, 148–153. DOI: 10.1016/j.talanta.2016.11.028.
  • Baron, D.; Dolanská, P.; Medříková, Z.; Zbořil, R.; Petr, J. Online Stacking of Carboxylated Magnetite Core-Shell Nanoparticles in Capillary Electrophoresis. J. Sep. Sci. 2017, 40, 2482–2487. DOI: 10.1002/jssc.201601435.
  • Alves, M. N.; Nesterenko, P. N.; Paull, B.; Haddad, P. R.; Macka, M. Separation of Superparamagnetic Magnetite Nanoparticles by Capillary Zone Electrophoresis Using Non-Complexing and Complexing Electrolyte Anions and Tetramethylammonium as Dispersing Additive. Electrophoresis 2018, 39, 1429–1436. DOI: 10.1002/elps.201800095.
  • Franze, B.; Engelhard, C. Fast Separation, Characterization, and Speciation of Gold and Silver Nanoparticles and Their Ionic Counterparts with Micellar Electrokinetic Chromatography Coupled to ICP-MS. Anal. Chem. 2014, 86, 5713–5720. DOI: 10.1021/ac403998e.
  • Qu, H.; Mudalige, T. K.; Linder, S. W. Capillary Electrophoresis/Inductively-Coupled Plasma-Mass Spectrometry: Development and Optimization of a High Resolution Analytical Tool for the Size-Based Characterization of Nanomaterials in Dietary Supplements. Anal. Chem. 2014, 86, 11620–11627. DOI: 10.1021/ac5025655.
  • Matczuk, M.; Aleksenko, S. S.; Matysik, F.-M.; Jarosz, M.; Timerbaev, A. R. Comparison of Detection Techniques for Capillary Electrophoresis Analysis of Gold Nanoparticles: Nanoanalysis. Electrophoresis 2015, 36, 1158–1163. DOI: 10.1002/elps.201400597.
  • Matczuk, M.; Anecka, K.; Scaletti, F.; Messori, L.; Keppler, B. K.; Timerbaev, A. R.; Jarosz, M. Speciation of Metal-Based Nanomaterials in Human Serum Characterized by Capillary Electrophoresis Coupled to ICP-MS: A Case Study of Gold Nanoparticles. Metallomics 2015, 7, 1364–1370. DOI: 10.1039/C5MT00109A.
  • Matczuk, M.; Legat, J.; Shtykov, S. N.; Jarosz, M.; Timerbaev, A. R. Characterization of the Protein Corona of Gold Nanoparticles by an Advanced Treatment of CE-ICP-MS Data: Nanoanalysis. Electrophoresis 2016, 37, 2257–2259. DOI: 10.1002/elps.201600152.
  • Legat, J.; Matczuk, M.; Timerbaev, A.; Jarosz, M. CE Separation and ICP-MS Detection of Gold Nanoparticles and Their Protein Conjugates. Chromatographia 2017, 80, 1695–1700. DOI: 10.1007/s10337-017-3387-y.
  • Qu, H.; Linder, S. W.; Mudalige, T. K. Surface Coating and Matrix Effect on the Electrophoretic Mobility of Gold Nanoparticles: A Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry Study. Anal. Bioanal. Chem. 2017, 409, 979–988. DOI: 10.1007/s00216-016-0012-0.
  • Legat, J.; Matczuk, M.; Timerbaev, A. R.; Jarosz, M. Cellular Processing of Gold Nanoparticles: CE-ICP-MS Evidence for the Speciation Changes in Human Cytosol. Anal. Bioanal. Chem. 2018, 410, 1151–1156. DOI: 10.1007/s00216-017-0749-0.
  • Riley, K. R.; Sims, C. M.; Wood, I. T.; Vanderah, D. J.; Walker, M. L. Short-Chained Oligo(Ethylene Oxide)-Functionalized Gold Nanoparticles: Realization of Significant Protein Resistance. Anal. Bioanal. Chem. 2018, 410, 145–154. DOI: 10.1007/s00216-017-0704-0.
  • Franze, B.; Strenge, I.; Engelhard, C. Separation and Detection of Gold Nanoparticles with Capillary Electrophoresis and ICP-MS in Single Particle Mode (CE-SP-ICP-MS). J. Anal. At. Spectrom. 2017, 32, 1481–1489. DOI: 10.1039/C7JA00040E.
  • Liu, L.; He, B.; Liu, Q.; Yun, Z.; Yan, X.; Long, Y.; Jiang, G. Identification and Accurate Size Characterization of Nanoparticles in Complex Media. Angew. Chem. Int. Ed. Engl. 2014, 53, 14476–14479. DOI: 10.1002/anie.201408927.
  • Qu, H.; Mudalige, T. K.; Linder, S. W. Capillary Electrophoresis Coupled with Inductively Coupled Mass Spectrometry as an Alternative to Cloud Point Extraction Based Methods for Rapid Quantification of Silver Ions and Surface Coated Silver Nanoparticles. J. Chromatogr. A. 2016, 1429, 348–353. DOI: 10.1016/j.chroma.2015.12.033.
  • Michalke, B.; Vinković-Vrček, I. Vinković-Vrček, I. Speciation of Nano and Ionic Form of Silver with Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry. J. Chromatogr. A. 2018, 1572, 162–171. DOI: 10.1016/j.chroma.2018.08.031.
  • Mozhayeva, D.; Strenge, I.; Engelhard, C. Implementation of Online Preconcentration and Microsecond Time Resolution to Capillary Electrophoresis Single Particle Inductively Coupled Plasma Mass Spectrometry (CE-SP-ICP-MS) and Its Application in Silver Nanoparticle Analysis. Anal. Chem. 2017, 89, 7152–7159. DOI: 10.1021/acs.analchem.7b01185.
  • Mozhayeva, D.; Engelhard, C. Separation of Silver Nanoparticles with Different Coatings by Capillary Electrophoresis Coupled to ICP-MS in Single Particle Mode. Anal. Chem. 2017, 89, 9767–9774. DOI: 10.1021/acs.analchem.7b01626.
  • Mudalige, T. K.; Qu, H.; Van Haute, D.; Ansar, S. M.; Linder, S. W. Capillary Electrophoresis and Asymmetric Flow Field-Flow Fractionation for Size-Based Separation of Engineered Metallic Nanoparticles: A Critical Comparative Review. Trends Anal. Chem. 2018, 106, 202–212. DOI: 10.1016/j.trac.2018.07.008.
  • Pyell, U.; Jalil, A. H.; Pfeiffer, C.; Pelaz, B.; Parak, W. J. Characterization of Gold Nanoparticles with Different Hydrophilic Coatings via Capillary Electrophoresis and Taylor Dispersion Analysis. Part I: Determination of the Zeta Potential Employing a Modified Analytic Approximation. J. Colloid Interface Sci. 2015, 450, 288–300. DOI: 10.1016/j.jcis.2015.03.006.
  • Pyell, U.; Jalil, A. H.; Urban, D. A.; Pfeiffer, C.; Pelaz, B.; Parak, W. J. Characterization of Hydrophilic Coated Gold Nanoparticles via Capillary Electrophoresis and Taylor Dispersion Analysis. Part II: Determination of the Hydrodynamic Radius Distribution – Comparison with Asymmetric Flow Field-Flow Fractionation. J. Colloid Interface Sci. 2015, 457, 131–140. DOI: 10.1016/j.jcis.2015.06.042.
  • You, Z.; Nirmalananthan-Budau, N.; Resch-Genger, U.; Panne, U.; Weidner, S. M. Separation of Polystyrene Nanoparticles Bearing Different Carboxyl Group Densities and Functional Groups Quantification with Capillary Electrophoresis and Asymmetrical Flow Field Flow Fractionation. J. Chromatogr. A. 2020, 1626, 461392. DOI: 10.1016/j.chroma.2020.461392.
  • Kruszewska, J.; Kulpińska, D.; Grabowska-Jadach, I.; Matczuk, M. Joint Forces of Direct, Single Particle, CE- and HPLC-inductively Coupled Plasma Mass Spectrometry Techniques for the Examination of Gold Nanoparticle Accumulation, Distribution and Changes Inside Human Cells. Metallomics 2020, 12, 408–415. DOI: 10.1039/C9MT00309F.
  • Moreno, V.; Zougagh, M.; Ríos, Á. Analytical Nanometrological Approach for Screening and Confirmation of Titanium Dioxide Nano/Micro-Particles in Sugary Samples Based on Raman Spectroscopy – Capillary Electrophoresis. Anal. Chim. Acta 2019, 1050, 169–175. DOI: 10.1016/j.aca.2018.10.067.
  • Adelantado, C.; Ríos, Á.; Zougagh, M. A New Nanometrological Strategy for Titanium Dioxide Nanoparticles Screening and Confirmation in Personal Care Products by CE-SpICP-MS. Talanta 2020, 219, 121385. DOI: 10.1016/j.talanta.2020.121385.
  • Ke, L.; Yang, D.; Gao, G.; Wang, H.; Yu, Z.; Rao, P.; Zhou, J.; Wang, Q. Rapid Separation and Quantification of Self-Assembled Nanoparticles from a Liquid Food System by Capillary Zone Electrophoresis. Food Chem. 2020, 319, 126579. DOI: 10.1016/j.foodchem.2020.126579.
  • Praus, P.; Turicová, M.; Suchomel, P.; Kvítek, L. Capillary Isotachophoresis for Separation of Silver Nanoparticles according to Size. RSC Adv. 2015, 5, 59131–59136. DOI: 10.1039/C5RA10676A.
  • Ruiz-Palomero, C.; Soriano, M. L.; Valcárcel, M. Sulfonated Nanocellulose for the Efficient Dispersive Micro Solid-Phase Extraction and Determination of Silver Nanoparticles in Food Products. J. Chromatogr. A. 2016, 1428, 352–358. DOI: 10.1016/j.chroma.2015.06.023.
  • Konop, M.; Kłodzińska, E.; Borowiec, J.; Laskowska, A. K.; Czuwara, J.; Konieczka, P.; Cieślik, B.; Waraksa, E.; Rudnicka, L. Application of Micellar Electrokinetic Chromatography for Detection of Silver Nanoparticles Released from Wound Dressing. Electrophoresis 2019, 40, 1565–1572. DOI: 10.1002/elps.201900020.
  • Soriano, M. L.; Ruiz-Palomero, C.; Valcárcel, M. Ionic-Liquid-Based Microextraction Method for the Determination of Silver Nanoparticles in Consumer Products. Anal. Bioanal. Chem. 2019, 411, 5023–5031. DOI: 10.1007/s00216-019-01889-w.
  • Montes, C.; Villaseñor, M. J.; Ríos, Á. Analytical Control of Nanodelivery Lipid-Based Systems for Encapsulation of Nutraceuticals: Achievements and Challenges. Trends Food Sci. Tech. 2019, 90, 47–62. DOI: 10.1016/j.tifs.2019.06.001.
  • Tekrony, A.; Cramb, D. Determination of the Mobility of Amine- and Carboxy-Terminated Fluospheres and Quantum Dots by Capillary Electrophoresis. Can. J. Chem. 2016, 94, 430–435. DOI: 10.1139/cjc-2015-0349.
  • Ryvolova, M.; Chomoucka, J.; Janu, L.; Drbohlavova, J.; Adam, V.; Hubalek, J.; Kizek, R. Biotin-Modified Glutathione as a Functionalized Coating for Bioconjugation of CdTe-Based Quantum Dots. Electrophoresis 2011, 32, 1619–1622. DOI: 10.1002/elps.201000634.
  • Stanisavljevic, M.; Janu, L.; Smerkova, K.; Krizkova, S.; Pizurova, N.; Ryvolova, M.; Adam, V.; Hubalek, J.; Kizek, R. Study of Streptavidin-Modified Quantum Dots by Capillary Electrophoresis. Chromatographia 2013, 76, 335–343. DOI: 10.1007/s10337-012-2372-8.
  • Voráčová, I.; Klepárník, K.; Lišková, M.; Foret, F. Determination of ζ-Potential, Charge, and Number of Organic Ligands on the Surface of Water Soluble Quantum Dots by Capillary Electrophoresis: Nanoanalysis. Electrophoresis 2015, 36, 867–874. DOI: 10.1002/elps.201400459.
  • Nejdl, L.; Hynek, D.; Adam, V.; Vaculovicova, M. Capillary Electrophoresis-Driven Synthesis of Water-Soluble CdTe Quantum Dots in Nanoliter Scale. Nanotechnology 2018, 29, 165602. DOI: 10.1088/1361-6528/aaabd4.
  • Carrillo-Carrión, C.; Moliner-Martínez, Y.; Simonet, B. M.; Valcárcel, M. Capillary Electrophoresis Method for the Characterization and Separation of CdSe Quantum Dots. Anal. Chem. 2011, 83, 2807–2813. DOI: 10.1021/ac2001719.
  • Oszwałdowski, S.; Zawistowska-Gibuła, K.; Roberts, K. P. Capillary Electrophoretic Separation of Nanoparticles. Anal. Bioanal. Chem. 2011, 399, 2831–2842. DOI: 10.1007/s00216-011-4650-y.
  • Oszwałdowski, S.; Zawistowska-Gibuła, K.; Roberts, K. Characterization of CdSe Quantum Dots with Bidentate Ligands by Capillary Electrophoresis. Open Chem. J. 2011, 9, 572–584. DOI: 10.2478/s11532-011-0037-3.
  • Wang, J.; Xia, J. Capillary Electrophoretic Studies on Displacement and Proteolytic Cleavage of Surface Bound Oligohistidine Peptide on Quantum Dots. Anal. Chim. Acta. 2012, 709, 120–127. DOI: 10.1016/j.aca.2011.10.021.
  • Wang, J.; Li, J.; Chen, Y.; Teng, Y.; Wang, C.; Li, J.; Liu, L.; Dong, B.; Qiu, L.; Jiang, P. Capillary Electrophoretic Studies on Quantum Dots and Histidine Appended Peptides Self-Assembly. Electrophoresis 2015, 36, 2419–2424. DOI: 10.1002/elps.201500205.
  • Oszwałdowski, S.; Roberts, K. P.; Timerbaev, A. R. Capillary Zone Electrophoresis of Quantum Dots Dispersed in Mixed Micelles: New Evidence of the Concentration Effect. J. Chromatogr. A. 2013, 1305, 320–327. DOI: 10.1016/j.chroma.2013.07.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.