799
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Nanoarchitectured Bioconjugates and Bioreceptors Mediated Surface Plasmon Resonance Biosensor for In Vitro Diagnosis of Alzheimer’s Disease: Development and Future Prospects

&
Pages 1139-1169 | Published online: 10 Jan 2021

References

  • Baranowska-Wójcik, E.; Szwajgier, D. Alzheimer’s Disease: Review of Current Nanotechnological Therapeutic Strategies. Expert Rev. Neurother. 2020, 20, 271–279. DOI: 10.1080/14737175.2020.1719069.
  • Ryan, N. S.; Rossor, M. N.; Fox, N. C. Alzheimer's Disease in the 100 Years Since Alzheimer’s Death. Brain 2015, 138, 3816–3821. DOI: 10.1093/brain/awv316.
  • Hippius, H.; Neundörfer, G. The Discovery of Alzheimer's Disease. Dialogues Clin. Neurosci. 2003, 5, 101–108.
  • Anand, R.; Gill, K. D.; Mahdi, A. A. Therapeutics of Alzheimer's Disease: Past, Present and Future. Neuropharmacology 2014, 76, 27–50. DOI: 10.1016/j.neuropharm.2013.07.004.
  • Alzheimer’s Association. 2018 Alzheimer's Disease Facts and Figures. Alzheimers Dement. 2018, 14, 367–429.
  • World Health Organization. Neurological Disorders Public Health Challenges. WHO Library Cataloguing-in-Publication Data 2006.
  • Alzheimer’s Association. 2020 Alzheimer's Disease Facts and Figures. Alzheimers Dement. 2020, 16, 391–460.
  • Thies, W.; Bleiler, L.; Alzheimer’s Association. Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2013, 9, 208e245. DOI: 10.1016/j.jalz.2013.02.003.
  • Santana, I.; Farinha, F.; Freitas, S.; Rodrigues, V.; Carvalho, Á. The Epidemiology of Dementia and Alzheimer Disease in Portugal: estimations of Prevalence and Treatment-Costs. Acta Med. Port. 2015, 28, 182–188. DOI: 10.20344/amp.6025.
  • Posar, A.; Resca, F.; Visconti, P. Autism according to Diagnostic and Statistical Manual of Mental Disorders 5(th) edition: The Need for Further Improvements. J. Pediatr. Neurosci. 2015, 10, 146–148. DOI: 10.4103/1817-1745.159195.
  • Indu Bhushan, M. K.; Kour, G.; Gupta, S.; Sharma, S.; Yadav, A. Alzheimer’s Disease: Causes and Treatment – A Review. Ann. Biotechnol 2018, 2018, 1002.
  • Povova, J.; Ambroz, P.; Bar, M.; Pavukova, V.; Sery, O.; Tomaskova, H.; Janout, V. Epidemiological of and Risk Factors for Alzheimer's Disease: A Review. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 2012, 156, 108–114. DOI: 10.5507/bp.2012.055.
  • Croft, P.; Altman, D. G.; Deeks, J. J.; Dunn, K. M.; Hay, A. D.; Hemingway, H.; LeResche, L.; Peat, G.; Perel, P.; Petersen, S. E.; et al. The Science of Clinical Practice: disease Diagnosis or Patient Prognosis? Evidence about “What Is Likely to Happen” Should Shape Clinical Practice. BMC Med. 2015, 13, 20–28. DOI: 10.1186/s12916-014-0265-4.
  • Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C. P. The Global Prevalence of Dementia: A Systematic Review and Metaanalysis. Alzheimers. Dement. 2013, 9, 63–75. e2. DOI: 10.1016/j.jalz.2012.11.007.
  • Wei, T.-Y.; Fu, Y.; Chang, K.-H.; Lin, K.-J.; Lu, Y.-J.; Cheng, C.-M. Point-of-Care Devices Using Disease Biomarkers to Diagnose Neurodegenerative Disorders. Trends Biotechnol. 2018, 36, 290–303. DOI: 10.1016/j.tibtech.2017.11.004.
  • Carneiro, P.; Morais, S.; Pereira, M. C. Nanomaterials towards Biosensing of Alzheimer’s Disease Biomarkers. Nanomaterials 2019, 9, 1663. DOI: 10.3390/nano9121663.
  • Nikhil, B.; Pawan, J.; Nello, F.; Pedro, E. Introduction to Biosensors. Essays in Biochemistry 2016, 60, 1–8.
  • Malhotra, B. D.; Ali, M. A. Nanomaterials for Biosensors: Fundamentals and Applications. New York, NY: Elsevier, 2018.
  • Patil, P. O.; Pandey, G. R.; Patil, A. G.; Borse, V. B.; Deshmukh, P. K.; Patil, D. R.; Tade, R. S.; Nangare, S. N.; Khan, Z. G.; Patil, A. M.; et al. Graphene-Based Nanocomposites for Sensitivity Enhancement of Surface Plasmon Resonance Sensor for Biological and Chemical Sensing: A Review. Biosens. Bioelectron. 2019, 139, 111324 DOI: 10.1016/j.bios.2019.111324.
  • Zhang, J.; Sun, Y.; Wu, Q.; Gao, Y.; Zhang, H.; Bai, Y.; Song, D. Preparation of Graphene Oxide-Based Surface Plasmon Resonance Biosensor with Au Bipyramid Nanoparticles as Sensitivity Enhancer. Colloids Surf. B. Biointerfaces 2014, 116, 211–218. DOI: 10.1016/j.colsurfb.2014.01.003.
  • Homola, J.; Yee, S. S.; Gauglitz, G. Surface Plasmon Resonance Sensors. Sens. Actuators, B. 1999, 54, 3–15. DOI: 10.1016/S0925-4005(98)00321-9.
  • Antiochia, R.; Bollella, P.; Favero, G.; Mazzei, F. Nanotechnology-Based Surface Plasmon Resonance Affinity Biosensors for in Vitro Diagnostics. Int. J. Anal. Chem. 2016, 2016, 2981931. DOI: 10.1155/2016/2981931.
  • Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens. Bioelectron. 2020, 165, 112370. DOI: 10.1016/j.bios.2020.112370.
  • Chintamaneni, M.; Bhaskar, M. Biomarkers in Alzheimer's Disease: A Review. ISRN Pharmacol 2012, 2012, 984786. DOI: 10.5402/2012/984786.
  • Villemagne, V. L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K. A.; Salvado, O.; Szoeke, C.; Macaulay, S. L.; Martins, R.; Maruff, P.; et al. Amyloid β Deposition, Neurodegeneration, and Cognitive Decline in Sporadic Alzheimer's Disease: A Prospective Cohort Study. Lancet. Neurol. 2013, 12, 357–367. DOI: 10.1016/S1474-4422(13)70044-9.
  • Humpel, C.; Hochstrasser, T. Cerebrospinal Fluid and Blood Biomarkers in Alzheimer's disease. World J. Psychiatry 2011, 1, 8–18. DOI: 10.5498/wjp.v1.i1.8.
  • Brazaca, L. C.; Sampaio, I.; Zucolotto, V.; Janegitz, B. C. Applications of Biosensors in Alzheimer's Disease Diagnosis. Talanta 2020, 210, 120644. DOI: 10.1016/j.talanta.2019.120644.
  • Tang, B. L.; Kumar, R. Biomarkers of Mild Cognitive Impairment and Alzheimer's Disease. Ann. Acad. Med. Singapore 2008, 37, 406–415.
  • Mattsson, N.; Zetterberg, H. Alzheimer’s Disease and CSF Biomarkers: Key Challenges for Broad Clinical Applications. Biomark. Med. 2009, 3, 735–737. DOI: 10.2217/bmm.09.65.
  • Visser, P. J.; Verhey, F.; Knol, D. L.; Scheltens, P.; Wahlund, L.-O.; Freund-Levi, Y.; Tsolaki, M.; Minthon, L.; Wallin, A. K.; Hampel, H.; et al. Prevalence and Prognostic Value of CSF Markers of Alzheimer's Disease Pathology in Patients with Subjective Cognitive Impairment or Mild Cognitive Impairment in the DESCRIPA Study: A Prospective Cohort Study. Lancet. Neurol. 2009, 8, 619–627. DOI: 10.1016/S1474-4422(09)70139-5.
  • Hampel, H.; Frank, R.; Broich, K.; Teipel, S. J.; Katz, R. G.; Hardy, J.; Herholz, K.; Bokde, A. L. W.; Jessen, F.; Hoessler, Y. C.; et al. Biomarkers for Alzheimer's Disease: academic, Industry and Regulatory Perspectives. Nat. Rev. Drug Discov. 2010, 9, 560–574. DOI: 10.1038/nrd3115.
  • Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal Fluid and Plasma Biomarkers in Alzheimer Disease. Nat. Rev. Neurol. 2010, 6, 131–144. DOI: 10.1038/nrneurol.2010.4.
  • Shui, B.; Tao, D.; Florea, A.; Cheng, J.; Zhao, Q.; Gu, Y.; Li, W.; Jaffrezic-Renault, N.; Mei, Y.; Guo, Z. Biosensors for Alzheimer's Disease Biomarker Detection: A Review. Biochimie 2018, 147, 13–24. DOI: 10.1016/j.biochi.2017.12.015.
  • Kaushik, A.; Jayant, R. D.; Tiwari, S.; Vashist, A.; Nair, M. Nano-Biosensors to Detect Beta-Amyloid for Alzheimer's Disease Management. Biosens. Bioelectron. 2016, 80, 273–287. DOI: 10.1016/j.bios.2016.01.065.
  • Prabhulkar, S.; Piatyszek, R.; Cirrito, J. R.; Wu, Z. Z.; Li, C. Z. Microbiosensor for Alzheimer’s Disease Diagnostics: Detection of Amyloid Beta Biomarkers. J. Neurochem. 2012, 122, 374–381. DOI: 10.1111/j.1471-4159.2012.07709.x.
  • Neely, A.; Perry, C.; Varisli, B.; Singh, A. K.; Arbneshi, T.; Senapati, D.; Kalluri, J. R.; Ray, P. C. Ultrasensitive and Highly Selective Detection of Alzheimer’s Disease Biomarker using Two-Photon Rayleigh Scattering Properties of Gold Nanoparticle. ACS Nano. 2009, 3, 2834–2840. DOI: 10.1021/nn900813b.
  • Bertram, L.; Lill, C. M.; Tanzi, R. E. The Genetics of Alzheimer Disease: Back to the Future. Neuron 2010, 68, 270–281. DOI: 10.1016/j.neuron.2010.10.013.
  • Lanoiselée, H.-M.; Nicolas, G.; Wallon, D.; Rovelet-Lecrux, A.; Lacour, M.; Rousseau, S.; Richard, A.-C.; Pasquier, F.; Rollin-Sillaire, A.; Martinaud, O.; et al. APP, PSEN1, and PSEN2 Mutations in Early-Onset Alzheimer Disease: A Genetic Screening Study of Familial and Sporadic Cases. PLoS Med. 2017, 14, e1002270. DOI: 10.1371/journal.pmed.1002270.
  • Huynh, R. A.; Mohan, C. Alzheimer's Disease: Biomarkers in the Genome, Blood, and Cerebrospinal Fluid. Front. Neurol. 2017, 8, 102. DOI: 10.3389/fneur.2017.00102.
  • Ma, Q.-L.; Teng, E.; Zuo, X.; Jones, M.; Teter, B.; Zhao, E. Y.; Zhu, C.; Bilousova, T.; Gylys, K. H.; Apostolova, L. G.; et al. Neuronal Pentraxin 1: A Synaptic-Derived Plasma Biomarker in Alzheimer’s Disease. Neurobiol. Dis. 2018, 114, 120–128. DOI: 10.1016/j.nbd.2018.02.014.
  • Kelleher, R. J.; Shen, J. Presenilin-1 Mutations and Alzheimer’s Disease. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 629–631. DOI: 10.1073/pnas.1619574114.
  • Kehoe, E. G.; McNulty, J. P.; Mullins, P. G.; Bokde, A. L. Advances in MRI Biomarkers for the Diagnosis of Alzheimer's Disease. Biomark. Med. 2014, 8, 1151–1169. DOI: 10.2217/bmm.14.42.
  • Khoury, R.; Ghossoub, E. Diagnostic Biomarkers of Alzheimer’s Disease: A State-of-the-Art Review. Biomarkers in Neuropsychiatry 2019, 1, 100005. DOI: 10.1016/j.bionps.2019.100005.
  • Golebiowski, M.; Barcikowska, M.; Pfeffer, A. Magnetic Resonance Imaging-Based Hippocampal Volumetry in Patients with Dementia of the Alzheimer Type. Dement. Geriatr. Cogn. Disord. 1999, 10, 284–288. DOI: 10.1159/000017133.
  • Bloudek, L. M.; Spackman, D. E.; Blankenburg, M.; Sullivan, S. D. Review and Meta-Analysis of Biomarkers and Diagnostic Imaging in Alzheimer's Disease. J. Alzheimers. Dis. 2011, 26, 627–645. DOI: 10.3233/JAD-2011-110458.
  • Trzepacz, P. T.; Yu, P.; Sun, J.; Schuh, K.; Case, M.; Witte, M. M.; Hochstetler, H.; Hake, A.; Alzheimer's Disease Neuroimaging Initiative. Comparison of Neuroimaging Modalities for the Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's Dementia. Neurobiol. Aging. 2014, 35, 143–151. DOI: 10.1016/j.neurobiolaging.2013.06.018.
  • Aisen, P. S.; Petersen, R. C.; Donohue, M. C.; Gamst, A.; Raman, R.; Thomas, R. G.; Walter, S.; Trojanowski, J. Q.; Shaw, L. M.; Beckett, L. A.; Alzheimer's Disease Neuroimaging Initiative; et al. Clinical Core of the Alzheimer's Disease Neuroimaging Initiative: Progress and Plans. Alzheimers. Dement. 2010, 6, 239–246. DOI: 10.1016/j.jalz.2010.03.006.
  • Ou, Y.-N.; Xu, W.; Li, J.-Q.; Guo, Y.; Cui, M.; Chen, K.-L.; Huang, Y.-Y.; Dong, Q.; Tan, L.; Yu, J.-T.; On behalf of Alzheimer’s Disease Neuroimaging Initiative. FDG-PET as an Independent Biomarker for Alzheimer’s Biological Diagnosis: A Longitudinal Study. Alz. Res. Therapy 2019, 11, 57. DOI: 10.1186/s13195-019-0512-1.
  • Anchisi, D.; Borroni, B.; Franceschi, M.; Kerrouche, N.; Kalbe, E.; Beuthien-Beumann, B.; Cappa, S.; Lenz, O.; Ludecke, S.; Marcone, A.; et al. Heterogeneity of Brain Glucose Metabolism in Mild Cognitive Impairment and Clinical Progression to Alzheimer Disease. Arch. Neurol. 2005, 62, 1728–1733. DOI: 10.1001/archneur.62.11.1728.
  • Yuan, Y.; Gu, Z.-X.; Wei, W.-S. Fluorodeoxyglucose–Positron-Emission Tomography, Single-Photon Emission Tomography, and Structural MR Imaging for Prediction of Rapid Conversion to Alzheimer Disease in Patients with Mild Cognitive Impairment: A Meta-Analysis. AJNR Am. J. Neuroradiol. 2009, 30, 404–410. DOI: 10.3174/ajnr.A1357.
  • Marcus, C.; Mena, E.; Subramaniam, R. M. Brain PET in the Diagnosis of Alzheimer’s Disease. Clin. Nucl. Med. 2014, 39, e413.
  • Zhang, S.; Smailagic, N.; Hyde, C.; Noel‐Storr, A. H.; Takwoingi, Y.; McShane, R.; Feng, J. 11C‐PIB‐PET for the Early Diagnosis of Alzheimer’s Disease Dementia and Other Dementias in People with Mild Cognitive Impairment (MCI). Cochrane Database Syst. Rev. 2014, 2014, CD010386.
  • O’Brien, J. T.; Herholz, K. Amyloid Imaging for Dementia in Clinical Practice. BMC Med. 2015, 13, 1–3. DOI: 10.1186/s12916-015-0404-6.
  • Martínez, G.; Vernooij, R. W.; Padilla, P. F.; Zamora, J.; Cosp, X. B.; Flicker, L. 18F PET with Florbetapir for the Early Diagnosis of Alzheimer’s Disease Dementia and Other Dementias in People with Mild Cognitive Impairment (MCI). Cochrane Database Syst. Rev. 2017, 11, CD012216.
  • Martínez, G.; Vernooij, R. W.; Padilla, P. F.; Zamora, J.; Flicker, L.; Cosp, X. B. 18F PET with Florbetaben for the Early Diagnosis of Alzheimer's Disease Dementia and Other Dementias in People with Mild Cognitive Impairment (MCI). Cochrane Database of Systematic Reviews 2017, 11, CD012884.
  • Müller, E. G.; Edwin, T. H.; Stokke, C.; Navelsaker, S. S.; Babovic, A.; Bogdanovic, N.; Knapskog, A. B.; Revheim, M. E. Amyloid-β PET-Correlation with Cerebrospinal Fluid Biomarkers and Prediction of Alzheimer’s Disease Diagnosis in a Memory Clinic. PloS One 2019, 14, e0221365. DOI: 10.1371/journal.pone.0221365.
  • Ferreira, D.; Perestelo-Prez, L.; Westman, E.; Wahlund, L.; Sarra, A.; Serrano-Aguilar, P. Meta-Review of CSF Core Biomarkers in Alzheimer’s Disease: The State-of-the-Art after the New Revised Diagnostic Criteria. Front Aging Neurosci 2014, 6, 1–24.
  • Folch, J.; Petrov, D.; Ettcheto, M.; Abad, S.; Sánchez-López, E.; García, M. L.; Olloquequi, J.; Beas-Zarate, C.; Auladell, C.; Camins, A. Current Research Therapeutic Strategies for Alzheimer’s Disease Treatment. Neural Plast. 2016, 2016, 8501693. DOI: 10.1155/2016/8501693.
  • Zvěřová, M. Alzheimer’s Disease and Blood-Based Biomarkers – Potential Contexts of Use. Neuropsychiatr. Dis. Treat. 2018, 14, 1877–1882. DOI: 10.2147/NDT.S172285.
  • O'Bryant, S. E.; Mielke, M. M.; Rissman, R. A.; Lista, S.; Vanderstichele, H.; Zetterberg, H.; Lewczuk, P.; Posner, H.; Hall, J.; Johnson, L.; Biofluid Based Biomarker Professional Interest Area; et al. Blood-Based Biomarkers in Alzheimer Disease: current State of the Science and a Novel Collaborative Paradigm for Advancing from Discovery to Clinic. Alzheimers. Dement. 2017, 13, 45–58. DOI: 10.1016/j.jalz.2016.09.014.
  • Pláteník, J.; Fišar, Z.; Buchal, R.; Jirák, R.; Kitzlerová, E.; Zvěřová, M.; Raboch, J. GSK3β, CREB, and BDNF in Peripheral Blood of Patients with Alzheimer's Disease and Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014, 50, 83–93. DOI: 10.1016/j.pnpbp.2013.12.001.
  • Fiandaca, M. S.; Zhong, X.; Cheema, A. K.; Orquiza, M. H.; Chidambaram, S.; Tan, M. T.; Gresenz, C. R.; FitzGerald, K. T.; Nalls, M. A.; Singleton, A. B.; et al. Plasma 24-metabolite Panel Predicts Preclinical Transition to Clinical Stages of Alzheimer’s Disease. Front. Neurol. 2015, 6, 237. DOI: 10.3389/fneur.2015.00237.
  • Voyle, N.; Baker, D.; Burnham, S. C.; Covin, A.; Zhang, Z.; Sangurdekar, D. P.; Tan Hehir, C. A.; Bazenet, C.; Lovestone, S.; Kiddle, S.; Dobson, R. J. B.; AIBL Research Group. Blood Protein Markers of Neocortical Amyloid-β Burden: A Candidate Study Using SOMAscan Technology. J. Alzheimers. Dis. 2015, 46, 947–961. DOI: 10.3233/JAD-150020.
  • Panegyres, P. K.; Chen, H.-Y. Differences between Early and Late Onset Alzheimer’s Disease. American Journal of Neurodegenerative Disease 2013, 2, 300.
  • Nicolas, G.; Wallon, D.; Charbonnier, C.; Quenez, O.; Rousseau, S.; Richard, A.-C.; Rovelet-Lecrux, A.; Coutant, S.; Le Guennec, K.; Bacq, D.; et al. Screening of Dementia Genes by Whole-Exome Sequencing in Early-Onset Alzheimer Disease: input and Lessons. Eur. J. Hum. Genet. 2016, 24, 710–716. DOI: 10.1038/ejhg.2015.173.
  • Mattsson, N.; Andreasson, U.; Zetterberg, H.; Blennow, K.; for the Alzheimer’s Disease Neuroimaging Initiative Association of Plasma Neurofilament Light with Neurodegeneration in Patients with Alzheimer Disease. JAMA Neurol. 2017, 74, 557–566. DOI: 10.1001/jamaneurol.2016.6117.
  • Mattsson, N.; Zetterberg, H.; Janelidze, S.; Insel, P. S.; Andreasson, U.; Stomrud, E.; Palmqvist, S.; Baker, D.; Tan Hehir, C. A.; Jeromin, A.; ADNI Investigators; et al. Plasma Tau in Alzheimer Disease. Neurology 2016, 87, 1827–1835. DOI: 10.1212/WNL.0000000000003246.
  • Kuhle, J.; Barro, C.; Andreasson, U.; Derfuss, T.; Lindberg, R.; Sandelius, Å.; Liman, V.; Norgren, N.; Blennow, K.; Zetterberg, H. Comparison of Three Analytical Platforms for Quantification of the Neurofilament Light Chain in Blood Samples: ELISA, Electrochemiluminescence Immunoassay and Simoa. Clin. Chem. Lab. Med. (CCLM) 2016, 54, 1655–1661. DOI: 10.1515/cclm-2015-1195.
  • Gisslén, M.; Price, R. W.; Andreasson, U.; Norgren, N.; Nilsson, S.; Hagberg, L.; Fuchs, D.; Spudich, S.; Blennow, K.; Zetterberg, H. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study. EBioMedicine 2016, 3, 135–140. DOI: 10.1016/j.ebiom.2015.11.036.
  • Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer's Disease: Current Status and Prospects for the Future. J. Intern. Med. 2018, 284, 643–663. DOI: 10.1111/joim.12816.
  • Humpel, C. Identifying and Validating Biomarkers for Alzheimer's Disease. Trends Biotechnol. 2011, 29, 26–32. DOI: 10.1016/j.tibtech.2010.09.007.
  • Hu, W. T.; Holtzman, D. M.; Fagan, A. M.; Shaw, L. M.; Perrin, R.; Arnold, S. E.; Grossman, M.; Xiong, C.; Craig-Schapiro, R.; Clark, C. M.; Alzheimer's Disease Neuroimaging Initiative; et al. Plasma Multianalyte Profiling in Mild Cognitive Impairment and Alzheimer Disease. Neurology 2012, 79, 897–905. DOI: 10.1212/WNL.0b013e318266fa70.
  • Ashton, N. J.; Ide, M.; Zetterberg, H.; Blennow, K. Salivary Biomarkers for Alzheimer's Disease and Related Disorders. Neurol. Ther. 2019, 8, 83–94. DOI: 10.1007/s40120-019-00168-1.
  • Zhang, Y.; Sun, J.; Lin, C. C.; Abemayor, E.; Wang, M. B.; Wong, D. T. The Emerging Landscape of Salivary Diagnostics. Periodontol 2000. 2016, 70, 38–52. DOI: 10.1111/prd.12099.
  • Farah, R.; Haraty, H.; Salame, Z.; Fares, Y.; Ojcius, D. M.; Sadier, N. S. Salivary Biomarkers for the Diagnosis and Monitoring of Neurological Diseases. Biomed. J. 2018, 41, 63–87. DOI: 10.1016/j.bj.2018.03.004.
  • Jasim, H.; Carlsson, A.; Hedenberg-Magnusson, B.; Ghafouri, B.; Ernberg, M. Saliva as a Medium to Detect and Measure Biomarkers Related to Pain. Sci. Rep. 2018, 8, 1–9. DOI: 10.1038/s41598-018-21131-4.
  • Gleerup, H. S.; Hasselbalch, S. G.; Simonsen, A. H. Biomarkers for Alzheimer’s Disease in Saliva: A Systematic Review. Dis Markers 2019, 2019, 4761054. DOI: 10.1155/2019/4761054.
  • Masson, J.-F. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sens. 2017, 2, 16–30. DOI: 10.1021/acssensors.6b00763.
  • Oeckl, P.; Otto, M. A Review on MS-Based Blood Biomarkers for Alzheimer's Disease. Neurol. Ther. 2019, 8, 113–127. DOI: 10.1007/s40120-019-00165-4.
  • Crutchfield, C. A.; Thomas, S. N.; Sokoll, L. J.; Chan, D. W. Advances in Mass Spectrometry-Based Clinical Biomarker Discovery. Clin. Proteomics. 2016, 13, 1–12. DOI: 10.1186/s12014-015-9102-9.
  • Nakamura, A.; Kaneko, N.; Villemagne, V. L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q.-X.; Martins, R.; Rowe, C.; et al. High Performance Plasma Amyloid-β Biomarkers for Alzheimer’s Disease. Nature 2018, 554, 249–254. DOI: 10.1038/nature25456.
  • Liu, Y.; Qing, H.; Deng, Y. Biomarkers in Alzheimer’s Disease Analysis by Mass Spectrometry-Based Proteomics. Int. J. Mol. Sci. 2014, 15, 7865–7882. DOI: 10.3390/ijms15057865.
  • McAvoy, T.; Lassman, M. E.; Spellman, D. S.; Ke, Z.; Howell, B. J.; Wong, O.; Zhu, L.; Tanen, M.; Struyk, A.; Laterza, O. F. Quantification of Tau in Cerebrospinal Fluid by Immunoaffinity Enrichment and Tandem Mass Spectrometry. Clin. Chem. 2014, 60, 683–689. DOI: 10.1373/clinchem.2013.216515.
  • Yang, T.; Hong, S.; O'Malley, T.; Sperling, R. A.; Walsh, D. M.; Selkoe, D. J. New ELISAs with High Specificity for Soluble Oligomers of Amyloid β-Protein Detect Natural Aβ Oligomers in Human Brain but Not CSF. Alzheimers. Dement. 2013, 9, 99–112. DOI: 10.1016/j.jalz.2012.11.005.
  • Kang, J.-H.; Korecka, M.; Toledo, J. B.; Trojanowski, J. Q.; Shaw, L. M. Clinical Utility and Analytical Challenges in Measurement of Cerebrospinal Fluid Amyloid-β(1-42) and τ Proteins as Alzheimer Disease Biomarkers. Clin. Chem. 2013, 59, 903–916. DOI: 10.1373/clinchem.2013.202937.
  • Agnello, L.; Piccoli, T.; Vidali, M.; Cuffaro, L.; Lo Sasso, B.; Iacolino, G.; Giglio, V. R.; Lupo, F.; Alongi, P.; Bivona, G.; Ciaccio, M. Diagnostic Accuracy of Cerebrospinal Fluid Biomarkers Measured by Chemiluminescent Enzyme Immunoassay for Alzheimer Disease Diagnosis. Scand. J. Clin. Lab. Invest. 2020, 80, 313–315. DOI: 10.1080/00365513.2020.1740939.
  • Andreasson, U.; Blennow, K.; Zetterberg, H. Update on Ultrasensitive Technologies to Facilitate Research on Blood Biomarkers for Central Nervous System Disorders. Alzheimers Dement. (Amst.) 2016, 3, 98–102. DOI: 10.1016/j.dadm.2016.05.005.
  • Ghanbari, H. A.; Ghanbari, H. A.; Kozuk, T.; Miller, B. E.; Riesing, S. A Sandwich Enzyme Immunoassay for Detecting and Measuring Alzheimer’s Disease-Associated Proteins in Human Brain Tissue . J. Clin. Lab. Anal. 1990, 4, 189–192. DOI: 10.1002/jcla.1860040308.
  • Mascini, M.; Tombelli, S. Biosensors for Biomarkers in Medical Diagnostics. Biomarkers 2008, 13, 637–657. DOI: 10.1080/13547500802645905.
  • Jason‐Moller, L.; Murphy, M.; Bruno, J. Overview of Biacore Systems and Their Applications. Curr. Protocols Protein Sci. 2006, 45, 19.13.1–19.13.14. DOI: 10.1002/0471140864.ps1913s45.
  • PubMed.gov, National Library of Medicine. 2020. https://pubmed.ncbi.nlm.nih.gov/?term=surface+plasmon+resonance&filter=simsearch1.fha.
  • Vasić, B.; Isić, G.; Gajić, R. Localized Surface Plasmon Resonances in Graphene Ribbon Arrays for Sensing of Dielectric Environment at Infrared Frequencies. J. Appl. Phys. 2013, 113, 013110. DOI: 10.1063/1.4773474.
  • Rich, R. L.; Myszka, D. G. Advances in Surface Plasmon Resonance Biosensor Analysis. Curr. Opin. Biotechnol. 2000, 11, 54–61. DOI: 10.1016/S0958-1669(99)00054-3.
  • Nangare, S.; Patil, P. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for in Vitro Diagnosis: A Review. ACS Biomater. Sci. Eng. 2020. DOI: 10.1021/acsbiomaterials.0c01203.
  • Homola, J. Present and Future of Surface Plasmon Resonance Biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. DOI: 10.1007/s00216-003-2101-0.
  • Bellassai, N.; D'agata, R.; Jungbluth, V.; Spoto, G. Surface Plasmon Resonance for Biomarker Detection: Advances in Non-Invasive Cancer Diagnosis. Front. Chem. 2019, 7, 570. DOI: 10.3389/fchem.2019.00570.
  • Morales, M. A.; Halpern, J. M. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug. Chem. 2018, 29, 3231–3239. DOI: 10.1021/acs.bioconjchem.8b00592.
  • Nguyen, H. H.; Lee, S. H.; Lee, U. J.; Fermin, C. D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. DOI: 10.3390/ma12010121.
  • Schroeder, H. W., Jr.; Cavacini, L. Structure and Function of Immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. DOI: 10.1016/j.jaci.2009.09.046.
  • Lim, S. A.; Ahmed, M. U. Introduction to Immunosensors. In Immunosensors. London, UK: InTechOpen, 2019, pp. 1–20.
  • Florea, A. S. Electrochemical Affinity Sensors for Biomedical, Food and Environmental Applications, 2015.
  • Sela-Culang, I.; Kunik, V.; Ofran, Y. The Structural Basis of Antibody-Antigen Recognition. Front. Immunol. 2013, 4, 302. DOI: 10.3389/fimmu.2013.00302.
  • Dondelinger, M.; Filée, P.; Sauvage, E.; Quinting, B.; Muyldermans, S.; Galleni, M.; Vandevenne, M. S. Understanding the Significance and Implications of Antibody Numbering and Antigen-Binding Surface/Residue Definition . Front. Immunol. 2018, 9, 2278. DOI: 10.3389/fimmu.2018.02278.
  • Muyldermans, S. Single Domain Camel Antibodies: Current Status. J. Biotechnol. 2001, 74, 277–302. DOI: 10.1016/s1389-0352(01)00021-6.
  • Janeway, C. A.; Jr, Travers, P.; Walport, M.; Shlomchik, M. J. The Interaction of the Antibody Molecule with Specific Antigen. In Immunobiology: The Immune System in Health and Disease. 5th ed. New York, NY: Garland Science, 2001.
  • Ronkainen, N. J.; Halsall, H. B.; Heineman, W. R. Electrochemical Biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. DOI: 10.1039/b714449k.
  • Hock, B. Antibodies for Immunosensors a Review. Anal. Chim. Acta 1997, 347, 177–186. DOI: 10.1016/S0003-2670(97)00167-0.
  • Li, F.; Vijayasankaran, N.; Shen, A.; Kiss, R.; Amanullah, A. Cell Culture Processes for Monoclonal Antibody Production. MAbs 2010, 2, 466–479. DOI: 10.4161/mabs.2.5.12720.
  • Nguyen, H. H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors (Basel) 2015, 15, 10481–10510. DOI: 10.3390/s150510481.
  • Shakesheff, K.; Tsourpas, G. Surface Modification to Tailor the Biological Response. In Tissue Engineering Using Ceramics and Polymers. New York, NY: Elsevier, 2007, pp. 108–128.
  • Rahimi, F. Stammers Selected for Recognizing Amyloid β-Protein—A Case for Cautious Optimism. IJMS 2018, 19, 668. DOI: 10.3390/ijms19030668.
  • Lakhin, A.; Tarantul, V.; Gening, L. Aptamers: problems, Solutions and Prospects. Acta Naturae. 2013, 5, 34–43. DOI: 10.32607/20758251-2013-5-4-34-43.
  • Ling, Z.; Ming-Hua, W.; Jian-Ping, W.; Zhun-Zhong, Y. Application of Biosensor Surface Immobilization Methods for Aptamer. Chin. J. Anal. Chem. 2011, 39, 432–438.
  • Liu, H.; Ge, J.; Ma, E.; Yang, L. Advanced Biomaterials for Biosensor and Theranostics. Biomater. Transl. Med. 2019, 2019, 213–255.
  • Li, C.-Z.; Karadeniz, H.; Canavar, E.; Erdem, A. Electrochemical Sensing of Label Free DNA Hybridization Related to Breast Cancer 1 Gene at Disposable Sensor Platforms Modified with Single Walled Carbon Nanotubes. Electrochim. Acta 2012, 82, 137–142. DOI: 10.1016/j.electacta.2012.05.057.
  • Cieplak, M.; Kutner, W. Artificial Biosensors: how Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol. 2016, 34, 922–941. DOI: 10.1016/j.tibtech.2016.05.011.
  • Wackerlig, J.; Schirhagl, R. Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances toward Industrial Use: A Review. Anal. Chem. 2016, 88, 250–261. DOI: 10.1021/acs.analchem.5b03804.
  • Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-Based Immunochemical Biosensors and Assays: recent Advances and Challenges. Chem. Rev. 2017, 117, 9973–10042. DOI: 10.1021/acs.chemrev.7b00037.
  • Zarei, M. Portable Biosensing Devices for Point-of-Care Diagnostics: Recent Developments and Applications. TrAC - Trends Anal. Chem. 2017, 91, 26–41. DOI: 10.1016/j.trac.2017.04.001.
  • Katz, E.; Willner, I. Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angew. Chem. Int. Ed. Engl. 2004, 43, 6042–6108. DOI: 10.1002/anie.200400651.
  • Omidfar, K.; Khorsand, F.; Azizi, M. D. New Analytical Applications of Gold Nanoparticles as Label in Antibody Based Sensors. Biosens. Bioelectron. 2013, 43, 336–347. DOI: 10.1016/j.bios.2012.12.045.
  • Tade, R. S.; Nangare, S. N.; Patil, P. O. Green Synthesis of Silver Nanoparticles: An Ecofriendly Approach. Nano Biomed. Eng. 2020, 12, 281–296. DOI: 10.5101/nbe.v12i1.p57-66.
  • Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Noble Metals on the Nanoscale: optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 2008, 41, 1578–1586. DOI: 10.1021/ar7002804.
  • Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for Biosensing Applications: A Review. Front. Chem. 2014, 2, 63. DOI: 10.3389/fchem.2014.00063.
  • Yang, C.; Denno, M. E.; Pyakurel, P.; Venton, B. J. Recent Trends in Carbon Nanomaterial-Based Electrochemical Sensors for Biomolecules: A Review. Anal. Chim. Acta. 2015, 887, 17–37. DOI: 10.1016/j.aca.2015.05.049.
  • Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical Sensor and Biosensor Platforms Based on Advanced Nanomaterials for Biological and Biomedical Applications. Biosens. Bioelectron. 2018, 103, 113–129. DOI: 10.1016/j.bios.2017.12.031.
  • Giljohann, D. A.; Mirkin, C. A. Drivers of Biodiagnostic Development. Nature 2009, 462, 461–464. DOI: 10.1038/nature08605.
  • Kalia, J.; Raines, R. T. Advances in Bioconjugation. Curr. Org. Chem. 2010, 14, 138–147. DOI: 10.2174/138527210790069839.
  • Gómez-Arribas, L. N.; Benito-Peña, E.; Hurtado-Sánchez, M. D. C.; Moreno-Bondi, M. C. Biosensing Based on Nanoparticles for Food Allergens Detection. Sensors 2018, 18, 1087. DOI: 10.3390/s18041087.
  • Deshmukh, S.; Patil, S.; Mullani, S.; Delekar, S. Silver Nanoparticles as an Effective Disinfectant: A Review. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019, 97, 954–965. DOI: 10.1016/j.msec.2018.12.102.
  • Olson, J.; Dominguez-Medina, S.; Hoggard, A.; Wang, L.-Y.; Chang, W.-S.; Link, S. Optical Characterization of Single Plasmonic Nanoparticles. Chem. Soc. Rev. 2015, 44, 40–57. DOI: 10.1039/c4cs00131a.
  • Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications. Annu Rev Anal Chem (Palo Alto Calif) 2013, 6, 143–162. DOI: 10.1146/annurev-anchem-060908-155136.
  • Kairdolf, B. A.; Qian, X.; Nie, S. Bioconjugated Nanoparticles for Biosensing, in Vivo Imaging, and Medical Diagnostics. Anal. Chem. 2017, 89, 1015–1031. DOI: 10.1021/acs.analchem.6b04873.
  • Syedmoradi, L.; Daneshpour, M.; Alvandipour, M.; Gomez, F. A.; Hajghassem, H.; Omidfar, K. Point of Care Testing: The Impact of Nanotechnology. Biosens. Bioelectron. 2017, 87, 373–387. DOI: 10.1016/j.bios.2016.08.084.
  • Zhang, A.; Lieber, C. M. Nano-Bioelectronics. Chem. Rev. 2016, 116, 215–257. DOI: 10.1021/acs.chemrev.5b00608.
  • Hou, S.; Zhang, A.; Su, M. Nanomaterials for Biosensing Applications. Basel, Switzerland: Multidisciplinary Digital Publishing Institute, 2016.
  • Stephanopoulos, N.; Francis, M. B. Choosing an Effective Protein Bioconjugation Strategy. Nat. Chem. Biol. 2011, 7, 876–884. DOI: 10.1038/nchembio.720.
  • Zhou, M.; Nakatani, E.; Gronenberg, L. S.; Tokimoto, T.; Wirth, M. J.; Hruby, V. J.; Roberts, A.; Lynch, R. M.; Ghosh, I. Peptide-Labeled Quantum Dots for Imaging GPCRs in Whole Cells and as Single Molecules. Bioconjug. Chem. 2007, 18, 323–332. DOI: 10.1021/bc0601929.
  • Lee, J.-H.; Kang, D.-Y.; Lee, T.; Kim, S.-U.; Oh, B.-K.; Choi, J.-W. Signal Enhancement of Surface Plasmon Resonance Based Immunosensor Using Gold Nanoparticle-Antibody Complex for Beta-Amyloid (1-40) Detection . J. Nanosci. Nanotechnol. 2009, 9, 7155–7160. DOI: 10.1166/jnn.2009.1613.
  • Ruiz, G.; Tripathi, K.; Okyem, S.; Driskell, J. D. pH Impacts the Orientation of Antibody Adsorbed onto Gold Nanoparticles. Bioconjug. Chem. 2019, 30, 1182–1191. DOI: 10.1021/acs.bioconjchem.9b00123.
  • Tripathi, K.; Driskell, J. D. Quantifying Bound and Active Antibodies Conjugated to Gold Nanoparticles: A Comprehensive and Robust Approach to Evaluate Immobilization Chemistry. ACS Omega. 2018, 3, 8253–8259. DOI: 10.1021/acsomega.8b00591.
  • Zhang, L. Design of Plasmonic Nanoparticles and Their Use for Biotoxin Immunosensing. Paris, France: Sorbonne Université, 2018.
  • Kim, H.; Lee, J. U.; Song, S.; Kim, S.; Sim, S. J. A Shape-Code Nanoplasmonic Biosensor for Multiplex Detection of Alzheimer's Disease Biomarkers. Biosens. Bioelectron. 2018, 101, 96–102. DOI: 10.1016/j.bios.2017.10.018.
  • Vestergaard, M. d.; Kerman, K.; Kim, D.-K.; Hiep, H. M.; Tamiya, E. Detection of Alzheimer's Tau Protein Using Localised Surface Plasmon Resonance-Based Immunochip. Talanta 2008, 74, 1038–1042. DOI: 10.1016/j.talanta.2007.06.009.
  • Nu, T. T. V.; Tran, N. H. T.; Nam, E.; Nguyen, T. T.; Yoon, W. J.; Cho, S.; Kim, J.; Chang, K.-A.; Ju, H. Blood-Based Immunoassay of Tau Proteins for Early Diagnosis of Alzheimer's Disease Using Surface Plasmon Resonance Fiber Sensors. RSC Adv. 2018, 8, 7855–7862. DOI: 10.1039/C7RA11637C.
  • Haes, A. J.; Chang, L.; Klein, W. L.; Van Duyne, R. P. Detection of a Biomarker for Alzheimer's Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor. J. Am. Chem. Soc. 2005, 127, 2264–2271. DOI: 10.1021/ja044087q.
  • Kim, S.; Wark, A. W.; Lee, H. J. Femtomolar Detection of Tau Proteins in Undiluted Plasma Using Surface Plasmon Resonance. Anal. Chem. 2016, 88, 7793–7799. DOI: 10.1021/acs.analchem.6b01825.
  • Lee, Y. K.; Lee, K.-S.; Kim, W. M.; Sohn, Y.-S. Detection of Amyloid-β42 Using a Waveguide-Coupled Bimetallic Surface Plasmon Resonance Sensor Chip in the Intensity Measurement Mode. PLoS One. 2014, 9, e98992. DOI: 10.1371/journal.pone.0098992.
  • Yi, X.; Feng, C.; Hu, S.; Li, H.; Wang, J. Surface Plasmon Resonance Biosensors for Simultaneous Monitoring of Amyloid-Beta Oligomers and Fibrils and Screening of Select Modulators. Analyst 2016, 141, 331–336. DOI: 10.1039/c5an01864a.
  • Palladino, P.; Aura, A. M.; Spoto, G. Surface Plasmon Resonance for the label-free detection of Alzheimer's β-Amyloid Peptide Aggregation . Anal. Bioanal. Chem. 2016, 408, 849–854. DOI: 10.1007/s00216-015-9172-6.
  • Poduslo, J. F.; Ramakrishnan, M.; Wengenack, T. M.; Kandimalla, K. K.; Howell, K. G. Surface Plasmon Resonance Binding Kinetics of Alzheimer's Disease Amyloid β Peptide Capturing-and Plaque Binding-Monoclonal Antibodies. Alzheimer Dement. 2010, 6, S535–S536. DOI: 10.1016/j.jalz.2010.05.1787.
  • Kim, H. J.; Sohn, Y.-S.; Kim, C-d.; Jang, D-h. Surface Plasmon Resonance Sensing of a Biomarker of Alzheimer Disease in an Intensity Measurement Mode with a Bimetallic Chip. J. Korean Phys. Soc. 2016, 69, 793–797. DOI: 10.3938/jkps.69.793.
  • Špringer, T.; Hemmerová, E.; Finocchiaro, G.; Krištofiková, Z.; Vyhnálek, M.; Homola, J. Surface Plasmon Resonance Biosensor for the Detection of Tau-Amyloid β Complex. Sens. Actuators, B. 2020, 316, 128146. DOI: 10.1016/j.snb.2020.128146.
  • Xia, N.; Liu, L.; Harrington, M. G.; Wang, J.; Zhou, F. Regenerable and Simultaneous Surface Plasmon Resonance Detection of aβ(1-40) and aβ(1-42) Peptides in Cerebrospinal Fluids with Signal Amplification by Streptavidin Conjugated to an N-Terminus-Specific Antibody . Anal. Chem. 2010, 82, 10151–10157. DOI: 10.1021/ac102257m.
  • O'Brien, R. J.; Wong, P. C. Amyloid Precursor Protein Processing and Alzheimer's Disease. Annu. Rev. Neurosci. 2011, 34, 185–204. DOI: 10.1146/annurev-neuro-061010-113613.
  • Viola, K.; Velasco, P.; Klein, W. L. Why Alzheimer’s is a Disease of Memory: The Attack on Synapses by Aß Oligomers (ADDLs). J. Nutr. Health Aging 2008, 12, S51–S57. DOI: 10.1007/BF02982587.
  • Zhu, S.; Du, C.; Fu, Y.; Deng, Q.; Shi, L. Influence of Cr Adhesion Layer on Detection of Amyloid-Derived Diffusible Ligands Based on Localized Surface Plasmon Resonance. Plasmonics 2009, 4, 135–140. DOI: 10.1007/s11468-009-9084-4.
  • Ramakrishnan, M.; Kandimalla, K. K.; Wengenack, T. M.; Howell, K. G.; Poduslo, J. F. Surface Plasmon Resonance Binding Kinetics of Alzheimer’s Disease Amyloid Beta Peptide-Capturing and Plaque-Binding Monoclonal Antibodies . Biochemistry 2009, 48, 10405–10415. DOI: 10.1021/bi900523q.
  • Zayats, M.; Pogorelova, S. P.; Kharitonov, A. B.; Lioubashevski, O.; Katz, E.; Willner, I. Au Nanoparticle-Enhanced Surface Plasmon Resonance Sensing of Biocatalytic Transformations. Chemistry 2003, 9, 6108–6114. DOI: 10.1002/chem.200305104.
  • Zhao, Z.; Zhu, L.; Bu, X.; Ma, H.; Yang, S.; Yang, Y.; Hu, Z. Label-Free Detection of Alzheimer’s Disease through the ADP3 Peptoid Recognizing the Serum Amyloid-beta42 Peptide . Chem. Commun. (Camb.) 2015, 51, 718–721. DOI: 10.1039/c4cc07037b.
  • Weingarten, M. D.; Lockwood, A. H.; Hwo, S.-Y.; Kirschner, M. W. A Protein Factor Essential for Microtubule Assembly. Proc. Natl. Acad. Sci. U. S. A. 1975, 72, 1858–1862. DOI: 10.1073/pnas.72.5.1858.
  • Mietelska-Porowska, A.; Wasik, U.; Goras, M.; Filipek, A.; Niewiadomska, G. Tau Protein Modifications and Interactions: their Role in Function and Dysfunction. Int. J. Mol. Sci. 2014, 15, 4671–4713. DOI: 10.3390/ijms15034671.
  • Watanabe, A.; Hasegawa, M.; Suzuki, M.; Takio, K.; Morishima-Kawashima, M.; Titani, K.; Arai, T.; Kosik, K.; Ihara, Y. In Vivo Phosphorylation Sites in Fetal and Adult Rat Tau. J. Biol. Chem. 1993, 268, 25712–25717.
  • Shekhar, S.; Kumar, R.; Rai, N.; Kumar, V.; Singh, K.; Upadhyay, A. D.; Tripathi, M.; Dwivedi, S.; Dey, A. B.; Dey, S. Estimation of Tau and Phosphorylated tau181 in Serum of Alzheimer’s Disease and Mild Cognitive Impairment Patients. PLoS One 2016, 11, e0159099. DOI: 10.1371/journal.pone.0159099.
  • Lisi, S.; Scarano, S.; Fedeli, S.; Pascale, E.; Cicchi, S.; Ravelet, C.; Peyrin, E.; Minunni, M. Toward Sensitive Immuno-Based Detection of Tau Protein by Surface Plasmon Resonance Coupled to Carbon Nanostructures as Signal Amplifiers. Biosens. Bioelectron. 2017, 93, 289–292. DOI: 10.1016/j.bios.2016.08.078.
  • Sciacca, B.; François, A.; Klingler-Hoffmann, M.; Brazzatti, J.; Penno, M.; Hoffmann, P.; Monro, T. M. Radiative-Surface Plasmon Resonance for the Detection of Apolipoprotein E in Medical Diagnostics Applications. Nanomedicine 2013, 9, 550–557. DOI: 10.1016/j.nano.2012.10.007.
  • Yi, X.; Xia, Y.; Ding, B.; Wu, L.; Hu, S.; Wang, Z.; Yang, M.; Wang, J. Dual-Channel Surface Plasmon Resonance for Quantification of ApoE Gene and Genotype Discrimination in Unamplified Genomic DNA Extracts. ACS Sens. 2018, 3, 2402–2407. DOI: 10.1021/acssensors.8b00845.
  • Kant, R.; Gupta, B. D. Fiber-Optic SPR Based Acetylcholine Biosensor Using Enzyme Functionalized Ta 2 O 5 Nanoflakes for Alzheimer's Disease Diagnosis. J. Lightwave Technol. 2018, 36, 4018–4024. DOI: 10.1109/JLT.2018.2856924.
  • Hegnerová, K.; Bockova, M.; Vaisocherová, H.; Krištofiková, Z.; Říčný, J.; Řípová, D.; Homola, J. Surface Plasmon Resonance Biosensors for Detection of Alzheimer Disease Biomarker. Sens. Actuators, B. 2009, 139, 69–73. DOI: 10.1016/j.snb.2008.09.006.
  • Trushina, E.; Mielke, M. M. Recent Advances in the Application of Metabolomics to Alzheimer's Disease. Biochim. Biophys. Acta. 2014, 1842, 1232–1239. DOI: 10.1016/j.bbadis.2013.06.014.
  • Wilkins, J. M.; Trushina, E. Application of Metabolomics in Alzheimer’s Disease. Front. Neurol. 2017, 8, 719. DOI: 10.3389/fneur.2017.00719.
  • Paglia, G.; Stocchero, M.; Cacciatore, S.; Lai, S.; Angel, P.; Alam, M. T.; Keller, M.; Ralser, M.; Astarita, G. Unbiased Metabolomic Investigation of Alzheimer’s Disease Brain Points to Dysregulation of Mitochondrial Aspartate Metabolism. J. Proteome Res. 2016, 15, 608–618. DOI: 10.1021/acs.jproteome.5b01020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.